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A Solving (1)) in the main paper directly by SGD is biased

Applying the standard chain rule, we obtain the gradient of the cost function in (I as
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— > ¢ (F.00))F:(0) (1)

where:
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and f}(z,y) denotes the d x ¢ matrix, with its (¢, 7)™ element defined to be:

()], = g (o), ®)

Note from (I)) that there are empirical averages inside and outside ¢'(-). Therefore, if we sample
these empirical averages simultaneously, the stochastic gradient estimator would be biased. In other
words, a direct application of stochastic gradient descent to (1) would be intrinsically biased.

B SVRPDA-II algorithm

Algorithm|[I]in this supplementary material summarizes the full details of the SVRPDA-II algorithm,
which was developed in Section [3.3]of the main paper. Note that it no longer requires the computation

or the storage of f,(6) in (@). Also note that the T (9) in [) is replaced with f5(@iy, Yir gy ) now.

C Experiment details

C.1 Implementation details in risk-averse learning

As we discussed in Section 2] we adopt the alternative formulation (6) for the second term so that
it becomes a special case of our general problem (I)). Then, using the argument in Section [3.1] the
second term in (@) can be rewritten into the objective in (§). Combining it with the first term in @),
the original problem (@) can be reformulated into the following equivalent min-max form:
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where w; € R, ¢*(w;) = w?/4 and w = {wy, ..., w,_1}. Note that the above min-max problem

has an extra (x;, #) term within the sum. Since it is in a standard empirical average form, we can
deal with it in a straightforward manner. Notice that (I0) is exactly of the form (T)) in the main paper
except the last term (x;, §) within the summation, which as we will show next, can be dealt with in a
straightforward manner.

Taking out the (x;, ) term in (IO}, based on the discussion in Section [3|of the main paper, the batch
gradients used in the algorithm are as follows. Batch gradient of (10 with respect to w;, for each
0 <7 < n — 1 can be written as:

|
—

n

(zi —x4,0) (11)

S|

B 1 n—1
£i0) =~ > folwi,zy) =
=0

Il
=}

J



Algorithm 1 SVRPDA-II
1: Inputs: data {(z;, y;;) : 0<i<nx,0<j<ny,}; step-sizes oy and v,,; # inner iterations M.

2: Initialization: 90 € R% and g € R™x.
3: fors=1,2,. do

4 Setf = 66 1,00 = 5, w0 = wWs_1, and compute the batch quantities (for each 0 <i<ny):
nx—1ny;—1 0) ny;,—1
i if/ xzaym i:fe xmyzg (4)
i=0 =0 nxny;
5. fork=1to M do
6: Randomly sample i), € {0,...,nx —1} and then jj € {0,...,ny, —1} atuniform.
7: Compute the stochastic variance reduced gradient for dual update:
51}: = fotr-1) (l‘lk > yikjk:) - fé('rik ) yikjk) + ?Lk (é) )]
8: Update the dual variables:
o _ forgmin [ = (6. w) + 67 w) + ol — V] i
w, = . (6)
wl(k ‘1) if i £ iy,
9: Update Uy, according to the following recursion:
1 k k—1
Up =Uk—1+ Efg(xik,yikj,g)(w;) - wz(k )) @)
10 Randomly sample ¢}, € {0,...,nx — 1} and then j;, € {0, ... S0P 1}, independent of
1k and ji, and compute the stochastic variance reduced gradient for primal update:
E k
5 = fé(kfl)(xigcvyi;j,’c)wgk) - fé(xi;ﬂ»yi;j,’c)wgk) + Uk. (8)
11: Update the primal variable:
1
0™ = argmin | (57, 0) + g(0) + o— |0 — 0*V|?. 9
) 20
12:  end for

13:  Option I: Set w, = w® and 6, = 6~
14:  Option II: Set W, = w® and A, = 6) for randomly sampled ¢ € {0,...,M—1}.
15: end for

16: Output: 0, at the last outer-loop iteration.

Batch gradient of (I0) with respect to 6 (without the (z;, §) term) is given by:
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For each 0 < i < n — 1, gradient of f, ;(z;) is given by:
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Based on the above derivation and the expression in the main paper, the stochastic variance
reduced gradient for the dual update in both SVRPDA-I and SVRPDA-II is given by

0 = (i — x5, 0) + fgxi) (14)



and the stochastic variance reduced gradient for the primal update is given by
00 & (2 —zj)w; — (xi—xj)wi—ﬁ—f;(é,w) :f;(é,w) (15)

Note that, since the function fjy is linear in 6, the variance reduced gradient for the primal variable is
in-fact the full batch gradient.

Next, due to the additional (x;, 6) term in (I0) (which was ommitted in the above definitions), there
is an additional term that needs to be added to the variance reduced gradient in (I3). Denoting
go(x;) = (x;,0) and gj(x;) = z; the correction batch term is given by:

Z gh(x:) Z i (16)

which is independent of #. In summary, the final variance reduced stochastic gradient for the primal
update in both SVRPDA-I and SVRPDA-II is given by:

8¢ = Ty(0,w) — — Zmz (17)

C.2 Hyper-parameter choices for algorithms

In this subsection, we provide the hyper-parameters that are used in our experiments on risk-averse
learning (Section [5). We first list the hyper-parameters of our methods below:

e SVRPDA-I: M = n, ag = 0.0003, o, = 100.
e SVRPDA-II: M = n, ag = 0.0003, a,, = 100.

Then, we provide the hyper-parameters used in the baseline methods:

e Compositional-SVRG-1 (Algorithm 2 of [1]): K = n, A = 6, v = 0.0003;

e Compositional-SVRG-2 (Algorithm 3 of [1]): K =n, A =3, B = 3,y = 0.0004;

o ASCVRG: The results are obtained by using their publicly released code on github: https:
//github.com/tyDLin/SCVRG with the same setting and choice of hyper-parameters.

e Batch gradient descent: step size a = 0.01;

Note that, for the Compotional-SVRGs and batch gradient algorithms, the above choice of the
hyper-parameters are obtained by sweeping through a set of hyper-parameters and choosing the ones
with the best performance. For ASCVRG, we use the the publicly released code by the authors.

D Additional experiments on MDP policy evaluation

Consider a Markov decision process (MDP) problem with state space S and action space A. We
assume that both S and A are finite, and define S = {1,...,S}. Forany 1 <i,j < S, we denote by
r;,; the reward associated with transition from state 4 to state j. Given a policy 7 : S — P(A), where
P(A) denote the probability space over A, we let P™ € R®* ¥ denote the associated state transition
probability matrix. The goal in policy evaluation is to estimate the value function V™ : S — R
associated with the policy 7, which is a fixed-point solution to the following Bellman equation:

S
i)=Y Pl(ri; +7V7(j), 1<i<s,

where 0 < v < 1 denotes the discount factor. We consider a linear function approximation to the
value function: V™ (i) ~ (¥, , ), where {¥; € R? : 1 < i < S} denotes the feature vectors, and
6 € R? denotes the weight vector to be learned. The problem of finding the optimal weight vector 6*
that best approximates V'™ can be formulated as the following optimization problem [2} 4]:

S

b — argmin{F(e) ;:%Z( (v, ,6) — Z (rij+7 \114,9>))2}. (18)
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Note that the above problem can be expressed as a special case of (I) by using the following
identifications: Foreach 1 <i < S,nx =ny, = 5, ¢;(u) = u?, and

fe(xiayij) = <\IJ170> S - Pﬂ— (T'L,j +7<\Ijj30>)7 1 SZ,] S S. (19)
And it is also possible, although less intuitive, to rewrite (I8) as a special case of (2)). In existing com-

position optimization literature such as [4} 2]}, this is achieved via higher dimensional transformation,
with fp : RT — R?%, ¢, : R?® — R, ny = S, and nx = S. Denote by Qj the Q-function:

Z T,J—I—'Y\I/],G)) 1<i<8S.
Then, by defining the function fg and ¢; such that

S
%_Zfewj) = [0, Q500 (95,0),Q5(5)] (20)

SZQZ%([\PM Qp(1),...,(Vs,0), Q5 (S }) SZ(‘I’uo ())2’

the problem (I8) can be reformulated as (2). The reader is referred to [4, 2|] for more details.

We evaluate our algorithms on two experimental settings, one with S = 10, d = 5, and another
with S = 10* and d = 10. In each of these two cases, ~ was set to be 0.9, and both the transition
probability matrix P™ € RS9 and the feature vectors {¥; € R? : 1 < i < S} were randomly
generated. We compare the performance our algorithms SVRPDA-I and SVRPDA-II with the C-
SAGA algorithm of [4], as it is the most recent composition optimization that we are aware of,
and is shown to be superior to all existing algorithms on this MDP policy evaluation task [4]. The
hyper-parameters for the C-SAGA algorithm were chosen as follows. For S = 10 case, we choose
all hyper-parameters as in [4]: Mini-batch size s = 1 and step-size n = 0.1. For the S = 10* case,
we choose mini-batch size s = 100, and step-size n = 0.0005 (see [4] for details on what these
hyper-parameters mean). The hyper-parameters for the SVRPDA-I and SVRPDA-II are chosen as
follows. For the MDP with S' = 10, we choose M = 150, ay = 0.1, and a,, = 0.25 for SVRPDA-I,
and choose M = 15, g = 0.5, and av,, = 1.25 for SVRPDA-IL. For the MDP with S = 10%, we
choose M = 13500, aiy = 0.01 and cv, = 16 x 10* for SVRPDA-I. For SVRPDA-II, M = 1350,
ag = 0.01 and v, = 16 x 10*.

The performance criteria was chosen to be the number of oracle calls required to achieve a certain
“objective gap”, defined as F'(6) — F'(9*). Notice that “one function call”, when the function is of the
form (I9) is not comparable to one function call, when the function is defined according to (20). Due
to the fact that f, for the C-SAGA algorithm is of dimension 2.5 (as opposed to 1 in our formulation),
we count 2.5 oracle calls whenever a function of this form is called for the purpose of fair comparison.
The results for MDP with S = 10 and S = 10* are reported in Flguresi 1| and 2} I respectively. We
observe that despite having much smaller memory requirement, SVRPDA-II has a comparable/better
performance than C-SAGA, while SVRPDA-I is clearly better than C-SAGA.
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Figure 1: Performance comparison of our algorithms with the C-SAGA on the MDP with S = 10.
The performance is measured in terms of the number of oracle calls to achieve a certain objective gap.
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Figure 2: Performance comparison of our algorithms with the C-SAGA on the MDP with S = 10*.
The performance is measured in terms of the number of oracle calls to achieve a certain objective gap.

