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Abstract

State-of-the-art efficient model-based Reinforcement Learning (RL) algorithms typ-
ically act by iteratively solving empirical models, i.e., by performing full-planning
on Markov Decision Processes (MDPs) built by the gathered experience. In this
paper, we focus on model-based RL in the finite-state finite-horizon undiscounted
MDP setting and establish that exploring with greedy policies – act by 1-step plan-
ning – can achieve tight minimax performance in terms of regret, Õ(

√
HSAT ).

Thus, full-planning in model-based RL can be avoided altogether without any per-
formance degradation, and, by doing so, the computational complexity decreases
by a factor of S. The results are based on a novel analysis of real-time dynamic
programming, then extended to model-based RL. Specifically, we generalize ex-
isting algorithms that perform full-planning to act by 1-step planning. For these
generalizations, we prove regret bounds with the same rate as their full-planning
counterparts.

1 Introduction

Reinforcement learning (RL) [Sutton and Barto, 2018] is a field of machine learning that tackles the
problem of learning how to act in an unknown dynamic environment. An agent interacts with the
environment, and receives feedback on its actions in the form of a state-dependent reward signal.
Using this experience, the agent’s goal is then to find a policy that maximizes the long-term reward.

There are two main approaches for learning such a policy: model-based and model-free. The model-
based approach estimates the system’s model and uses it to assess the long-term effects of actions via
full-planning (e.g., Jaksch et al. 2010). Model-based RL algorithms usually enjoy good performance
guarantees in terms of the regret – the difference between the sum of rewards gained by playing
an optimal policy and the sum of rewards that the agent accumulates [Jaksch et al., 2010, Bartlett
and Tewari, 2009]. Nevertheless, model-based algorithms suffer from high space and computation
complexity. The former is caused by the need for storing a model. The latter is due to the frequent
full-planning, which requires a full solution of the estimated model. Alternatively, model-free RL
algorithms directly estimate quantities that take into account the long-term effect of an action, thus,
avoiding model estimation and planning operations altogether [Jin et al., 2018]. These algorithms
usually enjoy better computational and space complexity, but seem to have worse performance
guarantees.

In many applications, the high computational complexity of model-based RL makes them infeasible.
Thus, practical model-based approaches alleviate this computational burden by using short-term
planning e.g., Dyna [Sutton, 1991], instead of full-planning. To the best of our knowledge, there are
no regret guarantees for such algorithms, even in the tabular setting. This raises the following question:
Can a model-based approach coupled with short-term planning enjoy the favorable performance of
model-based RL?
∗equal contribution
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Algorithm Regret Time Complexity Space Complexity

UCRL22
[Jaksch et al., 2010] Õ(

√
H2S2AT ) Õ(NSAH) Õ(HS +NSA)

UCBVI [Azar et al., 2017] Õ(
√
HSAT +

√
H2T ) Õ(NSAH) Õ(HS +NSA)

EULER [Zanette and Brunskill, 2019] Õ(
√
HSAT ) Õ(NSAH) Õ(HS +NSA)

UCRL2-GP Õ(
√
H2S2AT ) Õ(NAH) Õ(HS +NSA)

EULER-GP Õ(
√
HSAT ) Õ(NAH) Õ(HS +NSA)

Q-v2 [Jin et al., 2018] Õ(
√
H3SAT Õ(AH) Õ(HSA)

Lower bounds Ω
(√

SAHT
)

– –

Table 1: Comparison of our bounds with several state-of-the-art bounds for RL in tabular finite-
horizon MDPs. The time complexity of the algorithms is per episode; S and A are the sizes of the
state and action sets, respectively; H is the horizon of the MDP; T is the total number of samples that
the algorithm gathers; N ≤ S is the maximum number of non-zero transition probabilities across the
entire state-action pairs. The algorithms proposed in this paper are highlighted in gray.

In this work, we show that model-based algorithms that use 1-step planning can achieve the same
performance as algorithms that perform full-planning, thus, answering affirmatively to the above
question. To this end, we study Real-Time Dynamic-Programming (RTDP) [Barto et al., 1995]
that finds the optimal policy of a known model by acting greedily based on 1-step planning, and
establish new and sharper finite sample guarantees. We demonstrate how the new analysis of RTDP
can be incorporated into two model-based RL algorithms, and prove that the regret of the resulting
algorithms remains unchanged, while their computational complexity drastically decreases. As Table
1 shows, this reduces the computational complexity of model-based RL methods by a factor of S.

The contributions of our paper are as follows: we first prove regret bounds for RTDP when the
model is known. To do so, we establish concentration results on Decreasing Bounded Processes,
which are of independent interest. We then show that the regret bound translates into a Uniform
Probably Approximately Correct (PAC) [Dann et al., 2017] bound for RTDP that greatly improves
existing PAC results [Strehl et al., 2006]. Next, we move to the learning problem, where the model
is unknown. Based on the analysis developed for RTDP we adapt UCRL2 [Jaksch et al., 2010] and
EULER [Zanette and Brunskill, 2019], both act by full-planning, to UCRL2 with Greedy Policies
(UCRL2-GP) and EULER with Greedy Policies (EULER-GP); model-based algorithms that act by
1-step planning. The adapted versions are shown to preserve the performance guarantees, while
improve in terms of computational complexity.

2 Notations and Definitions

We consider finite-horizon MDPs with time-independent dynamics [Bertsekas and Tsitsiklis, 1996].
A finite-horizon MDP is defined by the tupleM = (S,A, R, p,H), where S and A are the state and
action spaces with cardinalities S and A, respectively. The immediate reward for taking an action a
at state s is a random variable R(s, a) ∈ [0, 1] with expectation ER(s, a) = r(s, a). The transition
probability is p(s′ | s, a), the probability of transitioning to state s′ upon taking action a at state s.
Furthermore, N := maxs,a |{s′ : p(s′ | s, a) > 0}| is the maximum number of non-zero transition
probabilities across the entire state-action pairs. If this number is unknown to the designer of the
algorithm in advanced, then we set N = S. The initial state in each episode is arbitrarily chosen and
H ∈ N is the horizon, i.e., the number of time-steps in each episode. We define [N ] := {1, . . . , N},
for all N ∈ N, and throughout the paper use t ∈ [H] and k ∈ [K] to denote time-step inside an
episode and the index of an episode, respectively.

A deterministic policy π : S × [H]→ A is a mapping from states and time-step indices to actions.
We denote by at := π(st, t), the action taken at time t at state st according to a policy π. The quality

2Similarly to previous work in the finite horizon setting, we state the regret in terms of the horizon H . The
regret in the infinite horizon setting is DS

√
AT , where D is the diameter of the MDP.
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of a policy π from state s at time t is measured by its value function, which is defined as

V πt (s) := E

[
H∑
t′=t

r(st′ , π(st′ , t
′)) | st = s

]
,

where the expectation is over the environment’s randomness. An optimal policy maximizes this
value for all states s and time-steps t, and the corresponding optimal value is denoted by V ∗t (s) :=
maxπ V

π
t (s), for all t ∈ [H]. The optimal value satisfies the optimal Bellman equation, i.e.,

V ∗t (s) = T ∗V ∗t+1(s) := max
a

{
r(s, a) + p(· | s, a)TV ∗t+1

}
. (1)

We consider an agent that repeatedly interacts with an MDP in a sequence of episodes [K]. The perfor-
mance of the agent is measured by its regret, defined as Regret(K) :=

∑K
k=1

(
V ∗1 (sk1)− V πk1 (sk1)

)
.

Throughout this work, the policy πk is computed by a 1-step planning operation with respect to the
value function estimated by the algorithm at the end of episode k − 1, denoted by V̄ k−1. We also
call such policy a greedy policy. Moreover, skt and akt stand, respectively, for the state and the action
taken at the tth time-step of the kth episode.

Next, we define the filtration Fk that includes all events (states, actions, and rewards) until the end
of the kth episode, as well as the initial state of the episode k + 1. We denote by T = KH , the
total number of time-steps (samples). Moreover, we denote by nk(s, a), the number of times that
the agent has visited state-action pair (s, a), and by X̂k, the empirical average of a random variable
X . Both quantities are based on experience gathered until the end of the kth episode and are Fk
measurable. We also define the probability to visit the state-action pair (s, a) at the kth episode at
time-step t by wtk(s, a) = Pr

(
skt = s, akt = a | sk0 , πk

)
. We note that πk is Fk−1 measurable, and

thus, wtk(s, a) = Pr
(
skt = s, akt = a | Fk−1

)
. Also denote wk(s, a) =

∑H
t=1 wtk(s, a).

