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423
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A Decoupling for Martingales

The following definitions are from [36, Chapter 6].

Definition 2 Let {e;} and {d;} be two sequences of random variables adapted to the o-fields {F; }.
Then {e;} and {d;} are tangent with respect to {F; } if, for all 4,

p(di| Fi—1) = p(es| Fi—1) , (29)

where p(d;|F;—1) denotes the conditional probability of d; given F;_1.

Definition 3 A sequence {¢;} of random variables adapted to an increasing sequence of o-fields
JF; contained in F is said to satisfy the CI condition (conditional independence) if there exists a
o-algebra G, contained in F such that {e;} is conditionally independent given G, and p(e;|F;—1) =
p(eilG).

Definition 4 A sequence {e;} which satisfies the CI condition and which is also tangent to {d;} is
said to be a decoupled tangent sequence to {d; }.

The following result is from [36] Proposition 6.1.5].

Proposition 1 For any sequence of random variables {d;} adapted to an increasing sequence JF;
of a o-algebras, there always exists a decoupled sequence {e;} (on a possibly enlarged probability
space) which is tangent to the original sequence and in addition conditionally independent given a
master o-field G. Frequently G = o({d;}).

Next we state our main decoupling result:

Theorem 3 Let = = {;} be a martingale difference sequence adapted to an increasing sequence of
o-fields {F;}. Let = = {£.} be any decoupled tangent sequence to = = {&;}. Let B be a collection
of (n X n) symmetric matrices. Let F be a convex function. Then,

Bz |swp F | > g&aBix || <4Bzz |suwp F [ > &&Bi || - (30)
BeB = BeB g k=1
Gk ’

Our proof relies on the following results characterizing distributional equivalence of quadratic forms
of tangent sequences. Note that our main result needs decoupled tangent sequences where the ad-
ditional decoupling property will be used to handle the diagonal terms. We start with the following
result:

Lemma 2 Let Z = {;} be a martingale difference sequence adapted to an increasing sequence of
o-fields {F;}. Let Z' = {&]} be any tangent sequence to = = {¢;}. Let B be a symmetric (n X n)
matrix. Consider the random variables

Xo= > &&Bjk, and X, =Y &&Bjk. 31
j,k=1 j,k=1
i<k j<k

Then X, and X! are identically distributed.

Proof: We do the proof by induction. When n = 2, we have
Xo=6&B1s  and X5 =&6Bis.

12



436 So, the distribution of X5 is

P(X2 <) =P ¢, (§1§2B12 < 1)
=Pe, ¢, (£162B12 < 2,81 > 0) + Pr ¢, (£162B12 < 2,8 <0)
= P51,§2 (52 < :C/(§1B1’2)751 > 0) + PEI’EZ (52 < 95/(5131,2),51 < 0)

oo x/(z1B1,2) 0 oo
:/ pe: (21) / Pes|7 (22)d22 d21+/ pe, (21) / Pes |7 (22)d22 | dz
0 T

—0 —o00 /(z1B1,2)

() 00 z/(z1B1,2) 0 oo
@ / pes (1) / peyi 7 (z2)dza | dzy + / per(21) / pey 7, (22)dz2 | doa
0 x

—co —o0 /(z1B1,2)

= Pe e (& <x/(61B12),& 2 0) + Pe, ¢ (& < 2/(§1B12),& < 0)
= Pe, ¢, (&165B12 < )
= P(Xé < x) )

437 where (a) follows since £3|¢1 and £5|&; are identically distributed. Note that for (a), the conditioning
ass is on JFi(z1), but we do not show this explicitly. Thus, the statement holds for n = 2.

439 We continue with the proof by induction. Assume that the statement is true for some m so that

&&Bjk, and X, =Y §&Bjx
1 k=1
i<k

-

Xm =

7

AT
AR

440 are identically distributed so that

P(X,, <z)=PX,, <z).

m

441 Now, by definition

X1 = Xon +6mi1 ) &Bjmar and X =X}, + €00 &Bjmin -

Jj=1 Jj=1

442 The distribution of X, is

PXpy1 <) =P | Xp+&mi1 Y &Bjmi1 <=
j=1

— [ P Xt Y B <

— 00

Xm =Tm | PX,. (xm)dxm

j=1

:/ P &ma1 Y &Bjme1 <7 —am | px,, (2m)dam

— 00

=1

13



aa3  First, note that px,, (2m) = px: (L) since X, and X are identically distribution. For the first
444 term, making the random variables explicit, note that

m
Pﬁl;uwfm,ﬁrnwrl £m+l Z{ijm@Jrl <z -z
j=1

m m
= Peytmss | Gmt1 D& Bimit ST =T, Y §Bjmi1 20

j=1 j=1

m m
+ Pey et | Gnt1 LGBt S =2y Y & Bjmin <0
=1 =1

=Pyt il S = §iBjms+1 >0
1 o Zg 157 j,m+1 Z

j=1

ZfJ jm+1 <0

+P§1’ €my€mt1 Emt1 < Z <

j= 15] 7j,m+1

445 To simplify notation, let x,, = > - j=1&jBjm+1. Note that the distribution of x,, depends on Fy,,
446 and we explicitly show this dependency as needed in the analysis. Then,