E Convergence and complexity of SVRPDA-I: Proof

In this section, we derive the (non-asymptotic) bound of the SVRPDA-I algorithm and its total
computation complexity. For convenience, we first repeat the saddle point formulation and the
definition of several quantities below:
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Also, recall the definitions of f,(6) and f,(6):

y, —1 ny, —1
1L — 1,
= JZ o(woy). Till)= = ; Fo(xi,yis) (22)
Furthermore, we defined L(6, w) and its gradient as
nx—1 nYi_l
1 1
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X oizo Y oo
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LOw=— 3 FiO)w (25)
nx

Using the above notations, the saddle point problem (2I)) can be rewritten as

nx—1

min min 1 Z (<?z(9)7w1> — ¢f(wz)) +9(0) (26)
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E.1 Compact Notation

Throughout this section, we introduce the following compact notation, to ease exposition of the proof:
Forany §# € R%, and 0 <i <nx —1and 0 < j < ny, — 1, we denote:

[i(0) = fo(wi,yij) 27)
Therefore, the stochastic variance reduced gradient for dual update defined in of the main paper

is rewritten as: L
OF = Fiun (07V) = fisj (0) + F:, (6) (8)
Similarly, the stochastic variance reduced gradient for primal update defined in (I3)) of the main paper
is:
k=1)) (k) w® k
08 = fh o (0% D)l — 1l () w” + L(6,w™) (29)

where we used the fact that Uy, = L (9 w™)). We now proceed to recall the Algonthmlrewntten
in a simplified form, using the compact notation.

E.2 Algorithm

Before we proceed to prove the convergence of the algorithm, we first recall the update equations
of the algorithm. The following updates are at stage s of the outerloop; To simplify exposition, we

suppress dependency on s, and let 0= 9 throughout.

For the dual update, at each iteration k, we first randomly pick an index 0 < ¢;, < nx — 1 at uniform,
and then pick another index 0 < ji < ny, —1at uniform For the chosen (i, ji ), we first compute

the variance reduced stochastic gradient 5“’ of f,(6) using (28):

01 = Fupn (0F7Y) = firgu (0) + Fi, (0)
Then, we update the dual variables according to the recursion (I3):
_ 1 _
arg min [— <(5}f, w; — wz(k 1)> + o5 (w;) + Q—sz — wfk 1)||2] ifi =i
wh = W %V (30)
wf* ™ i i

For the primal update, at iteration k, we randomly pick another independent set of indices (i, j;.)
with 0 < zjc <nx—1land0<j ,’g < ny,, — 1, and compute the variance reduced stochastic gradient

69 of L(0,w) with respect to ¢ using (29):
k—=1)y,, (k) D apy(F) ok
0p = fi jr (04w — fi, ;o (O)wy,” + Ly(8,w™)
Then, we update the primal variable 6 according to the recursion (16):

1
(k) — ; 0 (k—1)12
0 argrrgn{(ékﬁ)—i—g(ﬁ)—i— 2049”0 0 I } (31

E.3 Assumptions

We restate the Assumptions in Section ] here using the notation in to make the reading easier:
Assumption E.1. The function g(0) is p-strongly convex in 0, and each ¢; is 1/~y-smooth.
Assumption E.2. The merit functions ¢;(u) are Lipschitz with a uniform constant By,:

|¢i(u) — ¢;(w')| < Byllu— /||, Vu,u' € R,0<i<ny — 1.

Assumption E.3. f;;(0) is Bg-smooth in 6, and has bounded gradients with constant By: For each
0<i<ny —1and0<j<mny, —1,

1£501) = fi;(02)I < BollOr — O2ll, [1f;;(0)Il < By, 0,01,05 € R?

Assumption E.4. For each given w in its domain, the function L(0,w) defined in (8) is convex in 0:
L(Gl,w) - L(927w) Z <L’9(02,w), 91 - 92>



E.4 Preliminary results

In this subsection, we introduce lemmas which lay the foundation for the proof of the main conver-
gence result that follows. First, our proof relies on the following important lemma, which is a slightly
adjusted version of Lemma 3 in [3]] for our problem setting.

Lemma E.5. Consider any function of the form P(z) = f(x) + g(x), with x € RY. Suppose f(z)
is linear in x, and g(x) is p14-strongly convex. Then, for a > 0, the following holds for any vector
v € R and y € R%:

P(y) 2 P4 (@2, (=) (0 1), @) =) o0 P2 oD

where:

il'(Jr) = proxag{x — O[’U}

in {g(w) + 5w — 2+ v’}
= arg min w — || — T Qv
gui g 2%

Proof. Based on the definition of (1), the optimality condition associated with the proximal operator
states that there exists a sub-gradient ¢ € dg(x(*)) such that

) _
TTTEM ey (32)

where dg(x()) denotes the sub-differential of g at (). Next, by the linearity of f and the strong
convexity of g, we have, for any =,y € R?,

P(y) = f(y) +9(y)
2 F) + (@) (5 - ) + 9@ ) + (€ (- 2O + Ly - a2
2P+ (@), (y =) + (€. (r =2 + By 2P|

D PE) 4 (£(2), (y — D)) = (@D 2t av), (y - 2 + Ly — O 3

D PE) + () — 0 (g~ 20) = (@)~ 2) (g — D)) + 2y — D)2
9 PEO) 4 (@)~ v (g~ D)) + oD —

- (@D =), (y - ) + By — a2

«a 2

where step (a) follows from the linearity of f and the strong convexity of the function g, step ()
uses the definition P(z()) = f(z(F)) + g(x(1)), step (c) substitutes the expression of ¢ from (32)),
step (d) rearrange the second and the third terms, and step (e) completes the proof by adding and
subtracting x in the second inner product. [

The difference between our Lemmaand Lemma 3 in [3]] is that our function f(x) is linear (instead
of being strongly convex) in xz, which is the setting that we are mainly interested in (i.e., linear
dependency on the dual variables). As a result, our « can be any positive number (it is constrained
to be smaller than a certain positive number in Lemma 3 of [3]]). This lemma is useful for deriving
a bound when the update recursions are defined by a proximal mapping with an arbitrary update
vector v. This is particularly helpful for our case as both our primal and dual updates are in proximal
mapping form with the update vector v being variance reduced stochastic gradient.

Next, we quote the Lemma 2 of [3]] below:

Lemma E.6. Let R be a closed convex function on R and let x,y € dom(R). Then:

[proxp(z) — proxp(y)|| < [z -y (34)



We next introduce a useful property of the conjugate function:

Lemma E.7. When Assumption holds, the domain of ¢} (w;), denoted as domain(¢; ), satisfies
domain(¢;) C {w; : ||w;|]| < Bw} (35)

That is, for any w; that satisfies ||w;|| > By, we will have ¢} (w;) = +00. In consequence, the dual

variables wgk) obtained from the dual update (30) will always be bounded by B,, throughout the

iterations.

Proof. For any given w; that satisfies ||w;|| > B,,, define u} = u; + Twopt- Where ¢ is an arbitrary
real scalar. Then, by the definition of conjugate function, we have

¢; (w;) = sup [(wmui) - @(ui)}

Uq
(a) w;
> sup |(wi,ui + o) = (u +
¢ [[wi]l

:Sup[uwint @(uz wi t)+¢

(>) sup [||wz||t B, H wn ’H + (wi, ui) — ¢i(us)

wl)]

} wi,“i) - ¢z(uz)

=sgp[mwar—3wﬁ}+<wmu»-—¢xun
= +o00 (36)
where step (a) uses the fact that the supremum over a subset (line) is smaller, and step (b) uses the
following inequality obtained from the Lipschitz property of ¢;(u;):
|0i(u) — di(u)| < Bullu—ull, Vu,u' = —¢i(u)+¢i(v)) = —Bullu—u]| 37
O

E.5 Dual Bound

In order to derive the bound for the dual update, we first introduce an auxiliary dummy variable w) T

1 _
wi; = argmin | — (8, wi =) 4 67 (w) + 5 wi — w7

= proxia 6 [ (k=1) _ awéw} (38)

where,
5 = fi; (047V) — fi;(0) + F,(0) (39)

The variable w), ; can be understood as the updated value of the dual variable if ¢ and j is selected.

Our analysis in this section focuses on deriving bounds for the ||w*) — w*||2. We will first examine

[[wi; — w;||* and then relate it to [lw® — w*||%. To begin with, for each i and j, we have
/ 2 _ ’ (k—l) (k—l) 2
|wi; — wi|I* = [lwg; — w; + w; —wy || (40)

(k 1)”2 (k=1)

* k—1 k—1 *
= [Jwl; — w] + [Jow wil? + 2((wl; — w V), (Y —wi))

Now, we upper bound the first and the third terms in (0) together. For a given 6%) and 4, define
Py, () = =(Fi(0"7D), x) + 67 (x) (41)

Note that the first part of the function is linear in « and the second part of the function is ~y-strongly
convex (since ¢; is 1 / ¥- smooth by Assumption . Furthermore, by (38), the update rule for the
dummy variables w ; is defined by a proximal operator. Therefore, we can apply Lemma |E.5| with
P(z) = Py, (x) and the following identifications:

f@)= =" V) 2) ga) =) v=-0f w=w" D =ul; y=uw] a=a,



which leads to

—(F0" ) wh) + ¢F (wh) = = (F,(0%7D),wiy) + o7 (w))
1

k—1 * k—1
(" ), (wf — w"))
P TN (42)
*<5ij*fi(9 )awij*wi>
1 k-1 2, Vi 2
+ @”wi — wi;[|* + 5”“’1‘ — wi|

Furthermore, by definition, since w; is the optimal solution to the following optimization problem,

w; = arg min {Qﬁ(wz) - <?z(9*)7wl>}

wi

and by the fact that the cost function inside the above arg min is y-strongly convex due to ¢7(-), we
have

—(Fi07), wly ) + 85 (wly) = =(Fil07), i) + 65 (w) + Sl —wil? @)

Adding [@2) and @3) cancels the ¢; terms and leads to

_ _ | B o B
<fi(9(k_1)) — [i(07), wi; — w;) Zaf«wl(k H_ wi;), (w; — wl(k 1))>
- <5ZIJ] - ?i(g(k_l)) 7w£j - w:‘> (44)

1 k-1
A+ [lwl — w12+ Alw; — w2
Quy

Multiplying both sides by 2a.,, and rearranging the terms, we obtain

2aw<7i(9(k_l)) - ?i(‘g*)v w;j - w3>+2aw<52‘;- - ?i(e(k_l)) , Wi w?>_2aw7”w§j - U’"ﬁ||2

ij 2
> 2((w* ™ —wy), (wf —wF D)) + 2wl — w|?