We use Õ(X) to refer to a quantity that depends on X up to poly-log expression of a quantity at most
polynomial in S, A, T , K, H , and 1

δ . Similarly, . represents≤ up to numerical constants or poly-log
factors. We define ‖X‖2,p :=

√
EpX2, where p is a probability distribution over the domain of X ,

and use X ∨ Y := max{X,Y }. Lastly, P(S) is the set of probability distributions over the state
space S.

3 Real-Time Dynamic Programming

Algorithm 1 Real-Time Dynamic Programming
Initialize: ∀s ∈ S, ∀t ∈ [H], V̄ 0

t (s) = H − (t− 1).
for k = 1, 2, . . . do

Initialize sk1
for t = 1, . . . ,H do
akt ∈ arg maxa r(s

k
t , a) + p(· | skt , a)T V̄ k−1

t+1

V̄ kt (skt ) = r(skt , a
k
t ) + p(· | skt , akt )T V̄ k−1

t+1

Act with akt and observe skt+1.
end for

end for

RTDP [Barto et al., 1995] is a well-known algorithm that solves an MDP when a model of the
environment is given. Unlike, e.g., Value Iteration (VI) [Bertsekas and Tsitsiklis, 1996] that solves an
MDP by offline calculations, RTDP solves an MDP in a real-time manner. As mentioned in Barto
et al. [1995], RTDP can be interpreted as an asynchronous VI adjusted to a real-time algorithm.

Algorithm 1 contains the pseudocode of RTDP for finite-horizon MDPs. The value function is
initialized with an optimistic value, i.e., an upper bound of the optimal value. At each time-step t and
episode k, the agent acts from the current state skt greedily with respect to the current value at the
next time step, V̄ k−1

t+1 . It then updates the value of skt according to the optimal Bellman operator. We
denote by V̄ , the value function, and as we show in the following, it always upper bounds V ∗. Note
that since the action at a fixed state is chosen according to V̄ k−1, then πk is Fk−1 measurable.
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Since RTDP is an online algorithm, i.e., it updates its value estimates through interactions with the
environment, it is natural to measure its performance in terms of the regret. The rest of this section is
devoted to supplying expected and high-probability bounds on the regret of RTDP, which will also
lead to PAC bounds for this algorithm. In Section 4, based on the observations from this section, we
will establish minimax regret bounds for 1-step greedy model-based RL.

We start by stating two basic properties of RTDP in the following lemma: the value is always
optimistic and decreases in k (see proof in Appendix B). Although the first property is known [Barto
et al., 1995], to the best of our knowledge, the second one has not been proven in previous work.

Lemma 1. For all s, t, and k, it holds that (i) V ∗t (s) ≤ V̄ kt (s) and (ii) V̄ kt (s) ≤ V̄ k−1
t (s).

The following lemma, that we believe is new, relates the difference between the optimistic value
V̄ k−1

1 (sk1) and the real value V πk1 (sk1) to the expected cumulative update of the value function at the
end of the kth episode (see proof in Appendix B).
Lemma 2 (Value Update for Exact Model). The expected cumulative value update of RTDP at the
kth episode satisfies

V̄ k−1
1 (sk1)− V πk1 (sk1) =

H∑
t=1

E[V̄ k−1
t (skt )− V̄ kt (skt ) | Fk−1].

The result relates the difference of the optimistic value V̄ k−1 and the value of the greedy policy
V πk to the expected update along the trajectory, created by following πk. Thus, for example, if the
optimistic value is overestimated, then the value update throughout this episode is expected to be
large.

3.1 Regret and PAC Analysis

Using Lemma 1, we observe that the sequence of values is decreasing and bounded from below. Thus,
intuitively, the decrements of the values cannot be indefinitely large. Importantly, Lemma 2 states
that when the expected decrements of the values are small, then V πk1 (sk1) is close to V̄ k−1(sk1), and
thus, to V ∗, since V̄ k−1(sk1) ≥ V̄ ∗(sk1) ≥ V πk1 (sk1).

Building on this reasoning, we are led to establish a general result on a decreasing process. This
result will allow us to formally justify the aforementioned reasoning and derive regret bounds for
RTDP. The proof utilizes self-normalized concentration bounds [de la Peña et al., 2007], applied on
martingales, and can be found in Appendix A.
Definition 1 (Decreasing Bounded Process). We call a random process {Xk,Fk}k≥0, where
{Fk}k≥0 is a filtration and {Xk}k≥0 is adapted to this filtration, a Decreasing Bounded Process, if
it satisfies the following properties:

1. {Xk}k≥0 decreases, i.e., Xk+1 ≤ Xk a.s. .

2. X0 = C ≥ 0, and for all k, Xk ≥ 0 a.s. .

Theorem 3 (Regret Bound of a Decreasing Bounded Process). Let {Xk,Fk}k≥0 be a Decreasing

Bounded Process and RK =
∑K
k=1Xk−1 − E[Xk | Fk−1] be its K-round regret. Then,

Pr

{
∃K > 0 : RK ≥ C

(
1 + 2

√
ln(2/δ)

)2
}
≤ δ.

Specifically, it holds that Pr{∃K > 0 : RK ≥ 9C ln(3/δ)} ≤ δ.

We are now ready to prove the central result of this section, the expected and high-probability regret
bounds on RTDP (see full proof in Appendix B).
Theorem 4 (Regret Bounds for RTDP). The following regret bounds hold for RTDP:

1. E[Regret(K)] ≤ SH2.

2. For any δ > 0, with probability 1− δ, for all K > 0, Regret(K) ≤ 9SH2 ln(3SH/δ).
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Proof Sketch. We give a sketch of the proof of the second claim. Applying Lemmas 1 and then 2,

Regret(K) :=

K∑
k=1

V ∗1 (sk1)− V πk1 (sk1) ≤
K∑
k=1

V̄ k−1
1 (sk1)− V πk(sk1)

≤
K∑
k=1

H∑
t=1

E[V̄ k−1
t (skt )− V̄ kt (skt ) | Fk−1]. (2)

We then establish (see Lemma 34) that RHS of (2) is, in fact, a sum of SH Decreasing Bounded
Processes, i.e.,

(2) =

H∑
t=1

∑
s∈S

K∑
k=1

V̄ k−1
t (s)− E[V̄ kt (s) | Fk−1]. (3)

Since for any fixed s, t,
{
V̄ kt (s)

}
k≥0

is a decreasing process by Lemma 1, we can use Theorem 3,
for a fixed s, t, and conclude the proof by applying the union bound on all SH terms in (3).

Theorem 4 exhibits a regret bound that does not depend on T = KH . While it is expected that RTDP,
that has access to the exact model, would achieve better performance than an RL algorithm with no
such access, a regret bound independent of T is a noteworthy result. Indeed, it leads to the following
Uniform PAC (see Dann et al. 2017 for the definition) and (0, δ) PAC guarantees for RTDP (see
proofs in Appendix B). To the best of our knowledge, both are the first PAC guarantees for RTDP.3

Corollary 5 (RTDP is Uniform PAC). Let δ > 0 and Nε be the number of episodes in which RTDP
outputs a policy with V ∗1 (sk1)− V πk1 (sk1) > ε. Then,

Pr

{
∃ε > 0 : Nε ≥

9SH2 ln(3SH/δ)

ε

}
≤ δ.

Corollary 6 (RTDP is (0, δ) PAC). Let δ > 0 and N be the number of episodes in which
RTDP outputs a non optimal policy. Define the (unknown) gap of the MDP, ∆(M) =
mins minπ:V π1 (s) 6=V ∗1 (s) V

∗
1 (s)− V π1 (s) > 0. Then,

Pr

{
N ≥ 9SH2 ln(3SH/δ)

∆(M)

}
≤ δ.

4 Exploration in Model-based RL: Greedy Policy Achieves Minimax Regret

We start this section by formulating a general optimistic RL scheme that acts by 1-step planning (see
Algorithm 2). Then, we establish Lemma 7, which generalizes Lemma 2 to the case where a non-exact
model is used for the value updates. Using this lemma, we offer a novel regret decomposition for
algorithms which follow Algorithm 2. Based on the decomposition, we analyze generalizations of
UCRL2 [Jaksch et al., 2010] (for finite horizon MDPs) and EULER [Zanette and Brunskill, 2019],
that use greedy policies instead of solving an MDP (full planning) at the beginning of each episode.
Surprisingly, we find that both generalized algorithms do not suffer from performance degradation, up
to numerical constants and logarithmic factors. Thus, we conclude that there exists an RL algorithm
that achieves the minimax regret bound, while acting according to greedy policies.