Pey .t s | Ema Zngj,m+1 ST =T,
i=1

X
= me,§m+1 <§m+1 <

m T
s X'm Z 0) + me,£m+1 (é-erl S
m

o) (x—2m)/2zm
:/ Pxm (2m) [/ Perii|Fm (Zm+1)dzm+1‘| dzm

— 0o

m,xm<0>

m

0
0 00
+/ pXm(Zm) / p£m+1‘.7‘— Zm+1 dZm+1 dzm
—o0 (x_xm)/an
(a) o0 (-'”_-'Em)/zm
:/ me(zm) / pg;n+1|f Zm+1 dZm+1 dzp,
0 —o00
0 00
"‘/ pxm,(zm) /( Y DPel 1 Fm (2m+1)dzm+1| dzm

r—x r—x
= PfTYL)€;n+1 <§;n+1 < X = Xm > 0) Fonilrin ( Ema1 < = Xm < 0>

m Xm

!
- me,éwrl §m+1 § ijj,mH <T -y,
j=1

447 That completes the proof. [ ]

s Lemma [2] focuses on the lower triangle of the symmetric matrix B. The next result extends the
449  distributional equivalence to the full matrix 5.

as0 Lemma 3 Let = = {;} be a martingale difference sequence adapted to an increasing sequence of

451 o-fields {F;}. Let =/ = {&/} be any tangent sequence to = = {;}. Let B be a symmetric (n X n)
452 matrix. Consider the random variables

n n
Zn= Y &&Bjx, and  Z, =Y &&Bjk. (32)
J,k=1 j,k=1
J#k i#£k

14



453

454

455

457
458

459

460

461
462

463
464

466
467

Then Z,, and Z! are identically distributed.

Proof:  Following Lemma 2] with

X7§LL) = Z é-jé-k:B],k s and X,,IZ(L) = Z é-]glchj,k ) (33)
Jrk=1 Jk=1
i<k i<k

we have X, ~ X/, i.e., identically distributed. Similarly, with

Y'ri/ = Z é_;é-]/ch,k s and X;L(U) = Z fjglch]k 5 (34)
jok=1 Jik=1
i>k J>k

an application of Lemmaby interchanging = = {¢} and Z = {¢'} implies Y ~ X/ () and
we now provide more details to justify this. First, we switch the notation 7,k in (34) and use
Bj = DBy j to get

vi=3 €6B,  ad X, =3 6B, (35)
J,k=1 Jk=1
j<k J<k

Now, interchanging {{;} and {¢}}, we have

V)= &&Bix, and X, =3" 6B (36)
Gok=1 Jik=1
i<k i<k

Now Y ~ X/,(¥) follows from Lemmal[}
Continuing with the analysis, since = and =’ are tangent sequences, by interchanging =" = {¢; } and
= = {¢;} are tangent sequences, with

Y=Y &&B, ad X9 =3 ¢aB, (37)
jik=1 Jok=1

we have Y,/ ~ XT(LU). Then, from (34) and (37), we have XT(LU) ~ X/ (V) Combining this with

(33), we have
X 4 x0) x5 4 x! U) (38)

That completes the proof. ]

Proof of Theorem[3} Let A = {61,...,d,} be a set of i.i.d. Bernoulli random variables with P(§; =
0) = P(6; = 1) = 1/2. Since B € B are symmetric, we have

> &kBik =4Ea | Y 6i(1—6;)6&Bjk | - (39)
Jk=1 k=1
pps s

15



468 By Jensen’s inequality

> &&Bjk | = F | 4Ea Z 6i(1 = 6;)&;€kBik
j,k=1 j,k=1
J#k j#k
< 4EAF Z 6;i(1—6;)€;€,B; 1
7,k=1
J#k
= sup F | Y &&Bjn | <4sup EAF Z 6:i(1 — 6,)€;€Bjix
BeB j k=1 Beb k=1

Js J»
J#k #k

= Pz s F > &i&kBix | | S4B= |sup EAF 25 (1= 0,)8&k Bjx

B Py BeB Py
J#k i J#k
469 Consider a fixed realization A, = {61, ...,d,,,} of A, and consider the subset I = {i € [n]|d; , =
470 1}. Lets 1€ be the complement set. Then,
Z Sin(1=0;0)5&Bin| =4 | Y &&Bik| - (40)
J,k=1 (j,k)EIXIC
J#k j#£k

471 Since Z = {¢/} is a tangent sequence to = = {¢;}, by Lemma[3] we have

Es |sup F Z &k By | | S4Bz |sup EAF | Y 6:i(1—6;)66:Bjx
BeB Pt} BeB —
Js Js
ik i ik
=4Ez |sup EAF | Y &&Bjx (41)
beb (j,k)EIXI®
L ik
Wiabeo |swEsF | S gaBu|| . @
BeB (j,k)eIxI®
Gk

472 where (a) follows from the fact that if two random variables are identically distributed, expectations
473 of the same function applied to them will be the same. The matrix B of interest for Lemmahere
ara ist Bj = Bj for (j, k) € I x I°, j # k and O otherwise. Let

n

Y(A)24 Y 4Bk, Z(A)E4 D 4Bk, WEAY LB (43)

jk=1 Gk=1 j=1
Jj#k J#k
(j,k)EIXI® (j,k)ZIXI®

475 By construction, for every realization A,., we have

Y(A)+ Z(A)+W =4 | > 6B - (44)
jk=1

16



476 Now, by linearly of expectation, we have

E:E/[Z+W]:4 Z E&,,Ek[gjgk ]k+4ZE£JE/ 5] ] : (45)