2 K3 1

(45)

Now, observe that inequality (@3] could be used as an uppper bound for the first and third terms on
the right hand side of (40). Using this, (40) becomes:

lwi; — wi|f?
(k=1)
7

* k— k—1 k— *
= [ —wf )| + wl; — w4+ 2wl — wY), (wD —wp))

(a) k—1 « k—1 k—1 k—1 k—1 .
2w —wr|? = [lwl; — w4+ 2fwg; — w2 4 2((wl - wTY), (D — w))

k— * k— ra — ra * *
< Jw D —wr 2 =l — w2 4 200, (F,(0%V) — Fi(67),wl; — w))

+ 2aw<5;; — ?i(e(k_l)) ,ng — w;‘> — Qaw’wa;j —w}|?
(40)
where step (a) added and subtracted a ||w£k71) — wj;||* in order to apply [@3) in the following
inequality. Dividing both sides by 2«,, and combining common terms, we get the following bound:

1 N 1 k—1 N
(5= )y = wi |2 < 5w w2 -

k—1
o ; ey — w02
w

200, Y

+ <7i(9(k_1)) - ?i(e*)a wz/'j - w;‘> + <5;§ - ?i(e(k_l)) ,ng - wf>

(47)

Next, we will bound the last term in @[) Consider the full batch dual ascent algorithm. In this case,
for each 0 < ¢ < nx — 1, the update rule is given by:

—(k . 7 - x 1 k-
wg ) = arg min [_ <f¢(9(k ), w’> + 07 (wi) + ﬂ”wl - wz( 1)“2]

(48)
= ProX,, ¢ {wgk_l) - Oéwfi(9(k71))]



The above update rule will only be used for analysis. Considering the last term in the right hand side
of @7); we have:

<5w 7? (9(1@ 1) 7w£j o w>_k>:<5y)_ 77_ e(kfl)) 7w£j (k‘)>+<5 . (9(k 1)) 7516) o ,w;k>
w —(k w rd _ —_(k %
6 — T D) -ty — O + (58 — Fo (0% D), 1P — )

(b) — _
<o 835 = F (0P + (3t — F(0* V) ) —wi)
(49)
where (a) uses Cauchy-Schwarz inequality, and step (b) substitutes the proximal expressions of w;;

in (38) and w.") in @) followed by Lemma Averaging both sides of the inequality over all
0 < j < ny, — 1 and using the fact that the average of the second term on the right hand side of (9)
is zero, we get:

WZ STty )]
g;jyz 18— T,0%=)|?
o :z_:l [11£5(6%D) — £ (8) + T:(8) — F,(6% )]
S (I
| )f”( )~ (F.(0 1))—fi(§)—7;fzg(9(k_1))+if”(a))’r
22 e - (- ]
o760~ L o]
o [ Syt~ 0- sl

ny,—1
220" - - (o= )
+(”i;;1>2n§_1ZH[fw<9k1>—fw<5ﬂﬂ

(d) 1\2 ~
<20y, |:(1 - n—) B?Hg(k—l) 9||2 B2||9(k 1) _ 9”2}
Y; nY

i

1 _
_ 2(1 L YN iak-1 g2
200, B} (1 v ) 6 0| (50)
where step (a) follows by adding and subtracting - ( f; (0*~1))— fi; (8)), step (b) uses [|a+ b <

2||a||*+2||b]|2, step (c) applies Jensen’s inequality to the second term, step (d) applies Assumption
(uniformly bounded gradients implies the uniform Liphschitz continuity of the functions f;;) to both
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terms. Averaging both sides of @7) over all 0 < j < ny, — 1, and using @), we obtain:

ny; —1
Z Il
Y;

ny —1

+—_Z<f’”) fi(6

k—1 *
—wi P < 5ol — wi -

(#)a

J

— w2

E* Z ||w

619

1 ~
) wl; = wi) + 20, B (1 - —)||9%Y — 4]

i

Finally, we relate the bound for wg j back to the bound for the dual variable wfk). Recall that, for each
wj, there is a probability 1/nx that it will be selected and updated, and a probability of (nx —1)/nx

that it will be kept the same as w(}%1

) Furthermore, conditioned on the fact that w; is selected, it will

be updated to w - with probablhty 1/ny,. Therefore, for each w;, there is a probability 1/n xny, that

it will be updated to ww forj=0,...,n

— 1, and a probability of (nx — 1)/nx that it remains

the same. Therefore, letting F, denote the filtration of all events upto the beginning of iteration &k

(before the dual update step), we have:

’ny —1
-1 _
Ew® | py o L L nx =1 -1
{wz | k} nx ny, Z wz]+ wy
11 ”Yi_l 1
(k) * _ ’ * nx — (k—1) X
E{w; _wi|]:k}_an7yi jz::()(wij_ ’)+T(wi —w;)
R 52)
(k 113 2, x— 1, k-1 2
E{lwi® —wi[? | Fr} = —— 2 4+ P —
(of? =i | o = o 3 ol =P+ 2l )
o1 e
Ellw® _ k=12 11 w2
(Iof? - uf P 7 = 20 3 ||
Using (32) in (51), we obtain:
1 k . k— .
<2a +v> <an{||w§ D= w1 Fid = (nx = D" - w; )
1 (k=1) _ w2 _ MX (k) (k=1) )2
< _— 2 - X (k) _
< g Y i - 2Bl w7
1 ~ 53
+2awa(1——)||9<’“‘”—6ll2 oY
Ny;
+nxE{(Fu0" ) = Ti(0"), 0P —wi) | B
— (nx = D F0%) = F07), 0 — )
Summing both sides of (53) over 0 < i < nx —1, using the fact that [|w®) —w*||2 = S7X " ||w} (k) _
w}||?, and then dividing by nx, we get
1 % nx—l _ *
<2+7> (E{nwW—w 27— P e ||2>
(27 X
< gD w2 — S —w V|2 | i)
— 204N x 20y,
. ~ 54
+2aw3§(1—1/ny)||9<’“*1> —6)? oD
+nXE{L(9(k_1)7’LU(k) _ ’LU*) _ L(9*7w(k) _ w*) ‘ ]:k}

— (nx — 1){L(0(k*1),w(’€*1) —w*) — L(O*, whD — w*)}

11



where, we have used the notation:

nx — 1

1/ny = — Z 1/ny, (55)

Rearranging and combining the common terms, we obtain the final dual bound:

1

1 —1 - ~
< ( + V(nX )> Hw(k—l) _ w*HQ + 20@)3? (1 _ 1/ﬂy> ||9(k_1) _ 9||2

— w2 | Fy)

200, nx (56)

+ E{L(@Uf*l),w(k) —w*) — L(O*, w® — ) | ]-'k}
+ (nx = DE{L(OF D, w® —w*D) — L(9%, 0 — wtD) | 7}

Note that the above bound still have terms related to L(-, -). We will combine these terms together
with the L terms in the primal bound, and then bound them all together thereafter.

E.6 Primal Bound

Now we proceed to derive the bound for the primal variable 6. Specifically, we will focus on
examining ||§%) — 6*||2, which can be written as

”0( —b* H2 ||9(k (k 1)+9(k 1) 9*”2
= (|61 — 0D - (|lo®D — o712 + 2((0) — 9*7), (97 — 7))

Similar to the dual bound, we now bound the first term and the third term together. Introduce the
following function of z (for fixed §*~1) and w®)):

Py(x) := (Ly(0* 1, w®), 2) + g(x) (58)

The first part of the function is linear in = (and hence convex), and the second part of the function is
p-strongly convex (Assumption[E.T). Recall the primal update rule in (3T), which can be written in
the following proximal mapping form:

(57)

1
g(k) —argmln{ ) +E”9_9(k_1)”2}

= prox,, { - aoée} 59)
We now apply LemmaE.5|with P(z) = Py(z) and the following identifications:
F@) = (L% D, w®), ) g@) = gl@) v=380 w=0*D 2D =g® y_g* a—a,
which leads to
(Lo(O% D, w™M), 0*) + (67) 2(Lh(0" D, w M), 97 + g(6®)
L (0D — o), (67— 9%D))
o6 (60)
— (0 = Lp(0" 0, w ™)), (0 — 7))
kD — o2 4 Lo — g2
(67:) 2

+

Rearranging the terms in the above inequality, we obtain
||g(k*1) _ g(k)H? + <9(k) —glk=1) gle=1) _ 0*)
<ap(Ly(0" 1, w™),0%) + apg(607) — ang(0")) — ag(Ly (0", w), 01)

12



+ag(d — L0, w®),00) — g7) — 2L g — o) 61)
Using (61) to bound the first and the third term in (57)), we obtain:
00— 07 = %) — g0 4 o5 — 472 1 2((0) — 95, (606D — %)

(é) Ho(k) _ 9(14:71)H2 . ”9(1971) . 0*H2 + 2||9(k71) o 0*”2

260 %), (60 )

<10 = 0717 = 10 = 0TV — a0 — 6|17

+ 200 [ (L (6%, 0®), 0°) + g(60") = (Lp(6*D,w®), 90 — g(6™))]
+20g((0] — Lp(0* 1, wM)), (6 —6%))

where step (a) subtracts and adds the second term. Furthermore, note that 6* is the optimal solution
to the following optimization problem:

(62)

0" = arggmin [L(H, w*) + g(@)}

which implies (from the fact that g is p-strongly convex):
L(G(k),w*) +g(9(k)) > L(0*,w*) + g(0%) + gne(k) . 9*“2 63)
Multiplying both sides of the above inequality by 2ay and then adding it to (62)), we obtain:
(1+ Qaw)”g(k) _ 9*”2 < ||9(k71) _ 9*”2 _ ||9(k) _ g(k—l)”z
+ 204 [L(e)(k), w*) — L(6*, w*)}
+ 2a [<L’9(9(’“_1),w(’“)), 9*> - <Lg(9(’“—1)7w(k))’ g(k)ﬂ
+20g (0] — Lp(0* D, w)), (6 — %))

(64)

Next, we bound the last term in (64). To this end, we first introduce the following auxiliary variable

g(k), which is the updated primal variable if full batch gradient were used:
_ 1
0" = argmin [(L5(0"1,w M), 0) + g(6) + 510 — 04V
9 ]

= prox {0(’“*1) - ang(G(kfl),w(k))} (65)

o9
Note that both (39) and (63) are written in proximal mapping form. We now bound the last term (64):
(67, = Lp(8" D, w ™)), (6™ — 67))

W32 — LyO®=1, w®)), (0% —g*)) 4 (87 — Ly%D, w®)), @ — %))

(®) _ —(k) _ (k)
<167 — Ly 1w |- |0®) — || + (67, — Ly(0F— D, w™)), (6 — 0%))

(c) B ~ o

<ap||6p — Ly(0F=D w12 + (5 — Ly(0* 1, w®)), (0( o)) (66)

where step (a) adds and subtracts g(k), step (b) uses Cauchy-Schwartz inequality, and step (c)

substitutes (39) and (63) and then applies Lemma Let F, ,EJF) denote the filtration of all events
up to and including the dual update in the k-th iteration. Applying expectation to both sides of (66)

conditioned on F, ,EJF), we have:
E{ (00 — Zp(0™ 1, w ™)), (0% - 0))[ ()}

_ — 7(k) *
<aE{J1a7 - Lo (0", w )P FD } + E{ (0] - Lp(o 0, w®), 8" — 67)

];]£+)}

DagE{ llof — Ly (0", w2 F + (E[0IFT] - Lo(6%D, ), 5% — 67)

13



where step (a) uses the fact that 0 H(k 1) and w® are deterministic conditioned on F, (+), nd
step (b) uses the fact that the condltlonal expectation of 50 is the batch gradient.

We will now upper bound the right hand side of (67). To this end, we have:
E{ 107 — Lo (0D, w®) 2|7V}
a) k &
DE {15, (04Dl — i, @)ul®) + Ly(@w®) — (0% ) 2| FO)
_ k k
{111, (0% )il — 1L, @0 ) (68)

(©)
<B2 {”flkjk( k 1)) lk]k( )” |‘F(+)}

d) ~
B2 B3l0%) ~ 3|7

—~

i~

where step (a) uses the definition of 67, step (b) uses E[X — E[X]]?> < E[X?], step (c) uses Lemma
and step (d) uses the Lipschitz continuity of the gradients (Assumption [E.3)). Substituting (68)
into (67), we get:

e, — Lo(0%D,w ™)), (0% — )| FV} < agBLBFIOS D ~ 2 (69)

Finally, substituting (69) into (64) and then further applying expectation conditioned on F, we
obtain:

(1 + QQQM)E{HQ(M _ 9*”2’]:%3} < He(k—l) _ 9*||2 _ E{”@(k) _ g(k—1)||2’]_—k}
+ 200B{ [LOW, ) = Lo, w")] |73}

+ 2a9E{ [<L/9(9(k71>’ w®), 9*> _ <Lg(0<k*1>, w®)), k) >} |fk}

+ 203 B;, B [[0 Y — 4]
(70)
Dividing both sides by 2ap and combining common terms, we obtain the final bound for the primal
variable:

1 1
- (k) _ p=112 - (k) _ pk—=1)p12
(M +u)E{II9 0P|} + g B0 — 04| 7}

1 ~
<5640 — 0% 2o B2 B3 04D — 6 + E{ [ L(6D), w) - Lo" w) ||} D
20[9

+E{ [(Zo(0%0,0®), 0 — (Ly(0" 0, w®), 00| 7.}

E.7 Convergence for Option I

Based on the derived primal and dual bounds above, we now proceed to prove the convergence of
SVRPDA-I with Option I: updating 0 using the most recent %) (see Algorlthm
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Adding (56) and ([7T)) we obtain the total bound for the primal and dual variable updates:
a7 B — || Ak + 5 E(u® — w2 | £
200y, 200y,
1 (k) _ g2 1 (k) _ glh—1))2
+u |E{J6® —0712| 7} + —E{6® — 02|, |
209 20

1 -1 1
< (g 2D ) e ey L e
200y nx 209

(20083 (1= T/ny ) + agBLB3 ) 0%~ — 6]

E{L(H(k_l),w(k) —w*) — L(O*, w® —w) | fk}
+E{[L(0W, ") - L(o*,w)] |7} + E{[( Lo, w®), 0*) = (Lo (0", w®), 60)] |7}
+ (nx — 1)E{L(9(’“’1),w(’°) —w* ) — L0, w® — wkED)y | ]-"k}
(72)

Next, we need to upper bound the L terms on the right-hand side of the above inequality. To this end,
we first show the following inequality:

— L0, w™® —w*) + LW, w*) — L(0*,w*) + (Lp(0* D, w®), 07)

— <Lg(9(k D k), g(k)> + L(O®)  p®) — p*)

= —L(0*,w™) + LOW ,w®) + (Ly (0% wk)) % — 9*)))
—<L3(0(k),w(k)),9* — g(k)> + <L’ 9(’6*1) (k))7 0* — g(k)>

- <L3(0(k),w(k)) _ L’g(g(kfl (k)) ok 9*>

nx—1

@i 5 (k) (k—1) k) a(k) _
o §;<(f<9 (600wl ) — o)

1 ’er—l
< |— (k) (k—1) k) _
T Inx ; <(f (0 9 )w 0 >
(c) Lnx 1 <(fl(9(k) (k 1))w k) G(k) >
Tonx o !
(@ 1 ”xz—:l H (?{(g(k)> _ f’,(g(k—l))w(k)H 6% — g%
T nx = g B i

1 ’I'Lx—l ,
<o 3 IFO®) =T - 0 — 07}

=0

( ) 1 ’I’fol Y,L
e i )
= — Z Z (fg(k) Ty Yij) fé(k—l)(xi,yij))H . le( )H lo® — o

nx =0 Y;
(1 "=t . *
= nx Z o Z fe(k) muyzj fé(chl)(a:i,yij) . le( )H . ||Q(k) -9 H

X = oy, o

- ny, —1

( ) 1 nx—1 1 Y;
ST 2 2 BaBullo® 60 %) )

nx P ny; =

= ByBy |0 — 6%V - |6 — 67|
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( ) ByB,,
o \|9<’€> 01|12 4 ByByB,||0%*) — 6*||? (73)

where step (a) uses the fact that L(#, w) is convex with respect to the 6, step (b) substitutes the
expression of Ly, step (c) uses Jensen’s inequality, step (d) uses Cauchy-Schwartz inequality, step (e)

substitutes the expression for 7;, step () uses Jensen’s inequality, step (g) uses the Lipschitz gradient
property of f4 and Lemma , step (h) uses ab < ﬁ—loa2 + Bob?. In consequence, the above inequality
implies that

— L(0",w™ —w*) + LOW,w*) — L%, w*) + (Lp(0% D, wk)), 0) — (L (0% =D ™)), gk
ByB,,
<= LW, w®) —w*) + ;—HW — 0%V 4 By By B, |0%) — 072 (74)
0
Using (74), the L terms in (72)) becomes (notice that we keep the first and last L terms in (72)) intact)

LD w® —*) — L0, w® — w*) + LOW, w*) — LO*, w*) + <L3(9<’H>, w®), 9*>

_ <L;(9<k*1>,w<k>), 9<k)> +(nx —1) [L(a(km’w(k) w1y Z L6, w w(kﬂ))}
DLOFD w® _ ) = LD, 0 — ) 4 (g — 1) (L0, 00 — D) — L5, 0 — 0]
+ 22200 — gD 4 o5 0¥ - 0]
:L<9(k*1) w® —w* + (nx —1)(w® — w(kfl))) - L(F)(k),w(k) —w* + (nx —1)(w® — w(kfl)))
4 22600 — gD 1 5oy, 600 6
(§><L/9 (690,08 — ' + (nx = D(w® — 1)), 661 —g®))
+ 2200 — gD 4 BoB B 0™ — 0]
<1n§:1 T (oD ( ® _wf 1 (nx — 1)(w® _wz(k—l)))’g(k—l) _g(k)>
nx o
4 20600 — gD 1 5oy, 600 6
=<i XZ Fo® ) (w4 g — wFD) —wp),6%D — g®)
BoBu

=500 = 0%+ o By By |0 — 07

(¢) 1 Xt B B 2 1
<Al 2 70t (Y i w0 —up) [ ot - o)
ny B1
By By, _ %
; 16 —0%=D|12 4 8, By B, [|0%) — 6%||

nx—1

:51H$ Z T;(Q(k—l))<w§k71) f) Z f (6= D) k (k 1))H
=0

1 By By,
0T = 00 F o 00 — 6P + o By B0 — 67|
1

(@) 1" ) (=1 |2 " (k=1)y(,, (K)o (k=1)]]?
<2 ‘E Z fi(0 )(wz _wi) + 261 Z fi(0 )(w;™ —w;" )
i=0 i=0

1 ByB., _ .
+ﬁ—He<k—1>—e<’€>|\2+ P20 16" — 9=V 4 5y By B, [0 — 6%
1
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nxl

6)2513 k— 2
e Z ol — w2 + 261 > T —uf )|

1 B By

+ (57 +75 )He(’f D 9®|[* 4 5o By B, 0% — 67| (75)
1

where step (a) applies (74), step (b) uses convexity of L in 6, step (c) uses (a,b) < B1|lal|* + ﬁ% 1612,

for some 31 > 0 to be chosen later, step (d) uses |la + b||? < 2]|a||? + 2||b]|?, and step () applies
Jensen’s inequality and bounded gradient assumption to the first term. Before we proceed, we note
that, by taking expectation of the second term conditioned on Fj, we get

nx—1 2
—/ _ k k—
el 3 Tt D —ul 7
nx—1ny;—1

z;m!