Consider the general RL scheme that explores by greedy policies as depicted in Algorithm 2. The
value V̄ is initialized optimistically and the algorithm interacts with the unknown environment in
an episodic manner. At each time-step t, a greedy policy from the current state, skt , is calculated
optimistically based on the empirical model (r̂k−1, p̂k−1, nk−1) and the current value at the next
time-step V̄ k−1

t+1 . This is done in a subroutine called ‘ModelBaseOptimisticQ’.4 We further assume
the optimistic Q-function has the form Q̄(skt , a) = r̃k−1(skt , a) + p̃k−1(· | skt , a)T V̄ k−1

t+1 and refer to

3Existing PAC results on RTDP analyze variations of RTDP in which ε is an input parameter of the algorithm.
4We also allow the subroutine to useO(S) internal memory for auxiliary calculations, which does not change

the overall space complexity.
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Algorithm 2 Model-based RL with Greedy Policies
1: Initialize: ∀s ∈ S, ∀t ∈ [H], V̄ 0

t (s) = H − (t− 1).
2: for k = 1, 2, . . . do
3: Initialize sk1
4: for t = 1, . . . ,H do
5: ∀a, Q̄(skt , a) = ModelBaseOptimisticQ

(
r̂k−1, p̂k−1, nk−1, V̄

k−1
t+1

)
6: akt ∈ arg maxa Q̄(skt , a)

7: V̄ kt (skt ) = min
{
V̄ k−1
t (skt ), Q̄(skt , a

k
t )
}

8: Act with akt and observe skt+1.
9: end for

10: Update r̂k, p̂k, nk with all experience gathered in episode.
11: end for

(r̃k−1, p̃k−1) as the optimistic model. The agent interacts with the environment based on the greedy
policy with respect to Q̄ and uses the gathered experience to update the empirical model at the end of
the episode.

By construction of the update rule (see Line 7), the value is a decreasing function of k, for all
(s, t) ∈ S × [H]. Thus, property (ii) in Lemma 1 holds for Algorithm 2. Furthermore, the algorithms
analyzed in this section will also be optimistic with high probability, i.e., property (i) in Lemma 1
also holds. Finally, since the value update uses the empirical quantities r̂k−1, p̂k−1, nk−1 and V̄ k−1

t+1
from the previous episode, policy πk is still Fk−1 measurable.

The following lemma generalizes Lemma 2 to the case where, unlike in RTDP, the update rule does
not use the exact model (see proof in Appendix C).
Lemma 7 (Value Update for Optimistic Model). The expected cumulative value update of Algorithm
2 in the kth episode is bounded by

V̄ k−1
1 (sk1)− V πk1 (sk1) ≤

H∑
t=1

E
[
V̄ k−1
t (skt )− V̄ kt (skt ) | Fk−1

]
+

H∑
t=1

E
[
(r̃k−1 − r)(skt , akt ) + (p̃k−1 − p)(· | skt , akt )T V̄ k−1

t+1 | Fk−1

]
.

In the rest of the section, we consider two instantiations of the subroutine ‘ModelBaseOptimisticQ’
in Algorithm 2. We use the bonus terms of UCRL2 and of EULER to acquire an optimistic Q-
function, Q̄. These two options then lead to UCRL2 with Greedy Policies (UCRL2-GP) and EULER
with Greedy Policies (EULER-GP) algorithms.

4.1 UCRL2 with Greedy Policies for Finite-Horizon MDPs

Algorithm 3 UCRL2 with Greedy Policies (UCRL2-GP)

1: r̃k−1(skt , a) = r̂k−1(skt , a) +

√
2 ln 8SAT

δ

nk−1(skt ,a)∨1

2: CI(skt , a) =

{
P ′ ∈ P(S) : ‖P ′(·)− p̂k−1(· | skt , a)‖1 ≤

√
4S ln 12SAT

δ

nk−1(skt ,a)∨1

}
3: p̃k−1(· | skt , a) = arg maxP ′∈CI(skt ,a) P

′(· | skt , a)T V̄ k−1
t+1

4: Q̄(skt , a) = r̃k−1(skt , a) + p̃k−1(· | skt , a)T V̄ k−1
t+1

5: Return Q̄(skt , a)

We form the optimistic local model based on the confidence set of UCRL2 [Jaksch et al., 2010].
This amounts to use Algorithm 3 as the subroutine ‘ModelBaseOptimisticQ’ in Algorithm 2. The
maximization problem on Line 3 of Algorithm 3 is common, when using bonus based on an optimistic
model [Jaksch et al., 2010], and it can be solved efficiently in Õ(N ) operations (e.g., Strehl and
Littman 2008, Section 3.1.5). A full version of the algorithm can be found in Appendix D.
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Thus, Algorithm 3 performs NAH operations per episode. This saves the need to perform Extended
Value Iteration [Jaksch et al., 2010], that costs NSAH operations per episode (an extra factor of S).
Despite the significant improvement in terms of computational complexity, the regret of UCRL2-GP
is similar to the one of UCRL2 [Jaksch et al., 2010] as the following theorem formalizes (see proof in
Appendix D).
Theorem 8 (Regret Bound of UCRL2-GP). For any time T ≤ KH , with probability at least 1− δ,
the regret of UCRL2-GP is bounded by Õ

(
HS
√
AT +H2

√
SSA

)
.

Proof Sketch. Using the optimism of the value function (see Section D.2) and by applying Lemma 7,
we bound the regret as follows:

Regret(K) =

K∑
k=1

V ∗1 (sk1)− V πk1 (sk1) ≤
K∑
k=1

V̄ k−1
1 (sk1)− V πk1 (sk1)

≤
K∑
k=1

H∑
t=1

E[V̄ k−1
t (skt )− V̄ kt (skt ) | Fk−1]

+

K∑
k=1

H∑
t=1

E
[
(r̃k−1 − r)(skt , akt ) + (p̃k−1 − p)(· | skt , akt )T V̄ k−1

t+1 | Fk−1

]
. (4)

Thus, the regret is upper bounded by two terms. As in Theorem 4, by applying Lemma 11 (Ap-
pendix A), the first term in (4) is a sum of SH Decreasing Bounded Processes, and can thus be
bounded by Õ

(
SH2

)
. The presence of the second term in (4) is common in recent regret analyses

(e.g., Dann et al. 2017). Using standard techniques [Jaksch et al., 2010, Dann et al., 2017, Zanette
and Brunskill, 2019], this term can be bounded (up to additive constant factors) with high probability
by . H

√
S
∑K
k=1

∑H
t=1 E

[√
1

nk−1(skt ,a
k
t )
| Fk−1

]
≤ Õ(HS

√
AT ).

4.2 EULER with Greedy Policies

In this section, we use bonus terms as in EULER [Zanette and Brunskill, 2019]. Similar to the
previous section, this amounts to replacing the subroutine ‘ModelBaseOptimisticQ’ in Algorithm 2
with a subroutine based on the bonus terms from [Zanette and Brunskill, 2019]. Algorithm 5 in
Appendix E contains the pseudocode of the algorithm. The bonus terms in EULER are based on the
empirical Bernstein inequality and tracking both an upper bound V̄t and a lower-bound V t on V ∗t .
Using these, EULER achieves both minimax optimal and problem dependent regret bounds.

EULER [Zanette and Brunskill, 2019] performs O(NSAH) computations per episode (same as the
VI algorithm), while EULER-GP requires only O(NAH). Despite this advantage in computational
complexity, EULER-GP exhibits similar minimax regret bounds to EULER (see proof in Appendix E),
much like the equivalent performance of UCRL2 and UCRL2-GP proved in Section 4.1.
Theorem 9 (Regret Bound of EULER-GP). Let G be an upper bound on the total reward
collected within an episode. Define Q∗ := maxs,a,t

(
VarR(s, a) + Vars′∼p(·|s,a)V

∗
t+1(s)

)
and

Heff := min
{
Q∗,G2/H

}
. With probability 1 − δ, for any time T ≤ KH jointly on all episodes

k ∈ [K], the regret of EULER-GP is bounded by Õ
(√

HeffSAT +
√
SSAH2(

√
S +
√
H)
)
. Thus,

it is also bounded by Õ
(√

HSAT +
√
SSAH2(

√
S +
√
H)
)

.