7,k=1
J#k
(.77/€)€lec

477 We focus on one term E¢, ¢ [§;€;]. For j < k, we have

Be, 6 [$€]) = Bey gy {Esj,sg [&f;@\&:(k_l)]} = Ee [ij5; [&I&;(k_l)}] =0,

a8 since & |&1.(x—1) is a martingale difference sequence, which has zero mean. The argument for
479 j > k is similar by interchanging = and =’. Recall that =, =’ are decoupled tangent sequences,
as0 and, following Proposition|I} let G = o ({¢; }) be the master o-field with respect to which {¢’} are
481 conditionally independent. Then, we have

Ee, &[6€]] = Fo [Be,; [6:)16]) © Bo [6,B¢; [616]] © Bo & [1F5-]] o,

a2 where (a) follows since ¢; if G-measurable, (b) follows since P(¢}|G) = p(£}|F;-1) from Defini-
483 tion and (c) follows since f;-|]-'j,1 is a MDS. As a result, it follows that

E==|Z+W]=0. (46)

84 Now, for any convex function H, we have Ez = H(Y) = Ez=H(Y + E==(Z + W]) <
45 E=z H(Y + Z + W). Then, from (d2), we have

k=1 BeB (Gk)EIXI®
J#k J#k

S 4F= = sup EAF

Z &.Bjk

(J,k)=1

E= SUPF Z §i&uBjk <4FEz = |sup EAF ( Z &€ Bik

= 4EE =/ | sup F f
" |Bes (JZ) L !

ass  That completes the proof. ]

47 B Bounds for Sub-Gaussian MDS

ass B.1 Opverall Analysis
489 ForaMDS £ = {¢;}, let

Ca(€) £ sup |[|AE|5 — E|lAE]3] (47)
AeA
Ba(§) 2 sup | > &&(A;, Ap) 48)
AcA Jk=1
J#k
Da(&) 2 sup |> (161 = EIgIM)14;13 (49)
AeA J=1

a0 First, note that the contributions from the off-diagonal terms of E||A£||3 is 0:

a9t Proposition 2 For j # k, E¢, ¢, [£;6k] = 0.

17
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493
494

495

496

497
498

499

500

501
502
503

505

506

507

508

509
510

Proof: For j < k, we have
Ee, ¢ [66k] = Er_, [Fe; ¢, [§5€6|Fr]] = Er_, 1§ Ee, 1611 Fr-1]] = 0,

since &|Fr—1 is a martingale difference sequence, which has zero mean. The proof for j > k is
similar by switching the roles of j and k. ]

As a result, we have

Ca®) = sup [l 4¢]3 - BlIALI3|

= sup | > &E(Ay A + Y (€17 — EI&1P)I145113
j=1

AcA Jk=1
J#k
n
< sup Zé.]Ek (Aj, Ag) +Su Z|§J|2 Elg| )”AJH%
AcA k=1 1
Ji#k

= Ba(§) + Da(§)

Hence,

1CA©)lp < [I1BaEp + DAl - (50)

We bound || B.4(£)]|, in Section[B.2(Theorem[4) and bound || D 4(£)||,, in Section [B.4|(Theorem|6)
to get a bound on ||C'4(&)]|,, of the form

[Ca@)llp <a+Vp-b+p-c, Vp=1. (5D
Note that these bounds imply, for all u
P(ICa(§)| > a+b-Vutc-u)<e™, (52)
or, equivalently
PUCA] 2 0+ 1) < exp { —min (1 2] (53)
4%’ 2¢

which yields the main result. In the sequel, to avoid clutter, we mostly avoid all absolute constants
and constants which depend on L for L-sub-Gaussian random variables, i.e., we set them to 1, so
the key dependencies are clear. We are inspired by similar choices in the related literature [42}[19].

B.2 The Off-diagonal Terms

The main result for the off-diagonal term is the following:

Theorem 4 Let & be a sub-Gaussian MDS. Then,

1BA®lly < 12(A, | - l2s2) - (Wt, - o) + dF<A>)

VB () (el fama) + () 4+ B ().
Note that from Theorem 3] we have

IBA()lL, < ||sup | > &énlA;, ARl = (54)
ACA | k=1
ik L,

sup (A€, A¢')|
AcA

Ly

Hence our analysis will focus on bounding (54)), the L,-norm of the decoupled quadratic form. We
start with the following result:

18
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512

513

514
515

516
517

518
519

520

521

522
523

524

525

526

527

Lemma 4 Let £ be a sub-Gaussian MDS, and &' be a decoupled tangent sequence to &. Then, for
everyp > 1,

sup (A€, AE')
AeA

<72 (A [ - ll22) - [INa(€)lz, + sup [[{AE, AE)|, (55)
Ly, AcA

where N4(§) = sup ¢4 || A€ ||2.

Proof of Lemmad} Without loss of generality, assume A is finite. Consider the random variable of
interest:

I' = sup [(Ag, AE)] .
AecA

Let {T,.}22, be an admissible sequence for A for which the minimum in the definition of 2 (A, || -
l2—s2) is attained. Let

mrA =doo(A,T,) = argmin ||B — Al|a—2 and AA=mA—7._1A.