(0% )ty — )

1] %

nx—1M1Y; (k 1) 9
1o (k=
<Bf Z ; nxny, H Wi H
’n.xfl
=B} > E{fwl® — w* V2| A} (76)

Therefore, the conditional expectation of all the L terms are bounded by

2/@ B2 nx—1 nx—1 _
] Z o — w2 +26,82 3 E{Jwl® — w2 F )
1=0
(@i BB g} A )
1

26, B3 _
== —wr | + 25 BFE( ™ — VP |Fe}

(ﬁi + BGﬂB )E{Ha(k Y 9<k)|’2|fk} + BoBeBLE{0® —67|°|Fi}  (7D)
1

Therefore, the total bound (72) becomes

200,

1 1
- (k) _ p*12 - (k) _ p(k—=1)2
+ (2% +u> E{110%) — 0" |7} + 5 -E{ 10 — 04~V | A f

1 y(inx —1 -~ N 1 _ N
g( 2 )>|w<’“ D — |+ 04D — 67|

201y, nx

1 . 1 _
( +~y> w0 - || iy + 5 —E{w® —wt V|| 7Y
w

+ (200 B3 (1= T/ny ) + g B2 B3 ) 0%~ - ]

261 B} w* _
+ = et — w4 28 B ® — w5

(i T Bng
b1 Bo

By combining the common terms, we obtain

1 1
_— (k) _ p*|2 - (k) _ . %2
(2a + 11— BoBoBu )E{H@ 0" Fi} + <2aw +7>E{Ilw w'|[* | i}
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JE{[0%D — 6®|*| 7} + BoBoBuE{ 0™ — 0*2| 7} (78)



1 1 By By, _ 1 _
+ (50— 5 - 2222 Je{l0® - 0P| R + (i 26037 E® — R | R

20 B Bo 200,
1 1 283, B2
20[\9 QOéw nx nx
+ (2awB]2¢ (1 — 1/Ty) + CYGBZ,Bg) ||9(k—1) _ §H2 (79)

Applying inequality ||z + y||? < 2||z||? + 2||y||? to the last term in (79), we obtain

1 1
( +u—50303w>E{||9(k) — 0P|+ ( +7> E{llw®™ —w|* | i}

20[9 2aw

1 1 Ban (k) (k—1))12 1 9 (k) (k1) 2
+ (2% 5k )E{ne ok 7} + (—2% 26,8} )E{w® — w V|2 | Fi}
1 -
< <M + 4OLU,BJ2c (1 — 1/ny> + 2@033}33> He(kfl) _ 9*”2
1 23, B2 N
(g # e WOY —w (tenB} (1= ) 200 ) 10— 0P

(80)

Taking full expectation of the above inequality, we obtain:

1 1
= BoByBu JENOF) — 071 4 (o + 7 )Eflw® — w*?
2049 2aw

1 1 BéBw -~ 1 -

1 .
< ( +4a, B (1 - 1/ny) + 20493535) Ello%*—1 — g%
2049

1 206, B%
+ ( +y— L4 f> Eflw®=1) — w||?
200y, nx nx

+ (40 B3 (1= T/ny ) + 200 B2 B3 E|0 — 0| @81)

In order for the above inequality to converge, the hyperparameters need to be chosen to satisfy the
following conditions:

1 1 ByBy
>

>+
209 ~ B Bo
1
Q< o

N 43]2051
y
b < 2B?
4oy B7 (1 = 1/ny) + 209 By, Bf < j1 — BBy B, (82)

which simplifies the recursion to be

1 1
( +p— BoBeBw> E[l0%™) — 6%|* + <2a

+)El® - P
2&9

w
1 -
<( 5 + 40w B3 (1= T/ny ) + 20082 B3 Ell0* ) — 0|
20
1 231 B2
+ ( ISV S ﬂ1f>Ew(k—1) —w*|?
200y, nx nx

+ (40 B3 (1= T/ny ) + 200 B2 B} )E|§ - 0" (83)
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Inequality (83) can also be further written as
1
o+
E||9(k) _ Q*HQ 20y, Y
Fagy T M ﬁOBOBw

2&9
1
5— +
20y FYB B E||w(’“*1) _w*Hz
o7 T 1 — BoBs

4oy B2%(1 — 1/ny) + 209 B2 B2
n u f( / Y) 0Ly 6E||9 9*“2
gag R BOBGBw

Ellw® —w*|?

<rpE[|0%=Y —0*||2 +rp -

where rp and rp are the primal and the dual ratios, defined as
7 + 400 B} (1 - T/ny ) + 200 B B
307 + 1 — BoBeBu

1 2aw( — 2ﬂle)
nx 14 2a,y

We choose [y, 51, and the primal and the dual step-sizes to be

_ 1%
BO_2BeBw’ B = 4B2

1 1 1
a0 = BT n 6dnxr +nx
64nx(ﬁ + 3142 )+nX H nxk +nx
L 1 1
R e 64 + 1
64(7f 52w)+1 Yy K+

where « is the condition number defined as

B? pB2Rp2?
7f+ 0w

K =
oy u?

(84)

(85)

It can be verified that the above choice of step-sizes satisfies the condition (82). With our choice of

the parameters, we also have

64k + 3
6dnxk+nx +1

an T _ Bag T _
1 - 1 -
E—FM BoBy By, E-f—%

7.
1

and
4()4,,1,3?(1 —1/ny) + 209 B2 B} B 40¢ij%(1 —1/ny) +2ayB2Bj

- 1 p
2a9 + 1 — foBoBuw %as T 2
of.
883 (1-1/ny) LABLBE
_ Y u? nx

(64K + 1)(64nxk +nx + 1)

Substituting ®6)-(87) into @, we obtain

64 3
Ef0%) — 07> + " Efu® —w|?
,u 64nX/<;+nX—|—1
64 3
<rpEl0*D — " 4 rp - L RS Ep®D — w2

I 64nxm+nx +1

8B§(171/Ty) 433139 L1

wy w2 nx 112
E|l§ — 6
Gt + D6dngr 4y 1ol Ol

19
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Furthermore, the primal and the dual ratios can be upper bounded as

1+ 8agay, B} (1 - 1/ny ) + 403 B3 B

P = 1+ 2app — 2090 By By
1+ 8agay, B3 (1 - 1/ny ) + 403 B2 B3
B 14+ app
gt — 8a9awB]2c (1 — 1/ny> —4a3B}, By
= 1 —_—
14+ agp
1
<1-
- 102471)(:“6"‘ 13X + 13
1
<1_ 89
= 788nxk + 1.3nx + 1.3 )
1 1 20 (y— 2613%)
=1 wd T APES)
_q_ L owy
- nx 1 + 20Zw’y
1
=l <7p ©0)

64nxk + 3nx

Therefore, inequality @ can be further upper bounded as

4
Efl0%) — %2+ S B —
,u 64nX/£ +nx +1
4
<rp (B0 — 02+ 2 S G )
,u 64nX/< +nx +1
8B?(1—1/ny) 43121)39 .L
wy u? *(2
X_El§ — 6
* (64K + 1)(64nxl€+nx +1) | |
64 3
STP<E||9(k 1) _ px HQ K+ E”w(kfl) _w*”Q)
,u 64nX/$ +nx +1

w

882 (1-1/ny) | 4B2 B2 1

wy I nx ~ 2 64k + 3 - . 2)
E|l0 — 0 = Ello —
* 64r + D)(6dnxr +nx + 1) I I u Gdnxr oy +1 [[@ —w|
64 3 )
(a) <E||9(k 1) _ G*HZ + 7. K+ Ellw(k—l) - w*HZ)
w 6dnxk+nx +1
8B%2(1-1/n 2 P2
f( /y) _~_4B;ZZBG. 1 A

n wy
(64K 4+ 1)(64nx K + nx + 1)

(ENG.— — 67> + L Elld-1 — o)

oD

u 64nxl€+nx +1

where step (a) uses the fact that the 0 = 55,1 and w = ws_1 when we are considering the s-th
stage/outer-loop (see Algorithm|[I]in the main paper). Define the following Lyapunov functions:

64k + 3
,u 64nX/<;+nX +1

~ 4
P, —Eld, — o4 L. 04t
u 6dnxk+nx +1

Py = E|l0%) — 67| + Ellw® —w*|?