Note that Theorem 9 exhibits similar problem-dependent regret-bounds as in Theorem 1 of [Zanette
and Brunskill, 2019]. Thus, the same corollaries derived in [Zanette and Brunskill, 2019] for EULER
can also be applied to EULER-GP.

5 Experiments

In this section, we present an empirical evaluation of both UCRL2 and EULER, and compare their
performance to the proposed variants, which use greedy policy updates, UCRL2-GP and EULER-GP,
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(a) Chain environment with N = 25 states (b) 2D chain environment with 5× 5 grid

Figure 1: A comparison UCRL2 and EULER with their greedy counterpart. Results are averaged
over 5 random seeds and are shown alongside error bars (±3std).

respectively. We evaluated the algorithms on two environments. (i) Chain environment [Osband
and Van Roy, 2017]: In this MDP, there are N states, which are connected in a chain. The agent
starts at the left side of the chain and can move either to the left or try moving to the right, which
succeeds w.p. 1− 1/N , and results with movement to the left otherwise. The agent goal is to reach
the right side of the chain and try moving to the right, which results with a reward r ∼ N (1, 1).
Moving backwards from the initials state also results with r ∼ N (0, 1), and otherwise, the reward is
r = 0. Furthermore, the horizon is set to H = N , so that the agent must always move to the right
to have a chance to receive a reward. (ii) 2D chain: A generalization of the chain environment, in
which the agent starts at the upper-left corner of a N × N grid and aims to reach the lower-right
corner and move towards this corner, in H = 2N − 1 steps. Similarly to the chain environment, there
is a probability 1/H to move backwards (up or left), and the agent must always move toward the
corner to observe a reward r ∼ N (1, 1). Moving into the starting corner results with r ∼ N (0, 1),
and otherwise r = 0. This environment is more challenging for greedy updates, since there are many
possible trajectories that lead to reward.

The simulation results can be found in Figure 1, and clearly indicate that using greedy planning
leads to negligible degradation in the performance. Thus, the simulations verify our claim that
greedy policy updates greatly improve the efficiency of the algorithm while maintaining the same
performance.

6 Related Work

Real-Time Dynamic Programming: RTDP [Barto et al., 1995] has been extensively used and has
many variants that exhibit superior empirical performance (e.g., [Bonet and Geffner, 2003, McMahan
et al., 2005, Smith and Simmons, 2006]). For discounted MDPs, Strehl et al. [2006] proved (ε, δ)-PAC
bounds of Õ

(
SA/ε2(1− γ)

4
)

, for a modified version of RTDP in which the value updates occur
only if the decrease in value is larger than ε(1− γ). I.e., their algorithm explicitly use ε to mark
states with accurate value estimate. We prove that RTDP converges in a rate of Õ

(
SH2/ε

)
without

knowing ε. Indeed, Strehl et al. [2006] posed whether the original RTDP is PAC as an open problem.
Furthermore, no regret bound for RTDP has been reported in the literature.

Regret bounds for RL: The most renowned algorithms with regret guarantees for undiscounted
infinite-horizon MDPs are UCRL2 [Jaksch et al., 2010] and REGAL [Bartlett and Tewari, 2009],
which have been extended throughout the years (e.g., by Fruit et al. 2018, Talebi and Maillard
2018). Recently, there is an increasing interest in regret bounds for MDPs with finite horizon H and
stationary dynamics. In this scenario, UCRL2 enjoys a regret bound of order HS

√
AT . Azar et al.

[2017] proposed UCBVI, with improved regret bound of order
√
HSAT , which is also asymptotically

tight [Osband and Van Roy, 2016]. Dann et al. [2018] presented ORLC that achieves tight regret
bounds and (nearly) tight PAC guarantees for non-stationary MDPs. Finally, Zanette and Brunskill
[2019] proposed EULER, an algorithm that enjoys tight minimax regret bounds and has additional
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problem-dependent bounds that encapsulate the MDP’s complexity. All of these algorithms are
model-based and require full-planning. Model-free RL was analyzed by [Jin et al., 2018]. There,
the authors exhibit regret bounds that are worse by a factor of H relatively to the lower-bound. To
the best of our knowledge, there are no model-based algorithms with regret guarantees that avoid
full-planning. It is worth noting that while all the above algorithms, and the ones in this work, rely on
the Optimism in the Face of Uncertainty principle [Lai and Robbins, 1985], Thompson Sampling
model-based RL algorithms exist [Osband et al., 2013, Gopalan and Mannor, 2015, Agrawal and Jia,
2017, Osband and Van Roy, 2017]. There, a model is sampled from a distribution over models, on
which full-planning takes place.

Greedy policies in model-based RL: By adjusting RTDP to the case where the model is unknown,
Strehl et al. [2012] formulated model-based RL algorithms that act using a greedy policy. They
proved a Õ

(
S2A/ε3(1− γ)

6
)

sample complexity bound for discounted MDPs. To the best of our
knowledge, there are no regret bounds for model-based RL algorithms that act by greedy policies.

Practical model-based RL: Due to the high computational complexity of planning in model-based
RL, most of the practical algorithms are model-free (e.g., Mnih et al. 2015). Algorithms that do use a
model usually only take advantage of local information. For example, Dyna [Sutton, 1991, Peng et al.,
2018] selects state-action pairs, either randomly or via prioritized sweeping [Moore and Atkeson,
1993, Van Seijen and Sutton, 2013], and updates them according to a local model. Other papers use
the local model to plan for a short horizon from the current state [Tamar et al., 2016, Hafner et al.,
2018]. The performance of such algorithms depends heavily on the planning horizon, that in turn
dramatically increases the computational complexity.

7 Conclusions and Future Work

In this work, we established that tabular model-based RL algorithms can explore by 1-step planning
instead of full-planning, without suffering from performance degradation. Specifically, exploring
with model-based greedy policies can be minimax optimal in terms of regret. Differently put, the
variance caused by exploring with greedy policies is smaller than the variance caused by learning
a sufficiently good model. Indeed, the extra term which appears due to the greedy exploration is
Õ(SH2) (e.g., the first term in (4)); a constant term, smaller than the existing constant terms of
UCRL2 and EULER.

This work raises and highlights some interesting research questions. The obvious ones are extensions
to average and discounted MDPs, as well as to Thompson sampling based RL algorithms. Although
these scenarios are harder or different in terms of analysis, we believe this work introduces the
relevant approach to tackle this question. Another interesting question is the applicability of the
results in large-scale problems, when tabular representation is infeasible and approximation must be
used. There, algorithms that act using lookahead policies, instead of 1-step planning, are expected
to yield better performance, as they are less sensitive to value approximation errors (e.g., Bertsekas
and Tsitsiklis 1996, Jiang et al. 2018, Efroni et al. 2018b,a). Even then, full-planning, as opposed to
using a short-horizon planning, might be unnecessary. Lastly, establishing whether the model-based
approach is or is not provably better than the model-free approach, as the current state of the literature
suggests, is yet an important and unsolved open problem.
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A Proofs on Decreasing Bounded Processes

In this section, we state and prove useful results on Decreasing Bounded Processes (see Definition 1).
These results will be in use in proofs of the central theorems of this work.
Theorem 3 (Regret Bound of a Decreasing Bounded Process). Let {Xk,Fk}k≥0 be a Decreasing

Bounded Process and RK =
∑K
k=1Xk−1 − E[Xk | Fk−1] be its K-round regret. Then,

Pr

{
∃K > 0 : RK ≥ C

(
1 + 2

√
ln(2/δ)

)2
}
≤ δ.

Specifically, it holds that Pr{∃K > 0 : RK ≥ 9C ln(3/δ)} ≤ δ.