BeT,

For any given p > 1, let £ be the largest integer for which 2¢ < 2p. Then, by a direct computation
based on a telescoping sum and application of triangle inequality, we have

o0

(A€, AE') — ((meA)E, (meA)EN] < D ((Art1 A, (mr 1 A)E)

r=~0

oo

Z<(7TTA)53 (Ar+1A)§/> .

r={

+

Sl S2
(56)
We focus on S; noting that the analysis for S5 is similar. Let

X (A) = (Ary1A)E, (T 41 A)E) .
Conditioning X,.(A) on &', we note

Xr(A) = <(Ar+1A)£a (7Tr+1A)€/> = <€a (Ar+1A)T(7Tr+1A)€/>

a weighted sum of a sub-Gaussian MDS. Then, a direct application of the Azuma-Hoeffding bound
[] gives

P <X7-<A>| > (A A (7,1 AVE

€) < 2em(-12/2).
Using u = t2"/2, we get

P (XT<A>| S 22 (A1 ) (2 A)E

g’) < 2exp(—t%27/2) .
Since
(A1 A (1 A)E| < (| Ars1 Allase sup | AE]2 .
c

we have

P (|XT<A>| S 1272|241 Allasz sup LA ]
AcA

g’) < 2exp(—t%2"/2) .

‘)

Now, since [{m,A: A € A} =|T,| < 22" by union bound, we get

P| su X, (A)] >t su 22| A, 1 A - sup || A€’
<A€5 > 1% () (AEEZ 1A ||2—>2> sup [14€]]

r==~0

o0
<23 T T - exp(—1227/2)
r=~¢

oo
<2 Z 22" exp(—t22"/2)
r={

< 2exp(—2?)
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528

529

530
531

532

533

534
535

536

537

538

539

540

541

542
543

for all t > ty, a constant. Noting that

sup 3272 A 1 Allzoe = 7 (A, |- [la-s2)
AeAi T

sup [|A€[|l2 = Na(€) ,
AcA

we have

P((sun SO > (A ] a2)ValE)
AcA [T,

£’) < 2exp(—pt?),

since p < 2¢ by construction. In other words, with V(¢') = y2(A, || - la—s2) Na(&'), for t >ty we
have

P (5‘1 >tV (¢)

{') < 2exp(—pt?) .

Note that
151117, = EeeSt = Eg,/ ptP P(Sy >t | &)dt
0
Note that
o oo
| P> g)de=ovEr s [ i€
0 cV(g)

<AV +V(E) /OO prP T P(S1 > TV (€)[€)dr

<AV(E),
where ¢ > tg, ¢; are suitable constants with depend on L. As aresult, ||S1][z, < c1V(€') = 1V (§).
The bound on [|Sz ||, is the same, and can be derived similarly. As a result

151 + S|z, < c2v2(A | - la»2)[[Na(€) Iz, (57)
Further, since |{m,A : A € A} < 22" < exp(2p), we have

E sup [((mA)E, (mA)E)P > E(AE, AE'P < 2% sup E|(AE, AP,
AcA AcA

A€T,
so that
sup |((mA)E, (meA)E)|| < 4| sup E[(AE, AL')| L, - (58)
AcA L, AeA
Combining (36), (57), and (38) using triangle inequality completes the proof. |

For the first term in Lemmald] we have the following bound:

Lemma 5 Let € be a MDS. Then
INAE)lp < 72(A ] - [l22) + dr(A) + /pd22(A) - (59)

Proof: Consider the set S = {ATx : x € By, A € A}. Since ¢ is a L-sub-Gaussian MDS, we
have

INA©zy = (B sup (A& 2)IMP = (Esup (€, u )/

AcA,xeBY uesS

(a)

< Esup |(u, g)| + sup(E|(&,u)|P)*/P
ues u€sS

—E sup |(Ag, )| +p sup ATz,
A€A,z€By A€A,zeBY

= E sup Na(g) + /pda—2(A)
AcA

(b)
< (A |- lom2) + dr(A) + /pda—2(A) ,
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545

546
547

548

549

550

552
553

554

555

556

557
558

559
560

561

562

where (a) follows from Lemma(7]and (b) follows from [19, Lemma 3.7]. [ |
For the second term, we have the following bound:

Lemma 6 Let & be a sub-Gaussian MDS, and &' be a decoupled tangent sequence. Then, for every

p=>1,
iua (A€, AL ) |1, < /pdp(A)daya(A) + pd3_5(A) . (60)
S

Proof of Lemma 6] needs the following result:
Lemma7 Let x1,...,%, € RCand T C R Let & = {¢;} be a L-sub-Gaussian MDS and let
y = Z?Zl &ix;. Then, for every p > 1,

1/p
(Esup . y>|P) <e, (E [sup @, g>|} +sup (B, y>|P>”P) 61)
teT teT teT

where cy is a constant which depends on L and g = Z?zl g;x; where g; ~ N(0, 1) are indepen-
dent.