Ellds —w|
As aresult, we can rewrite inequality (9T)) as
SB?(I—l/ny) 43333 1

Ps E<Tp- Ps k-1t P Az L Ps—l
' ’ (64K + 1)(64nxK +nx + 1)
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883(1-1/ny) | 4B2B2 1

1 ;
<(1- Py iy W nX.po(92
—( 78.8nxm+1.3nx+1.3) k1 G+ D) (6dnxr+nx + 1) 7 ©2)

Furthermore, at the s-th stage (outer loop iteration), when Option I is used in AlgorithmI]in the main
paper, we have 6, = ) and W, = w™). Therefore, it holds that
P, s — P, s,M

(a) 1 M
S 1-— PsO
78.8nxk +1.3nx + 1.3 ’

8B} (1_1/TY) 4B2 B 1

k
1 + ) e
1— By 1 "X p
+ kg ( 78 8nxr + 1.3nx +1.3> X 6dr + 1)(6dnxr +nx + 1) "

1 M
S 1-— PsO
78.8nxk+ 1.3nx + 1.3 ’

8B} (1-T/ny) | ap2B2 |

k
1 ;
1— By © "X p
+Z( 78.8an£+1.3nX+1.3> " 64k + 1)(6dnxr +nx +1) °

1 M
= 1 PS
( 788nxn+13nx+13> 0
(832(1 —1/ny) | 4BLB} 1) 78.8nxk + 1.3nx + 1.3
(

+ Wy 12 64k + 1)(64nxk +nx + 1) st
(i 1 Y N 8B7(1—1/ny) L ABBE 1N 13
- 78.8nxk + 1.3nx + 1.3 *0 Y 12 64k +1 °

w 1683(1-1/nv) | 88283 1
<|(1- L Pso+ £7 - w2 nx P4
- 78.8nxk +1.3nx +1.3 5 64k + 1 57
v 1682 (1-T/ny) LsEB
i 1— 1 + Yy [ nx P 1
88nxk+1.3nx +1.3 64k + 1 57

< [6 TR BT ﬂ P4 93)

where step (a) iteratively applies inequality (91), and step (b) uses the fact P, o = P,_; (because

0© =g, ; and w® = @,_; as shown in Algorithm. Choosing M = [78.8nxk+1.3nx +1.3],
where [-] denotes the roundup operation, we have

Po<e +1/aP <2< (3) R 04

Therefore, Ps converges to zero at a linear rate of 3/4. Furthermore, we requires a total of In % outer
loop iterations to reach e-solution. And for each outer loop iteration, it requires M steps of inner-loop
primal-dual updates, which is O(1) per step (in number oracle calls), and O(nxny ) for evaluating
the batch gradients for the control variates, where ny = (ny, + -+ + ny, . . )/nx. Therefore, the

complexity per outer loop iteration is O(nxny + M), and the total complexity is
1
O((nxny—i-nxm—i—nx) 1nf) (95)
€

Noting that E||f, — 6|2 < P, the above bound also implies that E||6; — 0*||2 also converges to
zero at a linear rate of 3/4 and the total complexity to reach E||f5 — 6% || < e is also given by (@3).

E.8 Convergence for Option II

Next, we move on to analyze the Option II case of the algorithm, wherein 6 at the end of each state is
chosen to be one of the M previous 8%) values (see Algorithm [I|in the main paper).
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Adding (56) and ([7T)) we obtain the total bound for the primal and dual variable updates:

1 . 1 )
( +’7> E{|lw™ —w*||? | Fr} + ﬂE{”w(k) —w®V)2 | B
w

1
<+/~L> ||9 _0*“2|fk}+EE{|w(k) _9(k—1)||2|}-k}

v(nx —1) (k—1) )2 Loatk=1) o2
- oD g
(2% v )nw WP+ o ||

nx

—_— ~ 96
+(200B3 (1= T/ny ) + a0 B2 B3 ) 01 - 9] 6)
E{LO*D,0® —w*) — L(O",w® —w') | Fi}
+ (nx — 1)E{L(9(’H>, w® — w*=D) — (g%, w® — =Dy | ]-‘k}
+E{ [L0™),w") - (8", w")] | 7}
+E{[(2o(6%0,0®), 07) — (L0, w®), 0] | 7}
We will now bound the L terms in (96). First consider the second L term in (96):
(nx —1) {L(G(k_l), w® — =Dy — Lg%, w® — w(k_l))}
(@)
<(nx — 1) [<Ll(9(k—1),w(k) — =Dy g1 9*>]
(b)
<Ba(nx — 12 L (0* D, w® — w2 4 Billwfl) -0 ©7)
2

for some [ > 0 to be determined later, where step (a) uses convexity of the function L in its first
variable, and (b) uses a? + b% > 2ab > ab.

We further lower bound the first term in (97). Ignoring the scaling factors, this can be rewritten as
follows:

/(901 () _ o (=1)y2 @ Lnx ) (w® — w* D 2
IL( ;W wr )T = o~ Fi(0) (i — w*™Y)
1=0
nx—1
® 1S - SEINIE:
= @H FO) @ —wl )| ©8)
i=0

where (a) follows from the definition 23)), (b) is direct, by removing the 1/nx outside the || - ||?
operator, and (c) uses the bounded gradients assumption (Assumption [E.3).

Notice that, conditioned on Fy,, w(*) is the only random variable in (©8). Furthermore, for each i and
J» using (38)) we have,

Z wgk) — wgk_l) = wj; — wgk_l) with probability  1/nxny;, (99)
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Taking expectation, conditioned on Fj, on both sides of (98),

B2 nx—1 2
EHUW“%wW—w“”Wﬁﬁ%%%ﬂH23@“—@“WHﬂ}

@ j

nx—11y; —

- < XNy, Z Z Hw z(k_l)H2

=0 j=0 (100)
w) B} "& (k) . (k—1))2
8 ; E{Juwl® — w* V|| 7}

—~
~

¢ BJ% (k) (k—1)]|2
= TE{H“’ — w7 ‘fk}
n
X
where (a) follows from (99), (b) follows from the last identity in (52)), and (c) is just definition. It
follows from and (T00) that:
(nx = DE{ [Z0%, 0 — w®=0) — £(0*,0® — 1) ’]—'k}

B3(nx —1)?
e R R [
B2

nx

(101)

Next consider the remaining L terms (lines 4 and 5 of (96)). We have:
LOFD, w® — ) — L0*, w® — w*) + L(O®, w*) — L(O*, w*)
= L(6% Y, w®) - L(g7, <k>) + L6, w*) — L(O%~V, w*) + L(O®) ,w*) — L(6",w")
= L0, w®) — L(0%, w®)) + LX), w*) — L%, w*) (102)
Therefore, the remaining L terms of @) can be bounded as:
LOW) w*) — L(6*, w*) + L(0<’H>, w® —w*) — L0, 0™ —w*) —(Ly(0* D w®)), ") —g*)
L(0%D w®) = L%, w®)) + LO®) w*) — L(OFY, w) — (L (0%, w®), 00 g7
2 <L"9(9(k_1), w(k)) k=1 _ > + <L’ (g(k) w*), k) _ g(k—1)> — <L/0(9(k—1)7w(k))79(k)_g*>
= (L (01w 9B —gk=DY 4 (T (0%) p*), 0%F) — gh=1)
D (L (OFD )y, o) — gb=1)y (11 (=) %) glk) — p(k=1))
_ <L;)(¢9(k‘*1)7 w*)’g(k) _ g(k 1)> <L'9(0(k),w*),9( ) _ 9(k71)>
<L’9(0(k_1), w*) — Lé(g(k—l)’ w(k)), k) _ g(k—l)>
+(Ly(0®),w*) — Ly(0*=, w*),0¢) — =10y
O (L%, w® — ), %) — gk
+ (Ly(0™,w*) — Ly(0*D, w*), 0% — gk=1) (103)

—
N

—
=

©

where step (a) substitutes (I02), step (b) uses the convexity of L(6, w) in 6 by applying f(z)— f(y) <
(f'(z),z — y), step (c) merges the first and the third terms in line (b), step (d) adds and subtracts the
same term (i.e., the second and the third terms), step (e) merges the first term with the second term
and also merges the third term and the fourth term, step (f) uses the linearity of L(6,w) in w. We
now proceed to bound the two terms in (T03). For a 31 > 0 (to be determined later), the first term in
(T03) can be upper bounded as

|<L;(9(k*1)’w(k) —w*), ok _ 9(k71)>|

(@)

< %|‘Lé(9(k_l),w(k) —w") + 51“9(k) - e(k_l)Hz

23



2
(i) B 7
= Binx

where (a) uses Cauchy-Schwartz inequality and the fact that a® + b2 > 2ab > ab, and step (b) uses

the definition of L}, in 23) and Jensen’s inequality for || - ||2. Next, the second term in (T03) can be
upper bounded as

*

o — [+ 30 — oY 104

[(Lp(0®),w*) = Ly(0*™), w"), o) — 9=

(a) i - . )
< ||L2,(0(k)7w ) — L’g(g(k D w NE Ha(k) _ gtk I)H

®)
< ByB,||0® — =12 (105)

where step (a) uses Cauchy-Schwartz inequality and step (b) uses Lipschitz condition of the gradient
4 together with the boundedness of w* (Lemma|E.7). Substituting (T04)—(T03) into (T03)), we obtain

LOW w*) — L0, w*) + L(O% D, w® —w*) — L (6, 0™ —w*) — (Ly (0D w®)), 0*) —g*)

B2
< g lw® = w4 il 0® — 0%+ By By 0 — 0%V
B} 1) 2 o
= &TXHU}( ) _ w*H + (61 +Bng)||0( ) _ glk— )H 106)

We have now bounded all the L terms in (96).
Substituting both (I0T) and (T06) in (96), we get the final bound, without the L terms as follows:

1 1
( + v) B0 w2 | ik + 5Bl — V| | i)
w

201y,
1 1
_— Edlok) — g*2 —— ER) — glk=1)2
<2a9+u> {I 17} + 5o 1217}
1 y(nx —1) _ 1 _
< (k=1) _ p* 12 o ——_j|pk=1) _ g*2
= <2aw ) W7 | | (107)
+(2awBJ% (1 - l/ny) + ongiBg) 100D _ i
BaB}(nx — 1) 1
e 7 E (k) _ ., (k=1)y|2 F - 9(1@71) —B* 2
= E{le® PR+ [
32
f k) _ ¥ |2 (k) _ glk=1) |2
+ MXE{HM w'[*1 7} + (81 + BoBuw)E{[|0®) - 0V |*| 7}
Combining common terms and rearranging,
2
L) e{10® — 0 1R) + (o 9 - L B — R | i)
20{9 2aw BlnX
-1
< < 1 + ’Y(HX ))Hw(kl) _ w*”2
201y, nx
1 1 —
+—4+ =+ 4awB§(1 — 1/ny) +2ayB2 B? | |0%~Y — %2
2a9 P2 ' (108)

1
— (k) _ g(k=1))12
+ <ﬁ1+BeBw 2a9>E{|9 0P| F

N (523?(71)( -2 1

2
ny 200y,

> E{lw® —w®=V|? | Fi}
+ (400 B3 (1= 1/ny ) + 200 B3B3 ) 6 - 07
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where we have also used the inequality (a + b)2 < 2a2 + 2b for the |0~V — 6|2 term.