Proof. Without loss of generality, assume C > 0, since otherwise the results are trivial. We start
by remarking that RK is almost surely monotonically increasing, since Xk ≤ Xk−1. Define the
martingale difference process

ξk = Xk − E[Xk | Fk−1] = Xk −Xk−1 − E[Xk −Xk−1 | Fk−1]

and the martingale process MK =
∑K
k=1 ξk. Since Xk ≥ 0 almost surely, RK can be bounded

by RK = MK + X0 − XK ≤ X0 + MK . Also define the quadratic variations as 〈M〉K =∑K
k=1 E

[
ξ2
k | Fk−1

]
and [M ]K =

∑K
k=1 ξ

2
k. Next, recall Theorem 2.7 of [de la Peña et al., 2007]:

Theorem 10. Let A and B be two random variables, such that for all λ ∈ R, we have

E
[
eλA−

λ2B2

2

]
≤ 1 . (5)

Then, ∀x > 0,

Pr

{
|A|√

B2 + E[B2]
> x

}
≤
√

2e−x
2/4. (6)

Condition (5) holds for AK = MK and B2
K = 〈M〉K + [M ]K , due to Theorem 9.21 of [de la Peña

et al., 2008]. AK can be easily bounded by |AK | ≥ RK −X0 ≥ RK − C. To bound B2
K , we first

calculate ξ2
k and E

[
ξ2
k | Fk−1

]
:

ξ2
k = (Xk −Xk−1)

2 − 2(Xk −Xk−1)E[Xk −Xk−1 | Fk−1] + (E[Xk −Xk−1 | Fk−1])
2
,

E
[
ξ2
k | Fk−1

]
= E

[
(Xk −Xk−1)

2 | Fk−1

]
− (E[Xk −Xk−1 | Fk−1])

2
.

Thus,
ξ2
k + E

[
ξ2
k | Fk−1

]
= (Xk −Xk−1)

2
+ E

[
(Xk −Xk−1)

2 | Fk−1

]
− 2(Xk −Xk−1)E[Xk −Xk−1 | Fk−1]

(∗)
≤ (Xk −Xk−1)

2
+ E

[
(Xk −Xk−1)

2 | Fk−1

]
(∗∗)
≤ (Xk −Xk−1)

2
+ CE[Xk−1 −Xk | Fk−1] .

In (∗) we used the fact thatXk−1−Xk ≥ 0 a.s., which allows us to conclude that the cross-term is non-
positive. In (**), we bounded 0 ≤ Xk−1−Xk ≤ C. We can also bound

∑K
k=1(Xk−1 −Xk)

2 ≤ C2,
since each of the summands is a.s. non-negative, and thus,

K∑
k=1

(Xk−1 −Xk)
2 ≤

(
K∑
k=1

Xk−1 −Xk

)2

= (XK −X0)
2 ≤ C2.

Combining all of the above bounds yields

B2
K ≤

K∑
k=1

(
(Xk −Xk−1)

2
+ CE[Xk−1 −Xk | Fk−1]

)
≤ C2 + C

K∑
k=1

E[Xk−1 −Xk | Fk−1] = C2 + CRK .
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Finally, we can bound E
[
B2
K

]
by

E
[
B2
K

]
=

K∑
k=1

E
[
ξ2
k + E

[
ξ2
k | Fk−1

]]
= 2

K∑
k=1

E
[
E
[
ξ2
k | Fk−1

]]
= 2

K∑
k=1

E
[
E
[
(Xk −Xk−1)

2 | Fk−1

]
− (E[Xk −Xk−1 | Fk−1])

2
]

≤ 2

K∑
k=1

E
[
E
[
(Xk −Xk−1)

2 | Fk−1

]]
= 2

K∑
k=1

(Xk −Xk−1)
2 ≤ 2C2.

Combining everything we obtain

|A|√
B2 + E[B2]

≥ RK − C√
C2 + CRK + 2C2

=
RK − C√

3C2 + CRK
.

Or, substituting in (6), we have

Pr

{
RK − C√

3C2 + CRK
> x

}
≤ Pr

{
|A|√

B2 + E[B2]
> x

}
≤
√

2e−x
2/4.

Next, notice that for C > 0, the function f(y) = y−C√
3C2+Cy

is monotonically increasing for any

y > 0:

f ′(y) =

√
3C2 + Cy − C(y−C)

2
√

3C2+Cy

3C2 + Cy
=

2(3C2 + Cy)− Cy + C2

2(3C2 + Cy)
3/2

=
7C2 + Cy

2(3C2 + Cy)
3/2

> 0

Moreover, for y = C(1 + x)2,

f
(
C(1 + x)2

)
=

C(1 + x)2 − C√
3C2 + C2(1 + x)2

=
Cx2 + 2Cx√

4C2 + 2C2x+ C2x2

>
Cx2 + 2Cx√

4C2 + 4C2x+ C2x2
=
Cx2 + 2Cx

Cx+ 2C
= x ,

where the inequality holds since x > 0. Thus, if RK ≥ C(1 + x)2, then f(RK) > x, and we can
bound the probability that RK ≥ C(1 + x)2 by

Pr
{
RK ≥ C(1 + x)2

}
≤ Pr

{
RK − C√

3C2 + CRK
> x

}
≤
√

2e−x
2/4 ,

and setting x = 2
√

ln 2
δ > 0, we obtain

Pr

RK ≥ C
(

1 + 2

√
ln

2

δ

)2
 ≤ δ .

We remark that since RK is monotonically increasing a.s., this bound also implies that

Pr

∃N : 1 ≤ N ≤ K, RN ≥ C

(
1 + 2

√
ln

2

δ

)2
 ≤ δ.
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To obtain a uniform bound, that is, bound that holds for all K > 0, note that the random sequence

ZK = 1

{
∃1 ≤ N ≤ K : RN ≥ C

(
1 + 2

√
ln 2

δ

)2
}

is monotonically increasing inK and bounded.

Thus, due to monotone convergence

Pr

∃K > 0 : RK ≥ C

(
1 + 2

√
ln

2

δ

)2
 = E

[
lim
K→∞

ZK

]
= lim
K→∞

E[ZK ]

= lim
K→∞

Pr

∃1 ≤ N ≤ K : RN ≥ C

(
1 + 2

√
ln

2

δ

)2
 ≤ δ.

To conclude the proof, note that δ ≤ 1, and thus, ln 3
δ ≥ 1. Therefore, we can bound

C

(
1 + 2

√
ln

2

δ

)2

≤ C

(
1 + 2

√
ln

3

δ

)2

≤ C

(
3

√
ln

3

δ

)2

= 9C ln
3

δ
,

which yields the second bound.

Lemma 11. Let {Xk
n}k≥1 be a Bounded Decreasing Process in [0, C] for any n ∈ [N ]. The regret

of the sum of processes is defined as R(K) =
∑N
n=1

∑K
k=1X

k−1
n − E[Xk

n | Fk−1]. Then, for any
δ > 0, we have

Pr

{
∃K > 0 : R(K) ≥ 9CN ln

3N

δ

}
≤ δ.

Proof. We first remark that if X0
n < C, we can replace it to X0

n = C, which only increases the regret,
so we assume w.l.o.g. that X0

n = C. Define

Rn(K) :=

K∑
k=1

Xk−1
n (s)− E[Xk

n(s) | Fk−1].

Define the event An :=
{
∃K > 0 : Rn(K) ≥ 9CN ln 3N

δ

}
. By applying Theorem 3, with probabil-

ity δ
N , it holds that for a fixed n ∈ [N ]

Pr

{
∃K > 0 : Rn(K) ≥ 9C ln

3N

δ

}
= Pr{An} ≤

δ

N
. (7)

Finally, we obtain

Pr

{
∃K > 0 : R(K) ≥ 9NC ln

3N

δ

}
= Pr

{
∃K > 0 :

N∑
n=1

Rn(K) ≥ 9NC ln
3N

δ

}
(1)

≤ Pr

{
N⋃
n=1

An

}
(2)

≤
N∑
n=1

Pr{An}
(3)

≤ δ.

Relation (1) holds since{
∃K > 0 :

N∑
n=1

Rn(K) ≥ 9NC ln
3N

δ

}
⊆

N⋃
n=1

An.

In (2) we use the union bound and (3) holds by (7).
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B Proof of Real-Time Dynamic Programming Bounds

Lemma 1. For all s, t, and k, it holds that (i) V ∗t (s) ≤ V̄ kt (s) and (ii) V̄ kt (s) ≤ V̄ k−1
t (s).

Proof. Both claims are proven using induction.

(i) By the initialization, ∀s, t, V ∗t (s) ≤ V 0
t (s). Assume the claim holds for k − 1 episodes. Let

skt be the state the algorithm is at in the tth time-step of the kth episode. By the value update of
Algorithm 1,

V̄ kt (skt ) = max
a

r(skt , a) +
∑
s′

p(s′ | skt , a)V̄ k−1
t+1 (s′)

≥ max
a

r(skt , a) +
∑
s′

p(s′ | skt , a)V̄ ∗t+1(s′) = V ∗(skt ).

The second relation holds by the induction hypothesis and the monotonicity of the optimal Bellman
operator [Bertsekas and Tsitsiklis, 1996]. The third relation holds by the recursion satisfied by the
optimal value function (see Section 2). Thus, the induction step is proven for the first claim.