We need the following basic property of sub-Gaussian random variables [435] to prove Lemmal([7}

Proposition 3 If X is a L-sub-Gaussian random variable, then

P(IX|>tL) <2exp(—t?), ¥t>0 &  (E|X|P)Y? <co/pL, ¥p.  (62)

Proof of Lemma |2| We assume 7 is finite without loss of generality. Let {7,.} be an optimal
admissible sequence of T'. For any ¢t € T, let 7,.(t) = argmin, .1 ||t — ¢,||2. For any given p
determining the p-norm, choose ¢ such that 2t-1 < 2p < 2¢. o that 2¢ /p < 4. Then, by triangle
inequality, we have

sup |(t, y)| < sup [(me(t), y)| +sup > [(mpp1(t) = 7 (), ¥)] - (63)
teT teT teT 1=,

For the first term, note that

1/p 1/p
<Esup|(7rg(t),y>|p> < (EZ |<t,y>lp>

ter teT,
1
< (TP sup (E|(t,y)[?)'/"
teTy

< (2%)/7sup(E|(t,y)[")"/"
teT
< 16sup(E|(t,y)[P)"/?.
teT

For the second term, since {fj} is a L-sub-Gaussuan MDS, we have

P <Supz (1 (8) = (), 3)] =2 wl Y 272 (i (8) = Wr(t)7xj>)§-‘1|2>

r=4¢{ r=¢

<3SN ST P>t x| = uL2 2t x|

r=0te€T, 1 t'€T) j=1

I
S

() & - "
< 222 g2 -exp(—2"u?/2) < 2exp(—2°u?/4)
r=~{

<2 eXp(—qu/Q) ,
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565

566

567
568
569
570

571
572

573

574
575

576

577
578
579

580

for u > ¢, a constant (see Remark on generic chaining union bound in the sequel), where (a) follows
from Azuma-Hoeffding inequality. Then, from Proposition 3| we have

1/p 50
(EsupZIWm )—m(f),wp) < LY 22| ((rrga (t) = 7 (8), %)) 71 12

teT r=>~0 r=>~0
< Ly (T ] - [l2) »

where 7" = {((t,x;))7_,|t € T'}. Then, by the majorizing measures theorem [42} 41], we have

n
Y2 (T || - 1l2) < E sup |(t',g)| = Esup Z t,x;)g;| = Esup|(t,g)| .
teT” teT |“5 teT

That completes the proof. ]

Before proceeding further, we show the details of how the union bound works out in generic chain-
ing [42]]. We use variants of such union bound analysis several times in our proofs, and this is the
only place we show the details. Such analysis is considered standard in the context of generic chain,
but as a tool generic chaining is not as widely used.

Remark: Union bound in generic chaining. After applying union bound in a generic chaining
based analysis, we get a (infinite) sum of the following form:

S (2 = 3 el 2 2
r=~0

r={
= exp(—2%u?/4) Zexp(glogQ)'2T cexp(—2- (2" —29u?/4) .
r={
Focusing on the exponent, note that
(3log2) - 2" —2-2"u?/4 4 2% /4 < —(r — {)
= —(2' —29u?/2 < —(r — ) — (3log2) - 2"
= (2 —29u?/2 > (r —0) + (3log2) - 2"
r—4{ (3log2) - 27
(2r+1 — QZ) or+l _ 9ot

= u?/2>

Note that the last term is a decreasing function of r, and the maximum is achieved at » = ¢ when we

have
u?/2 > (3log2) u > +/6log2.

Thus, the bound holds for u > ug for a constant u. [}

Proof of Lemma @ For A € Aset S = {ATAx : x € BY}. Since ¢ is a L sub-Gaussian MDS,
the random variable (¢, AT A¢) is a weighted sum of a sub-Gaussian MDS when conditioned on &’.
Then, we have

(A, A€ >||L (Ee, 5/\<A§ A€ >|p>1/:0
= (B¢ {Eel(€, AT AP "
< (Be [Lyp"ATAE'|5])"

1/p
< Lyp (Es sup |<y,£>|p) .

Now, from Lemma(7] we have

1/p
(Eg sup |(y. e>p) < By sup |(g, )| + sup(Eel (€, y)") /7
yeS yeS yES
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585

586
587

588

589
590

591
592

593

594

595
596

598

599

600
601

For the first term, we have

Eg S‘é%l<g,y>| = Bg|| AT Agll2 < (B[ AT Agl3)"? = | AT Allr < | Allp )| All2-2 -
y

For the second term,

Sug(El<y,€>|p)”p = sup (E|(AT Az, €)[")"/" < L sup /p|| AT Az|ls = Ly/p||All2-2 -
ye

z€BY z€BY
Plugging these bounds on the two terms back and taking supremum over A € A completes the
proof. ]

Proof of Theorem ' Let &’ be a decoupled tanget sequence to the MDS £. Then we have

IBa(€)l, = sup | Y &&(A;, Ag)
AeA k=1
i#k
(a) A
< sup Z §j§j<AjaAk>

AcA |52

(b)
< (A |- [l2—2) - INA(E)lz, + jlelngAS,AS’)IILP

L a(A - Tas) - (A - las) + di(A))
+ /D dassa(A) - (V2(A, || - l2s2) + drp(A)) +p - d3_5(A),

where (a) follows from Theorem 3] (b) follows from Lemma[d] and (c) follows from Lemma [5]and
[l That completes the proof. [ ]

B.3 The Diagonal Terms: Bounded Random Variables

For the diagonal terms coresponding to bounded random variables, we have the following main
result:

Theorem 5 Let A € R™*"™ be a collection of (m x n) matrices. &1, ...,&, be a bounded MDS,

and let £ € R™ denote a vector of these random variables. Consider the random variable

n

Da(®) = sup |3 (& = Bl&; I3 (64)

j=1
where A7 denotes the j*" column of A. Then, we have

DA, < dr(A)-v2(A - ll2-2) + /P dr(A) - d2—s2(A) . (65)

The main observation here is since §; are bounded, so are §J2-, implying n = 5]2- — EJ&;|? is also
sub-Gaussian, and the sequence 7, . . ., 1, is a sub-Gaussian MDS [45]. Based on this observation,
the proof of TheoremE]relies on the following result bounding L,,-norms of the supremum of sub-
Gaussian MDSs:

Lemma 8 Let { = [(1,..., (] be a L-sub-Gaussian MDS and let T € R™. Then, for every p > 1,

1/p
(E sup . <>|P) <, (E [sup I g>|} T sup (B|(t. c>p>1“’) (66)
teT teT

teT

where ¢y is a constant which depends on L, g = [g;] where g; ~ N (0, 1) are independent identically
distributed normal random variables.
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602 Proof: We assume T is finite without loss of generality. Let {7} be an optimal admissible se-
603 quence of T'. For any ¢ € T', let m,.(t) = argmin, cp ||t — ¢,||2. For any given p determining the

604 p-norm, choose £ such that 2¢=! < 2p < 2¢, so that 2¢/ p < 4. Then, by triangle inequality, we have

sup |8, €l < sup (e (?), |+SHPZ| T (t) = mr(2), €)1 - (67)

605 For the first term, note that

1/p 1/p
<Esup |<7Te(t),€>|p> < (E Z |<taC>|p>

teT teTy

< (ITe) M7 sup (E|(t, ¢)|P)*/”
teTy,

< (227 sup(E|(t, ¢)[P)/»
teT
< 16sup(E|(t, ¢)[P)!/7 .
teT

e0s For the second term, for any u > 0, we have

(supD Feia(0) = 10,01 2 w2 Pl () - 7 O]z

teT

SZ >y P(’(t—t’,o‘zuLz’"/QHt—t'nQ)

t=L t€Ty 41 t' €T,
(a) & r+1 r
< Z 22" 92 -exp(—2"u?) < 2exp(—2°u?)

< 2exp(—pu2) )
607 for u > wg, a constant, and where (a) follows from the Azuma-Hoeffding inequality.
e08 Then, from Proposition 3] we have

1/p 50
(EsupZi Tt (8) = (1), c>|p> <L), (2”2||m1<t> - Wr(t)llz> < Lys(T, || - [l2) -
r=~_

teT
609 Then, by the majorizing measures theorem [][], we have
Y2(T, || - [l2) < Esup|{t, g)| ,
teT

sto  where g = [g;], 9; ~ N(0,1). That completes the proof. |

st1  Proof of Theorem Consider the random variable ¢4 = 377, (€% — E|&;|?)[|A7|3. Then, for
612 any A, B € A, by Azuma-Hoeffding inequality, we have

() _ ¢ e
P (e —¢ QQS%W{ﬂ%m}, (6%)

613  where

1/2
n

dy(A, B) = | Y (1475 - 1B73)?
j=1

1/2
n

= [ DAl = 1B7]12)* - (A7 |2 + || B7]|2)?
j=1
1/2
@ (=40 nip2 j N2
< D14 = B3 (1A )2 + [1B7]]2)
j=1

< 2dp(A)||A — Bll2a2 ,
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624
625

626
627

628
629
630

631

632

633

634

635

636

637

638

where (a) follows from triangle inequality. From the majorizing measure theorem [42] we have
El[sup,cr |(t, )] <72(T, dz). Then, from Lemma 8|and Proposition 3] we have

1DA(@)llz, < dr(A)-72(A - [l2m2) + VP dr(A) - da—2(A) .
That completes the proof. L]

B.4 The Diagonal Terms: Unbounded sub-Gaussian Random Variables

For the diagonal terms corresponding to unbounded sub-Gaussian random variables, we have the
following main result:

Theorem 6 Let A € R™*™ be a collection of (m X n) matrices. &1,...,&, be a sub-Gaussian
MDS, and let £ € R™ denote a vector of these random variables. Consider the random variable

)= sup Zf — EI&P)IA)5] (69)
=1

where A7 denotes the j*" column of A. Then, we have

1DA(é)lz, < Vlogn-dr(A)-v2(A, |-ll22)+v/p-dr(A)-daso(A)+p-dr(A)-da s (A) . (70)

The proof of Theorem @ relies on the following result bounding L,-norms of the supremum of
sub-exponential MDS processes: (a)

Lemma9 Let ¢ = [(1,...,(y] be a L-sub-exponential MDS and let T € R™,n > 2. Then, for
everyp > 1,

1/p
(Esup|<t,<>|p) < ( logn- E [sup <t,g>|] T sup <E|<t,c>|p>1“’) 1)
teT teT teT

where cy is a constant which depends on L, g = [g;] where g; are independent identically distributed
normal random variables, and n = [n;] where n); are independent identically distributed exponential
random variables.