We now choose the step-sizes ag, ., and M as in Theorem f.6}

25B7% 80B2 B2\ -1
ap= (==L +10B,B, + =220 (109)
Y
W
Y= 110
v = 1052 (1o
1 2
M = max (O,”X,zmx) (111)
Qoft - QY
The choice of a in (I09) ensures the following three bounds:
ap < T or ap < ————— or ag < __B (112)
- 25312C — 10By By, - 8035)33
Furthermore, we choose 31 and (35 as follows:
1
b1 =—ByBy + — (113)
20&9
fo= — (114)
2= 2awBJ%
The second inequality in (T12)) will ensure positivity of 3.
Applying the above choice of hyper-parameters: Based on (T13) we have:
1
pr1+ BoBy — 5— =0 (115)
209
and using (T14):
BaB}(nx — 1) 1 1 Binx-1)? 1
n% 200, 2awBJ% n% 200,
1 (nx —1)2 1 (116)
20, % 20

<0

Equations (TT3) and (TT6) will ensure that the third and fourth terms on the right hand side of (T08))
are either 0 or negative, and therefore can be ignored, reducing the bound in (I08) to:

2

1 . 1 B .
( +u> E{IIG(’“) -0 ||2|]:k} + ( +7 - f) E{w™ —w”|* | Fi}

209 200, Binx

1 —1
< < + ’Y(HX ))Hw(kl) _ w*”2

—\ 20, nx

(117)

11
+ (52 + 5o T aw B} + 2aeBi,B§> 1% — 672

+(4aij21 + 2a933,33) 19— 6%)2
where we have also used (1 — 1/ny) < 1.

The 6 in the (TT7) is 0,_1, the fixed primal variable at the beginning of stage s. Denote 0, to be the
primal variable randomly chosen among §¥) for 1 < k < M at the end of stage s. We define w,_;
and w; in a similar manner (though neither of them are used in the algorithm), and also note that Q)
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and w(®) are initialized to 6,_, and @,_; at the beginning of stage s. Summing both sides of (TT7)
overalll <k < M,

1 ! i
1 {1600 _ p2| £, — = —L E(w™ —w|? | Fy
<2a9+ﬂ> {00 =PI+ | g +7 y JEUW — 01?1 72)
M-1
1
+ u*7*4aw3?72a933B3 E{||0(k)79*“2|]:9}
B2 1

2
)2 (118)
+<nx )ZE{nw ANED)

k=

Pinx

1 y(x =1\, o ) 11
ok - - 9(0) —p* 2
(2% e [w™ —w*[|* + 5 1 3y I I

M (4%ch + Qang,Bg) 16— 6% |2

IN

Substituting w© = wWe_1 and 0 0) = s—1, and also noting that the first two terms on the left hand
side of (TT8) can be combined with the second two terms (note that the difference in coefficients are
positive, and positive terms on the left hand side of the inequality can be ignored):

+<X MX)ZE{IIw - || F)

1 Y nx—l .
< (2 l )>||ws_1 P
Ay nx

1 1 ~
+ ( +—+ M(4o¢wB]2c + 2a9Bi33)> 651 — 67|

M
1
<u ~ g5~ dowB} - 2a9BiB§> > e{je® - o127}
2

(119)

B2 2ag

Dividing both sides of (IT9) by M and applying Jensen’s inequality on the left hand side, we obtain:

1 n *
(u—&—4awB?—2a9BfuBg> E{||as y ||2|]-“s}

+<” Pi )E{nwé—w 1217

nx finx
1 ’}/(TLX _1) ~ *|12
< L
= <2Maw+ Mnx s -1 = wl]

1 1
+ ( e +4awa + 209 B2, BG)HGS 1 — 0%

(120)

M,

We now substitute the hyper-parameter values in (T09) (TT0) (ITT) (T13) (TT4) in (T20) to obtain a

linear rate.
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Substituting these values in the coefficient of the first term on the left hand side of (T20) (we're using
the third bound for vy in (T12)) here):

1
w— 5 4oy B} — 209 By, Bf = i — 2%3}% — 4awBJ% — 20y B2 B}

> BZ_4 B? - B2 B?

=H= 4032 F 4032 ! 8032 B2 el

=u— K ﬂ _#

)]

_ 3

40

4p
=5

Next, substituting for the coefficient of the second term on the left hand side of (120) (here we use
the first and second bounds for ay in (T12)), both in the inequality in the fourth line):

1
B2 B2 1
L S S — BypBy + —
ny finx nx nx 209

B2 -
- Yy 1-— 2&039371)
B nx nx 20(9

o B 2
nx nx \ 1 — 209 By By,

~

(122)

A V) !
“nx nx 25B2 1— ﬁBng
_0 % < 5

nx 25TLX 4
-0 _ 7

nx 10nx
s A
~ bny

Next consider the coefficient of the first term on the right hand side of (I20) (we use the second and
third values of M in (I11)), both in the second line):

-1
L ofxl) 1
QMOéw M?’lx 2Maw M
I (123)
_47’LX+41’LX
_
QTLX

Finally, we consider the coefficient of the second term on the right hand side of (I20) (we use the
third bound for «v in (I12)), and the first and third definitions of M in (TT1)):

1 QOéwB2 W n
day B2 + 209 B2 B2 < F 24y B2 2B2 B?
MB, T 2y T e Py T A0 bl S o 10B? f+80B232 d
1 B
< 2B + — + -+
= 40B? P50 10 T 10
_%
T 40
_H
4
(124)
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Using (IZ1), (122, (IZ3), and (TZ4) in (T20), we have:
4/’[/ o * 4,)/ ~ *
LE{10, - 0 1P| 7} + o E{ll@, - )P | F)
5 onx (125)

Y ~ * (12 M5 * (12
< T @, — Hig. -6
< 52t~ B )

Applying full expectation to both sides of the above inequality, we obtain

4~ 4ry ~
E 05_0* 2 ' E . — * (|2
L, 07 + o el - |

., - (126)
< %EH@H —w*|* + 2 Ellfs—1 — 0*1*.

Dividing both sides by 44/5, we have
E[§, — 67| + ——Ej@, — w*||?
nxp

OV gy — 072, (127)
X

5
< ZE ~s— %2
— 16 s -1 = w]" + Sun

which can be further bounded as

E[8, — 6" || + ——E[j@, — w*||?
nxp

5 ~ ‘ = *
< 2 (Bl — w2 + ——E[l6,1 — ")) (128)
8 punx
Define the Lyapunov function P to be
P, = E|d, — 0> + ——E||@, — w*|.
nxp
Then, inequality (T26) can be expressed as

P<2P<(2) R (129)

Therefore, P; converges to zero at a linear rate of 5/8. In order to achieve e-precision solution
(i.e., Ps < ), it requires a total of O(In %) outer-loop iterations (stages). And for each outer loop
iteration, it requires M steps of inner-loop primal-dual updates, which is O(1) per step (in number
of oracle calls), and O(nxny) for evaluating the batch gradients for the control variates, where

ny = (ny,+-- ANy, )/nx . Therefore, the complexity per outer loop iteration is O(nxny +M)

so that the total complexity can be written as:

O((nxny + M) (22)). (130)

€
Recall from (ITT) that M is given by

2
M =10/pay + nx +4dnx.
Y

w

where, by (TI09) and (TT0), the step-sizes «g and 6,, are given by

2583 80B2 B2\ -1
f w9 H
= (=L 41088, + =220 =
(6 7] ( ~y + 9Dy + o 403?

This implies that M = O(B}/uy + BJ,Bj /iu® + (B}/py)nx + nx). In consequence, the total
complexity is

1
O((nxny—i-nxm—&—nx) lng)7 (131)
where
k= B}/yu+ B, Bj /i, (132)

Noting that E||6, — 6*||2 < P, the bound (T29) implies that E||#, — 0*||? also converges to zero at a
linear rate of 5/8 and the total complexity to reach E||§; — 6*||* < e is also given by (I31).
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F Special case: SVRPDA-I with ny, = 1, fy linear in 6 and no outer loop

First, we observe that in this special case, our SVRPDA-I algorithm will become a single-loop
algorithm, and that the outer-loop in Algorithm [I]is no longer needed. To see this, first note that when

ny, = 1, 6} is independent of 6 because the last two terms in (@]) would cancel each other. Second,
when fy is linear in 6, the term ﬂk (6) in (T4) and Uy in (TT) are independent of §, which further
implies that Uy, (that is recursively defined in (T4)) is also independent of 0. Finally, we also note
that, with linear fy, the first two terms in @]) cancel with each other, so that §¢ = Uy, is independent
of 6. As a result, the inner loop in Algorithm does not require an outer-loop to update the reference
variable 6.

The following theorem establishes the complexity bound for the SVRPDA-I algorithm in this special
case.

Theorem F.1. Suppose Assumptions 4.4 hold. Furthermore, suppose ny, = 1,1 < i < nx, and
fo is a linear function of 0. Consider just the the inner loop of Algorithm[I} with s = 1 fixed, and
¥ 1 3nx+r+1

o 1687 + dnxpy’ and. 2y nx +Kk+1

where k = BJ% / Y is the condition number. Then, the Lyapunov function

1 1

AW o= () E{ 100 —0"12| Fe }+ (5= +7) E{ Jw® —w 2] 5 }
2049 2aw

satisfies AK) < (1 — 1/(1 + 2k + 2nx))kA(0). Furthermore, the overall computational cost (in

number of oracle calls) for reaching A%) < ¢ is upper bounded by

O((nx +x) In (%)) (133)

In comparison, the authors in [5] propose a stochastic primal dual coordinate (SPDC) algorithm for
this special case and prove an overall complexity of O ( (n x + \/m) In (%)) to achieve an e-error
solution, where the condition number x = BJ% /py. This is by far the best complexity for this class of
problems. It is interesting to note that the complexity result in (133)) and the complexity result in [5]
only differ in their dependency on «. This difference is most likely due to the acceleration technique
that is employed in the primal update of the SPDC algorithm. We conjecture that the dependency on
the condition number of SVRPDA-I can be further improved using a similar acceleration technique.