(ii) To prove the base case of the second claim we use the optimistic initialization. Let s1
t be the

state the algorithm is at in the tth time-step of the first episode. By the update rule,

V̄ 1
t (s1

t ) = max
a

r(s1
t , a) +

∑
s′

p(s′ | s1
t , a)V̄ 0

t+1(s′)

(1)
= max

a
r(s1

t , a) +H − t

(2)

≤ 1 +H − t = H − (t− 1)
(3)
= V̄ 0

t (s1
t ).

Relation (1) holds by the initialization of the values, (2) holds since r(s, a) ∈ [0, 1] and (3) is by the
initialization. States that were not visited on the first episode were not update, and thus the inequality
trivially holds.

Assume the second claim holds for k − 1 episodes. Let skt be the state that the algorithm is at in the
tth time-step of the kth episode. By the value update of Algorithm 1, we have

V̄ kt (skt ) = max
a

r(skt , a) +
∑
s′

p(s′ | skt , a)V̄ k−1
t+1 (s′).

If skt was previously updated, let k̄ be the previous episode in which the update occured. By the
induction hypothesis, we have that ∀s, t, V̄ k̄t (s) ≥ V̄ k−1

t (s). Using the monotonicity of the Bellman
operator [Bertsekas and Tsitsiklis, 1996], we may write

max
a

r(skt , a) +
∑
s′

p(s′ | skt , a)V̄ k−1
t+1 (s′)

≤ max
a

r(skt , a) +
∑
s′

p(s′ | skt , a)V̄ k̄−1
t+1 (s′) = V̄ k−1(skt ).

Thus, V̄ kt (skt ) ≤ V̄ k−1(skt ) and the induction step is proved. If skt was not previously updated, then
V̄ k−1
t (skt ) = V̄ 0

t (skt ). In this case, the induction hypothesis implies that ∀s′, V̄ k−1
t+1 (s′) ≤ V̄ 0

t+1(s′)
and the result can be proven similarly to the base case.
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Lemma 2 (Value Update for Exact Model). The expected cumulative value update of RTDP at the
kth episode satisfies

V̄ k−1
1 (sk1)− V πk1 (sk1) =

H∑
t=1

E[V̄ k−1
t (skt )− V̄ kt (skt ) | Fk−1].

Proof. By the definition of akt and the update rule, the following holds:

E
[
V̄ kt (skt ) | Fk−1

]
= E

[
r(skt , a

k
t ) + p(· | skt , akt )T V̄ k−1

t+1 | Fk−1

]
= E

[
r(skt , a

k
t ) | Fk−1

]
+ E

∑
s̄t+1

p(s̄t+1 | st, πk)V̄ k−1
t+1 (s̄t+1) | Fk−1

.
Furthermore,

E

∑
s̄t+1

p(s̄t+1 | skt , πk)V̄ k−1
t+1 (s̄t+1) | Fk−1


=
∑
skt

Pr(skt | sk1 , πk)
∑

s̄t+1∈S
p(s̄t+1 | skt , πk)V̄ k−1

t+1 (s̄t+1)

=
∑

skt+1∈S

Pr(skt+1 | sk1 , πk)V̄ k−1
t+1 (skt+1) = E

[
V̄ k−1
t+1 (skt+1) | Fk−1

]
. (8)

The first relation holds by definition and the second one holds by the Markovian property of the
dynamics. Substituting back and summing both side from t = 1, . . . ,H , we obtain

E

[
H∑
t=1

V̄ kt (skt ) | Fk−1

]
= E

[
H∑
t=1

r(skt , a
k
t ) | Fk−1

]
+ E

[
H∑
t=1

V̄ k−1
t+1 (skt+1) | Fk−1

]

= E

[
H∑
t=1

r(skt , a
k
t ) | Fk−1

]
+ E

[
H∑
t=1

V̄ k−1
t (skt ) | Fk−1

]
− V̄ k−1

1 (sk1)

= V πk1 (sk1) + E

[
H∑
t=1

V̄ k−1
t (skt ) | Fk−1

]
− V̄ k−1

1 (sk1)

The second line hold by shifting the index of the sum and using the fact that ∀s, V̄ kH+1(s) = 0. The
third line holds by the definition of the value function,

H∑
t=1

E[r(skt , a
k
t ) | Fk−1] = E[

H∑
t=1

r(skt , a
k
t ) | s1 = sk1 ] = V πk1 (sk1).

Reorganizing the equation yields the desired result.
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Theorem 4 (Regret Bounds for RTDP). The following regret bounds hold for RTDP:

1. E[Regret(K)] ≤ SH2.

2. For any δ > 0, with probability 1− δ, for all K > 0, Regret(K) ≤ 9SH2 ln(3SH/δ).

Proof. The following bounds on the regret hold.

Regret(K) :=

K∑
k=1

V ∗(sk1)− V πk(sk1) ≤
K∑
k=1

V̄ k−1
1 (sk1)− V πk(sk1)

≤
K∑
k=1

H∑
t=1

E[V̄ k−1
t (skt )− V̄ kt (skt ) | Fk−1]. (9)

The second relation is by the optimism of the value function (Lemma 1), and the third relation is by
Lemma 2.

To prove the bound on the expected regret, we take expectation on both sides of (9). Thus,

E[Regret(K)] ≤
K∑
k=1

E[E[

H∑
t=1

V̄ k−1
t (skt )− V̄ kt (skt ) | Fk−1]] = E[

K∑
k=1

H∑
t=1

V̄ k−1
t (skt )− V̄ kt (skt )].

Where the second relation holds by the tower property and linearity of expectation. Finally, for any
run of RTDP, we have that

K∑
k=1

H∑
t=1

V̄ k−1
t (skt )− V̄ kt (skt ) =

∑
s

H∑
t=1

V̄ 0
t (s)− V̄ Kt (s) ≤

∑
s

H∑
t=1

V̄ 0
t (s)− V ∗t (s) ≤ SH2.

The first relation holds since per s, the sum is telescopic, thus, only the first and last term exist in the
sum. Due to the update rule, on the first time a state appears, its value will be V̄ 0

t (s). From the last
time it appears, its value will not be updated and thus the last value of a state is V̄ Kt (s). The second
relation holds by Lemma 1. The third relation holds since ∀s, t, V̄ 0

t (s)− V ∗t (s) ∈ [0, H], summing
on SH such terms yields the result.

To prove the high-probability bound we apply Lemma 34 by which,

(9) =

H∑
t=1

∑
s

K∑
k=1

V̄ k−1
t (s)− E[V̄ kt (s) | Fk−1].

For a fixed s, t,
{
V̄ kt (s)

}
k≥0

is a Decreasing Bounded Process by Lemma 1, and its initial value
is less than H . Thus, (9) is a sum of SH Decreasing Bounded Processes. We apply Lemma 11
which provides a high-probability bound on a sum of Decreasing Bounded Processes to conclude the
proof.
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Corollary 5 (RTDP is Uniform PAC). Let δ > 0 and Nε be the number of episodes in which RTDP
outputs a policy with V ∗1 (sk1)− V πk1 (sk1) > ε. Then,

Pr

{
∃ε > 0 : Nε ≥

9SH2 ln(3SH/δ)

ε

}
≤ δ.

Proof. Let KNε be an episode index such that there are Nε previous episodes k ≤ KNε in which
RTDP outputs a policy with V ∗1 (sk1)− V πk1 (sk1) > ε. The following relation holds,

∀ε > 0 : kkvbvuvdhfirinhblbkudchurbknbulrNεε ≤ Regret(KNε).

Thus, {
∃ε > 0 : Nεε ≥ 9SH2 ln

3SH

δ

}
⊆
{

Regret(KNε) ≥ 9SH2 ln
3SH

δ

}
⊆
{
∃K > 0 : Regret(K) ≥ 9SH2 ln

3SH

δ

}
.

Which results in

Pr

{
∃ε > 0 : Nεε ≥ 9SH2 ln

3SH

δ

}
≤ Pr

{
∃K > 0 : Regret(K) ≥ 9SH2 ln

3SH

δ

}
≤ δ.

where the third relation holds by Theorem 4.

Corollary 6 (RTDP is (0, δ) PAC). Let δ > 0 and N be the number of episodes in which
RTDP outputs a non optimal policy. Define the (unknown) gap of the MDP, ∆(M) =
mins minπ:V π1 (s) 6=V ∗1 (s) V

∗
1 (s)− V π1 (s) > 0. Then,

Pr

{
N ≥ 9SH2 ln(3SH/δ)

∆(M)

}
≤ δ.