We need the following basic property of sub-exponential random variables to prove Lemma[9]

Proposition 4 If X is a L-sub-exponential random variable, then

P(|X| > tL) < 2exp(—t), Vt>0 <  (E|X|))Y? <copL, Vp. (72)

We also need the following result on mixed tails:

Proposition 5 Consider a random variable X such that
P(IX| > VtLy 4 tLy) < 2exp(—t), Vt>0. (73)

Then
(E|X|P)YP < co/PLa +pLy, Vp>1. (74)

Proof: Note that for \/tL, < tL,, we have

P(IX| > 2VtLy) < P(|X| > VtLy + tL1) < 2exp(—t)
=  P(|X|>1t) < 2exp(—t*/4L3) .
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For \/tLy > tL1, we have
P(X| > 2tLy)
= P(X|>1)
Hence, forallt > 0

< P(|X| > VtLy +tLy) < 2exp(—t)
< 2exp(—t/2Ly) .

P(|X| > t) < 2exp(—min(t?/4L3,t/2L,)) . (75)
Now, recall that for any non-negative random variable E[Z] = [ P(Z > u)du. Using Z =
| X P, u = tP, we have

E|X|p:/ P(|X| > t)ptP~dt
0

< 2/ exp(ft2/4L§)ptp71dt+2/ exp(—t/2Ly)ptP~dt .
0 0

o} I

For the first term Z;, consider change of variables ty = t/2Ls, so dt = 2L dt5 to give
Iy =2- 2”L72’p/ exp(—t2)th dty < 28 LEp(p)P/?
0

for a suitable constant ¢z, following Proposition 3] [44]]. For the second term 7y, consider change of
variables t; = t/2L4, so dt = 2L;dt; to give

To=2- 2pL’fp/ exp(—tl)t’f_ldtl <2/ L¥p(p)*,
0

for a suitable constant ¢y, following Proposition [4] [44]]. Taking p-th roots and using Jensen’s in-
geaulity, we have

(E|X|P)YP < (Z)YP + (T2)YP < co(/PL2 + pL1) ,

for a suitable constant ¢y > 0. That completes the proof. [ ]
We also need the following result from [40]:

Theorem 7 For any T' C R™, we have

B [sup (el < Viogn B [sup (.| 76)
teT teT
where g = [g;] where g; are independent identically distributed normal random variables, and

1 = [n;] where n; are independent identically distributed exponential random variables.

Proof of Lemma E’] We assume 7 is finite without loss of generality. Let {7;} be an optimal
admissible sequence of 7. For any t € T, let m,.(t) = argmin, 1 ||t — t.||2. For any given p

determining the p-norm, choose ¢ such that 2=1 < 2p < 2, so that 2¢/p < 4. Then, by triangle
inequality, we have

sup (£, ¢)| < sup [(me(t), )| +sup Y _ |(mppa(t) — me(t), )| - )
teT teT teT 1=,

For the first term, note that

1/p 1/p
(Efglm(t)@l”) < (EZ |<t’C>|p>

teTy

< (I7e)'/7 sup (E(t,¢)7)"”
teTy

< (2P sup(E|(t, ¢)|P)V/P
teT

< 16sup(E|(t, ¢)[")'/* .
teT
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ese For the second term, for any u > 0, we have
o0
P(i“? Dl (t) = 7o (8, )] = VL2 iy ia(6) = m (1)
€ r={
L2 [ (1) — m-<t>|oo)
< ¥ ¥ p(fe-vio|z varr e,
+ul2"||t — t’||oo)

< Z 922" 2 -exp(—2"u) < 2exp(—2°u)
< 2exp(—pu)

659 for u > wg, a constant, and where (a) follows from the Azuma-Bernstein inequality.
660 Then, from Proposition|§|, we have

0 1/p 0o
(E sup > |y (8) — 7 (1), c>|p> <Ly (2T/2|7Tr+1(t) — e (t)]l2
L

teT -

r=

2 (1) mt)noo)
< La(T, |- 1) + 1 (T, - o)

661 Then, by the majorizing measures theorem [][], we have

(@)
(T |- ll2) < Esup[{t,g), and (T, - [lec) < Esup|(t, )] < /logn - Esup|(t, g)|
teT teT teT

662
663

664
665

666

where (a) follows from Theorem Noting that (1 + v/logn) < 3y/logn for n > 2 completes the

proof.

Proof of Theorem

any A, B € A, by Azuma-Bernstein inequality, we have

where

(A) _ ~(B) — mi c -
P (¢ —¢ 26)52‘”@{ mm(d%(A,B)’d1<A,B)>}’

Jj=1

1/2
d2(A, B) = (Z(IIMI% —[187]3)?

1/2
= (Z(IlAjllz —1B7112)* - (1 47|z + 1| B7[|2)?

Jj=1

1/2
(a) " ) . . .
< (D14 = B3 (1472 + 1B7]2)?

=1
< 2dp(A)||A — Bll2a2 ,

27

@ Consider the random variable ¢4 = 377, (€% — E|&;|?)[|A7|3. Then, for
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where (a) follows from triangle inequality, and
di(A,B) = [[IIA7]3 — IB7113]|
= [[1A7]2 = 1B7 ) (147 |2 + [ B7[|2) |
(@) . _
< 2dp(A) [147 = B2
=dr(A)||A— B

where (a) follows from triangle inequality. Also, recall from the majorizing measure theorem that
El[sup,cr [(t,8)]] < 72(T, dz). Then, from Lemma [9|and Proposition 5] we have

1DA(é)llz, < Viogn -dp(A) - v2(A |- l2»2) + VP - dp(A) - dasz + p- dp(A) - d2,00(A) -
That completes the proof. [ ]

2,00

C Proofs of Theorem 1 and Theorem 2

With the existing bounds on the L, norms of the off-diagonal and diagonal terms from Section [B.1]
the proofs of the main results, Theorem 1 and Theorem 2, follow from GI)-(53).