F.1 Proof of Theorem [F1]

It is useful to first discuss the main implications of choosing fy to be linear in § and ny, = 1 for all
i. First, based on Assumption (or equivalently Assumption[d.3), we have By = 0, since f; is
independent of §. This also implies that Lj, is independent of 6, and therefore, Assumption (or
equivalently Assumption d.4) holds with equality:

L(91,w) — L(QQ,U)) = <Lg(02,w% 01 — 02> (134)
In particular, for any § € R? and w € R, L(,w) = (Lj(6,w), ). Finally, ny, = 1 implies
Uny = ;5302  Uny, = L.

nx

Using the above implications in the primal bound (in particular, letting By = 0, and using
linearity of L(6,w)), we obtain the primal bound for the special case as follows:

1 1
- (k) _ p*|12 - (k) _ plk—=1))2
(2% +M>E{II9 0P|} + 5o B0 — 04V 7}

1
< _|lgtk=1) _ g2 — &) w®) _0*) — Lo* w® — *
*20z9”0 0|l E{ [L(H , W w*) — L(6%,w w )M;k} (135)

Similarly, using the above implications in the dual bound (56) (in particular, letting (1 — 1/ny) = 0),
the dual bound for the special case becomes:

1 1
<2aw +v> B — || Fi} + 5Bl — V2| 7Y
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1 -1
<< + FY(HX )) ”w(k—l) _ w*||2

201y, nx
+E{ L%, 0D —wt) - 1", w0tV —w') | Fi}
v nXE{L(H(k_l), w® —p®E=DY _ (g% w®) =Dy | ]-'k} (136)

Adding (T33)) and (136), we obtain the combined primal-dual bound:
1 1
s+ JE{10%) — 02| 7} + 5 —E{ 169 — 0 V|| 7 ]
209 209

1 1
b Efllw® — |12 L Efl® — =12
+<2%+7> U w2 | Fip+ 5l — w2 | i}

1 1 ny —1
SiHe(k_l) _ 9*||2 + + ’7( X ) Hw(k—l) _ ’LU*||2
20 201y,

nx

- E{ {L(H(k)7w(k) —w*) — L(*, w®) — w*)} ’fk}

+ E{Lw(’H), WD —p*) — L%, w*D ¥ | ]—"k.}

n nXE{L(9<k—1), w® — w®E=1Y _ (g% w® — DY | ]-'k} (137)
As done in the previous proofs, we will first consider all the L terms that appear on the right hand side
of (I37). Following exactly the same steps as (73), (74), and (76)), we obtain the final bound for

the L terms as given in (77), but with By = 0. We still write out the whole simplification details here
for completeness, and also to show how this special case is much simpler than the more general case.

Considering all the L terms in (I37), we have:
- {L(G(k),w(k)—w*)—L(H*,w(k)—w*)} + [L(G(kfl),w(kfl)—w*)—L(Q*,w(kfl)—w*)}
+nx [L(Q(kfl), w® —w*Dy 1%, w® —w(kfl))}
_ {L(e(k—1)7 w0 )~ LOF) | oD _w*)}
+ [L(g(k),w(kfl)_w(k))_L(Qﬁw(kfl)_w(k))}
o [L(OF D, w0 —w )~ 16, w®) D))
_ {L(e(k—1)7 WD )~ LOF) | kD _w*)}

+ {L(a(k)’w(kfl)_w(k))_L(g(kfl)’w(kfl)_w(lc))}

(1) 8 _ DY Lg% 1) — g (kD)
+ (nx—1)| L6\, w w\ N —L(6%,w w')
[L(H(k_l) w*)—L(H(k),w(k)—w*)]
+ (nx = 1) [ L, w0 —w®) — 107, w®) )]
L(H( D k) — w*—|—(nx—1)(w(k)—w(k*1)))—L(G(k),w(k)—w*—|—(nx—1)(w(k)—w(kfl))>
(%< £ (00D 0 " + (i ~1) () D)), 0D )
1E (k) (k) _, (k1) k k
:<E (0" 1)(i —w! + (nx —1) (' — )),9<-1>—9< >>
=0
LA (h-1) k) _, (b1)
:<E 7 9<k1)<wi_ +nx (w® —w* )—w;f) g1 _ 9<k>>
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2 5 T (0 5t

K2 7

2
[+ g lo -0

nxfl nxfl

—meZ T ) (w0 —wi)+ 37 T0* ) w7 - HH““ s
1=0

N (1)) (oD |2 R 1)y (1 () (D 2

<2ﬁ1H*Zf (0% (0D —w! ) |* + 281 Do Fi(0* ) (P — D)
=0
1 —

e el
(d) 25132 ! e

<7 e Z || k 1) —w; ||2+261H Zf a(k—l) 79 o k 1) H + He(k—l) e(k)H

(138)

where step (a) uses convexity of L in 6, step (b) uses (a,b) < Bi]lal|? + 6—11||b\|2, step (c) uses

lla+0b]]? < 2||al|? +2||b]|?, and step (d) applies Jensen’s inequality and bounded gradient assumption
to the first term. The second term in (I38) can be simpliﬁed as follows:

nx—1Ny; —

{5 Tt -ty
=0 j=0

Fi60 D) wly — w7

nxny; ‘

nx—1M1y; —

1
2
<Bj oty = )
’I’Lx—l
=52 3" E{jlw{” —w* V|2 (139)
1=0

Therefore, using (138) and (T39), the conditional expectation of all the L terms in (I37) are bounded
by:

2513?”_1 (1) spi2 NS ) ()2 (k1) _ (k) |2
Zn wilP 42887 3 Bl —w VP Fi o E{||t9 S Y
i=0
23, B2
fi E w0 —w | 4 261 BFE{ ™ <’H>H2|fk}+ﬁiE{||9<’“*“f0<’“>||2<ﬂ} (140)
1

Substituting the above upper bound for the L terms in (I37) leads to

1 1
— (k) _ g*||2 (k) _ %2
(2049 +,U> E{H9 07| ’.7:19} + <2Oéw +7> E{||w w*||* | Fr}
11 1
- (k) _ plk—=1)2 o 2 (k) _ ., (k=1)2
+ (720@ /81>E{||0 g1 |fk}+ (—2% 2/313f)E{Hw whD|2 | )

1 1 251 B}
<o 64D — 0P+ | =y = o oD - (141)
209 20,

nx nx

which will be the final bound we will analyze.

Substituting hyper-parameter choices

Recall the choice of step-sizes o and v, defined in Theorem@

_ g
a0 = 16B?+4nxuﬂy »
1 3nxy+r+1 ( )
Qpy = — —————
2y nx +K+1
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where the condition number & is also defined in Theorem [F.1}

k= B}/vu

Furthermore, choosing /31 such that

we have:

(143)

1 3nx+r+1
Xi

Qo = IGBJ% + dnx py

1

2y nx +Kk+1
nx +rk+1

- 323? + 8nxpy
1

nxy +k+1
y 3nx +3k+3

<
32BJ2¢ + 8nx puy
3

N 32B% + 8nx py

1
8B7 + 2nx py
1
2
8B%

N

so that,
1

201y,
1

200,

=

nx +k+1
(144)

> 4oy B}

(145)

> 23, B}

Identities (T43) and (143) make sure that the third and the fourth terms on the left hand side of (T4T)
are either zero or positive, so that they can be ignored, resulting in:

pT—

20ty

1
o 7) E{llw™® —w||* | Fi}

1 261 B3
<— 0% — %)% + < TPV Blf) w1 — p*||2 (146)
20 201y, nx nx
We further look at the coefficients of other error terms in (146). To this end, we have:
1 163? + 4dnx py
2001 2y
8 B2 (147)
= '3 + 2nx
Y
=2k +2nx
and therefore, letting 7 p to denote the ratio of the coefficients of ||[#*~1) — §*||? and
E{[|6®) — 6%(|| %}, we have:
(209)/ (2 )
rp:=(-— —
P 2049 2a9 H
2ag
1+ 2a9 ’
1 a (148)
1+ 2a0p
1
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Also, for the dual terms we have rp denoting the ratio of the coefficients of ||w(k_1) — w* H2 and
E{|jw® —w*||? | F}, so that:

1 21 B 1
rp = ——i—’y—l-i- ! / — T
201y, nx nx 201y,

1 20,7y — 8awa9BJ%

nx 14+ 2au,y

(2 . i2aw'yf 1 (149)
- nx 20,7+ 1
@17i 271)(
nx dnx + 2k + 2
_ 1
B 2nx +k+1

where step (a) follows from (T44), and step (b) follows from (T30) below:
oy —1_ Bsesd o

20,y +1  Snxdedl g

_3nx+/€+1—nx—li—1 (150)
Inx +rk+1l+nx+r+1

N QTLX

Cdnyx +26+2

From (148)), the above bound (149) on rp implies rp < rp.

Recalling the definition of A(*)| the Lyapunov function defined in Theorem Substituting for the
step-size values in (I42)), we have:

1 1
A0 — (o= +u)E{ 109 0" 12| P }+ (5 +7 ) E{ Il ® - || 5}
2049 2aw
+r+1
= ((mrzntn) JEQUO® 0712} f (o (5 1) JE I -
(n(2r+2nx+1) )E{] 117 p+ (1 (g 1) E{ e w7
Anx +2k+2
= (s anx ) JE{I0 07 (o (5 ) (I~ 1|7 )
(n(2r+2nx+1) E{] P|7ic b+ (1 (Gt ) EL I —w 7|
Based on (148) and (149), and the fact that rp < rp, the inequality (T4T) then implies:
A® < p A (151)
where,
r=rp=1-1/(1+2k+2nx). (152)

The bound (T31)) implies that after k iterations, the error A®) satisfies:
AR <k A0)

Therefore, for A%) < ¢, it suffices to have r* A(9) < ¢, so that the number of iterations k satisfies:

klnr <lIn (ﬁ)
— kIn (1 —1/(1 +2f<+2nx)) <In (Afm)
. (153)
= —k/(1+25+2nx) <In (m)

— k> (1+2/€+2nx)1n(¥)

where we have used — In(1 — z) > . (I53) implies the final complexity result of Theorem[F.1] [
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