Proof. We have that N = N∆(M) since ∆(M) is the minimal gap; in all rest of episodes in which
the gap is smaller than ∆(M), the policy πk is necessarily the optimal one. Based on Corollary 5 we
conclude that,

Pr

{
N ≥

9SH2 ln 3SH
δ

∆(M)

}
= Pr

{
N∆(M) ≥

9SH2 ln 3SH
δ

∆(M)

}
≤ δ.
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C Proofs of Section 4

Lemma 7 (Value Update for Optimistic Model). The expected cumulative value update of Algorithm
2 in the kth episode is bounded by

V̄ k−1
1 (sk1)− V πk1 (sk1) ≤

H∑
t=1

E
[
V̄ k−1
t (skt )− V̄ kt (skt ) | Fk−1

]
+

H∑
t=1

E
[
(r̃k−1 − r)(skt , akt ) + (p̃k−1 − p)(· | skt , akt )T V̄ k−1

t+1 | Fk−1

]
.

We prove a more general, Lemma 12, of which Lemma 7 is a direct corollay (by setting t = 1).

Lemma 12. The expected value update of Algorithm 2 in the kth episode at the state tth is bounded
by

V̄ k−1
t (skt )− V πkt (skt ) ≤

H∑
t′=t

E
[
V̄ k−1
t′ (skt′)− V̄ kt′ (skt′) | Fk−1, s

k
t

]
+

H∑
t′=t

E
[
(r̃k−1 − r)(skt′ , akt′) + (p̃k−1 − p)(· | skt′ , akt′)T V̄ k−1

t′+1 | Fk−1, s
k
t

]
.

Proof. We closely follow the proof of Lemma 2. By the definition of akt and the update rule, for
t′ ≥ t, the following holds.

E
[
V̄ kt′ (s

k
t′) | Fk−1, s

k
t

]
(1)

≤ E

r̃k−1(skt′ , a
k
t′) +

∑
s̄t′+1∈S

p̃k−1(s̄t′+1 | skt′ , at′)V̄ k−1
t′+1 (s̄t′+1) | Fk−1, s

k
t


(2)
= E

[
r(skt′ , a

k
t′) | Fk−1, s

k
t′
]

+ E

 ∑
s̄t′+1∈S

p(s̄t′+1 | skt′ , akt′)V̄ k−1
t′+1 (s̄t′+1) | Fk−1, s

k
t


+ E

(r̃k−1 − r)(skt′ , akt′) +
∑

s̄t′+1∈S
(p̃k−1 − p)(s̄t′+1 | skt′ , akt′)V̄ k−1

t′+1 (s̄t′+1) | Fk−1, s
k
t


(3)
= E

[
r(skt′ , a

k
t′) | Fk−1, , s

k
t

]
+ E

[
V̄ k−1
t′+1 (skt′+1) | Fk−1, s

k
t

]
+ E

(r̃k−1 − r)(skt′ , akt′) +
∑

s̄t′+1∈S
(p̃k−1 − p)(s̄t′+1 | skt′ , akt′)V̄ k−1

t′+1 (s̄t′+1) | Fk−1, s
k
t



Relation (1) holds by the update rule for V̄ kt . Next, (2) holds by adding an subtracting the real
reward and dynamics and using linearity of expectation. In (3), we used the same reasoning as in
Equation (8).
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Summing both side from t′ = t, . . . ,H , we obtain:

E

[
H∑
t′=t

V̄ kt′ (s
k
t′) | Fk−1, s

k
t

]

≤ E

[
H∑
t′=t

r(skt′ , a
k
t′) | Fk−1, s

k
t

]
+ E

[
H∑
t′=t

V̄ k−1
t′+1 (skt′+1) | Fk−1, s

k
t

]

+

H∑
t′=t

E

(r̃k−1 − r)(skt′ , akt′) +
∑

s̄t′+1∈S
(p̃k−1 − p)(s̄t′+1 | skt′ , akt′)V̄ k−1

t′+1 (s̄t′+1) | Fk−1, s
k
t


(1)
= V πkt (skt ) + E

[
H∑
t′=t

V̄ k−1
t′+1 (skt′+1) | Fk−1, s

k
t

]

+

H∑
t′=t

E

(r̃k−1 − r)(skt′ , akt′) +
∑

s̄t′+1∈S
(p̃k−1 − p)(s̄t′+1 | skt′ , akt′)V̄ k−1

t′+1 (s̄t′+1) | Fk−1, s
k
t


(2)
= V πkt (skt ) + E

[
H∑
t′=t

V̄ k−1
t′ (skt′) | Fk−1, s

k
t

]
− V̄ k−1

t (skt )

+

H∑
t′=t

E

(r̃k−1 − r)(skt′ , akt′) +
∑

s̄t′+1∈S
(p̃k−1 − p)(s̄t′+1 | skt′ , akt′)V̄ k−1

t′+1 (s̄t′+1) | Fk−1, s
k
t


In (1) we used the fact that V πkt (skt ) = E[

∑H
t′=t r(s

k
t′ , πk(skt′)) | Fk−1, s

k
t ]. Relation (2) holds by

shifting the index of the sum and using ∀s, k, V̄ k−1
H+1(s) = 0. Reorganizing the equation yields the

desired result.
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D Proof of Theorem 8

Algorithm 4 UCRL2 with Greedy Policies

1: Initialize: δ, δ′ = δ
4∀s ∈ S, t ∈ [H], V̄ 0

t (s) = H − (t− 1).
2: for k = 1, 2, .. do
3: Initialize sk1
4: for t = 1, ..,H do
5: #Update Upper Bound on V ∗
6: for a ∈ A do

7: r̃k−1(skt , a) = r̂k−1(skt , a) +

√
2 ln 2SAT

δ′

nk−1(skt ,a)∨1

8: CI(skt , a) =

{
P ′ ∈ P(S) : ‖P ′(·)− p̂k−1(· | skt , a)‖1 ≤

√
4S ln 3SAT

δ′

nk−1(skt ,a)∨1

}
9: p̃k−1(· | skt , a) = arg maxP ′∈CI(skt ,a) P

′(· | skt , a)T V̄ k−1
t+1

10: Q̄(skt , a) = r̃k−1(skt , a) + p̃k−1(· | skt , a)T V̄ k−1
t+1

11: end for
12: akt ∈ arg maxa Q̄(skt , a)

13: V̄ kt (skt ) = min
{
V̄ k−1
t (sk1), Q̄(skt , a

k
t )
}

14: #Act by the Greedy Policy
15: Apply akt and observe skt+1.
16: end for
17: Update r̂k, p̂k, nk with all experience gathered in the episode.
18: end for

We provide the full proof of Theorem 8 which establishes a regret bound for UCRL2 with Greedy
Policies (UCRL2-GP) in finite horizon MDPs. In the following, we present the structure of this
section.

We define the failure events for UCRL2-GP in Section D.1. Most of the events are standard low-
probability failure events, derived using, e.g., Hoeffding’s inequality. We add to the standard set of
events a failure event which holds when a sum of Decreasing Bounded Processes is large in its value.
Using uniform bounds, the failure events are shown to hold jointly. When all failure events do not
occur for all time-steps we say the algorithm is outside the failure event. In Section D.2 we establish
that UCRL2-GP is optimistic, and, more specifically, that for all s, t, k V̄ kt (s) ≥ V ∗t (s), outside the
failure event. Lastly, in Section D.3 we give the full proof of Theorem 8, based on a new regret
decomposition using on Lemma 7, the new results on Decreasing Bounded Processes (see Appendix
A), and existing techniques (e.g., [Dann et al., 2017, Zanette and Brunskill, 2019]).

D.1 Failure Events for UCRL2 with Greedy Policies

Define the following failure events.

F rk =

∃s, a : |r(s, a)− r̂k−1(s, a)| ≥

√
2 ln 2SAT

δ′

nk−1(s, a) ∨ 1


F pk =

∃s, a : ‖p(· | s, a)− p̂k−1(· | s, a)‖1 ≥

√
4S ln 3SAT

δ′

nk−1(s, a) ∨ 1


FNk =

∃s, a : nk−1(s, a) ≤ 1

2

∑
j<k

wj(s, a)−H ln
SAH

δ′

.
FDBP =

{
∃k > 0 :

K∑
k=1

H∑
t=1

∑
s

V̄ k−1
t (s)− E[V̄ kt (s) | Fk−1] ≥ 9SH2 ln

3SH

δ′

}

Furthermore, the following relations hold.
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• Let F r =
⋃K
k=1 F

r
k . Then Pr{F r} ≤ δ′, by Hoeffding’s inequality, and using a union

bound argument on all s, a, possible values of nk(s, a) and k. Furthermore, for n(s, a) = 0
the bound holds trivially since R ∈ [0, 1].