Proof of Theorem 1: For bounded random variables, the main result follows by combining the off-
diagonal L, norm bound in Theorem [|and the diagonal L,, norm bound in Theorem[S|and (31)-(53).
]

Proof of Theorem 2: For unbounded sub-Gaussian random variables, the main result follows by
combining the off-diagonal L, norm bound in Theorem W] and the diagonal L, norm bound in

Theorem[6]and (31)-(G3). [

D The Azuma-Hoeffding Inequality

A sequence of random variables Z1, Zs, ..., is called a martingale difference sequence (MDS)
with respect to another sequence of random variables X1, X, ..., if for any ¢, E[|Z;|] < oo
and E[Z;|X1,...,X;—1] = 0 almost surely. By construction, if X is a martingale, then Z; =
X: — X¢_1 will be a MDS, which explains the name.

Let {X;,t = 0,1,2,...} be a martingale sequence, and let Z; = X; — X;_; be a MDS. Assume
that Z; is bounded, i.e.,

|Ze| = [ Xt — Xya] <, (79)
and let ¢ = [c; ... cr] be the vector of the upper bounds. Then, the Azuma-Hoeffding inequality
states that: for any 7 > 0,

T 2
Pz <2exp{—7— 2}. (80)
2 e
For the special case when ¢; = c, the bound can be simplified to: for any € > 0

T
2%
t=1

p(L >el| <2 e (81)
T > >e| <2exp 502 ( -

The result can be extended to the setting of general subGaussian tails for Z;, e.g., see [39], and also
applies to general MDSs Z;|F;_1 where {F;} is the filtration.

E The Azuma-Bernstein Inequality

Let {X;,t = 0,1,2,...} be a martingale sequence, and let Z; = X; — X;_; be a MDS. However,

we now assume that Z;| X1, ..., X;_; has a sub-exponential tail, so that
P(|Z| Xy, ..., Xio1| 2 7) < 2exp(—cT/kK) (82)
where r = || Z;| X1, ..., Xi—1][;, is the sub-exponential norm or ¢; norm [44]. Then, we have the

following result:
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Theorem 8 Let {Z,} be a MDS which satisfies (82). Then, for every a = [a; ... ar] € R”, for

any T > 0, we have
) renfomn (i)} e
>7 | <2exp{ —min , ,
der?|al3’ 2k |al oo

T
P < Z CLtZt
t=1
for absolute constants c¢,n > 0. In particular, for any € > 0, for a constant v > 0, we have
1|<& € €
P(T ;Zt 26) §2exp{—7Tmin (/@2’/@)} . (84)

Proof: Recall thatif Y is a sub-exponential random variable, then the moment-generating function
(MGF) of Y satisfies the following result [44, Lemma 5.15]: For s such that |s| < 7/k1, we have

Elexp(sY)] < exp(cs’s?) , (85)
where 1 = |[Y||,, and 7, c are absolute constants. In particular, since Z;|F;_1 are subexponential,
with k1 = maxy || Z¢| X1, ..., Xi—1]],,, for |s| < n/k1, we have

Ex,|x,,...x, 1 [exp(sZ4)] < exp(es®w) ,  Vt. (86)

For any s > 0, note that

T T
P (Z arZy > T) =P (exp (sZatZt> > exp(sr)) < exp(—s7)E

t=1

T
exp <s Z atZt>
t=1

For |s| < n/(k1||allec) so that |a;s| < n/k; for all ¢, the expectation can be bounded using as
follows:
T

t=1

T
E lexp (s Z atZt>
t=1

T-1

EXT‘Xl,anTfl [eXp(saTZT)] H eXp(SatZt)
t=1

= E(XlxanT—l)

T—-1

< exp(es’apr®)Ex, . xr_1) [H exp(sa;Zy)
=1

T—2
< exp(cs®arrk?) eXp(052a2T711$2)E(X1 ,,,,, Xr_2) [H exp(sarZ;)
t=1

< exp (cs’s?||all3) .
Plugging this back to (87), for |s| < n/k, we have
T
p <Z arZy > ’7'> < exp(—s7 + cs%k?||al|3) . (88)
t=1

Choosing s = min ( ), we obtain

T _ _Nn_
P EY R EY

P iatZt>7' < exp 4 —min r 7 . (89)
) der?|all3” 2kl o

t=1

Repeating the same argument with —Z; instead of X,;, we obtain the same bound for
P(=>,a:Zy > 7). Combining the two results gives us (83).

Now, witha; =1,t =1,...,T, and 7 = Te in (§3), for a suitable constant v > 0 we have
1| €2 €
P <T ZZt > e) Sexp{—fmiin (/@’/{)} . (90)

t=1
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712 That completes the proof. ]

713 The result can also be stated in terms of a general sub-exponential MDS Z;|F;_1, where {F;} is the
714 filtration.
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