• Let FP =
⋃K
k=1 F

p
k . Then Pr{F p} ≤ δ′, holds by [Weissman et al., 2003] while applying

union bound on all s, a, nk−1(s, a) and possible values of k (e.g., Azar et al. 2017, Zanette
and Brunskill 2019). Furthermore, for n(s, a) = 0 the bound holds trivially.

• Let FN =
⋃K
k=1 F

N
k . Then, Pr

{
FN
}
≤ δ′. The proof is given in [Dann et al., 2017]

Corollary E.4 (and is used in Zanette and Brunskill 2019 Appendix D.4).

• By construction of Algorithm 2, ∀s, t, V̄ kt (s) is a decreasing function of k, with V̄ 0
t (s) = H .

Furthermore, since r̂k−1(s, a) and p̂k−1(· | s, a) are non-negative, and V̄ 0
t (s) > 0, a simple

induction allows us to conclude that ∀s, t, V̄ kt (s) ≥ 0. Thus, by applying Lemma 11,
Pr
{
FDBP

}
≤ δ′.

Lemma 13. Setting δ′ = δ
4 then Pr{F r

⋃
F p
⋃
FN

⋃
FDBP } ≤ δ. When the failure events does

not hold we say the algorithm is outside the failure event.

D.2 UCRL2 with Greedy Policies is Optimistic

Lemma 14. Outside the failure event UCRL2-GP is Optimistic,

∀s, t, k V̄ kt (s) ≥ V ∗t (s).

Proof. We prove by induction. The base case holds by the initialization of the algorithm, V̄ 0
t (s) =

H − (t− 1) ≥ V ∗t (s). Assume the induction hypothesis holds for k− 1 episodes. At the kth episode,
states there were not visited at step t will not be updated, and thus by the induction hypothesis, the
result hold for these states. For states that were visited, if the minimum at the update stage equals
to V̄ k−1

t (s), then the result similarly holds. Let skt be a state that was updated according to the
optimistic model, and let

ã∗ ∈ arg max
a

r̃k−1(skt , a) + p̃k−1(· | skt , a)vk−1
t+1

a∗ ∈ arg max
a

r(skt , a) + p(· | skt , a)V ∗t+1.

Then,

V̄ kt (skt ) = max
a

r̃k−1(skt , a) + p̃k−1(· | skt , a)V̄ k−1
t+1

(1)
= r̃k−1(skt , ã

∗) + p̃k−1(· | skt , ã∗)V̄ k−1
t+1

(2)

≥ r̃k−1(skt , a
∗) + p̃k−1(· | skt , a∗)V̄ k−1

t+1

(3)

≥ r(skt , a
∗) + p(· | skt , a∗)V̄ k−1

t+1

(4)

≥ r(skt , a
∗) + p(· | skt , a∗)V ∗t+1

(5)
= V ∗t (skt ).

Relations (1) and (2) are by the definition and optimality of ã∗, respectively. (3) holds since outside
failure event F rk , r̃k−1(skt , a

∗) ≥ r(skt , a∗). Furthermore, outside failure event F pk , the real transition
probabilities p(· | s, a∗) ∈ CI(skt , a

∗), and thus

max
P ′∈CI(skt ,a∗)

P ′(· | skt , a∗)V̄ k−1
t+1 = p̃k−1(· | skt , a∗)V̄ k−1

t+1 ≥ pk−1(· | skt , a∗)V̄ k−1
t+1 .

Finally, (4) holds by the induction hypothesis ∀s, a, t, V̄ k−1
t (s) ≥ V ∗t (s) and (5) holds by the

Bellman recursion.
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D.3 Proof of Theorem 8

Theorem 8 (Regret Bound of UCRL2-GP). For any time T ≤ KH , with probability at least 1− δ,
the regret of UCRL2-GP is bounded by Õ

(
HS
√
AT +H2

√
SSA

)
.

Proof. By the optimism of the value (Lemma 14), we have that

K∑
k=1

V ∗1 (sk1)− V πk1 (sk1) ≤
K∑
k=1

V̄ k−1
1 (sk1)− V πk1 (sk1)

≤
K∑
k=1

H∑
t=1

E[V̄ k−1
t (skt )− V̄ kt (skt ) | Fk−1]︸ ︷︷ ︸

(A)

+

K∑
k=1

H∑
t=1

E
[
(r̃k−1 − r)(skt , akt ) + (p̃k−1 − p)(· | skt , akt )T V̄ k−1

t+1 | Fk−1

]
︸ ︷︷ ︸

(B)

. (10)

The first relation is by the optimism of the value, and the second relation is by Lemma 7. We now
bound the two terms outside the failure event.

Bounding (A). By Lemma 34 (Appendix F),

(A) =

K∑
k=1

H∑
t=1

∑
s

V̄ k−1
t (s)− E[V̄ kt (s) | Fk−1].

Outside the failure event, the sum is bounded by 9SH2 ln 3SH
δ′ (see event FDBP ). Thus,

(A) ≤ Õ(SH2).

Bounding (B). Outside failure event F rk the following inequality holds:

K∑
k=1

H∑
t=1

E
[
(r̃k−1 − r)(skt , πk(skt ) | Fk−1

]
.

K∑
k=1

H∑
t=1

E

[√
1

nk−1(skt , πk(skt )) ∨ 1
| Fk−1

]
. Õ(

√
SAT + SAH), (11)

where the second inequality is by Lemma 38. It is worth noting that Lemma 38 is proven by defining
Lk, the set of ’good’ state-action pairs, that contains pairs that were visited sufficiently often in the
past [Dann et al., 2017, Zanette and Brunskill, 2019]. The term we bound is then analyzed separately
for state-action pairs inside and outside Lk. The definition of Lk can be found in Definition 2, and its
properties (including Lemma) are analyzed in Appendix F.1.
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Furthermore, outside the failure event,

K∑
k=1

H∑
t=1

E
[
(p̃k−1 − p)(· | skt , akt )T V̄ k−1

t+1 | Fk−1

]
=

K∑
k=1

H∑
t=1

E
[
(p̃k−1 − p̂k−1)(· | skt , akt )T V̄ k−1

t+1 | Fk−1

]
+ E

[
(p̂k−1 − p)(· | skt , akt )T V̄ k−1

t+1 | Fk−1

]
(1)

≤
K∑
k=1

H∑
t=1

E
[
‖(p̃k−1 − p̂k−1)(· | skt , akt )‖1‖V̄ k−1

t+1 ‖∞ | Fk−1

]
+ E

[
‖(p̂k−1 − p)(· | skt , akt )‖‖V̄ k−1

t+1 ‖∞ | Fk−1

]
(2)

≤ H

K∑
k=1

H∑
t=1

E
[
‖(p̂k−1 − p)(· | skt , akt )‖1 + ‖(p̃k−1 − p̂k−1)(· | skt , akt )‖1 | Fk−1

]
(3)

. H
√
S

K∑
k=1

H∑
t=1

E

[√
1

nk−1(skt , a
k
t ) ∨ 1

| Fk−1

]
(4)

. Õ(HS
√
AT +H2

√
SSA). (12)

Relation (1) holds by Hölder’s inequality. Next, (2) holds since ∀s, t, k, 0 ≤ V̄ kt (s) ≤ H . The lower
bounds holds by Lemma 14 and since V ∗t ≥ 0. The upper bound is since the value can only decrease
by Algorithm 2 and the inequality holds for the initialized value. Finally, (3) holds outside failure
event F p (Lemma 13), and (4) holds by Lemma 38.

Combining (11), (12) we conclude that,

(B) ≤ Õ(HS
√
AT +H2

√
SSA)

Combining the bounds on (A) and (B) in (10) concludes the proof.
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E Proof of Theorem 9

Algorithm 5 EULER with Greedy Policies

1: Initialize: δ, δ′ = δ
9 ,∀s ∈ S, t ∈ [H], V̄ 0

t (s) = H − (t− 1), V 0
t (s) = 0,

2: φ(s, a) =

√
2V̂arp̂k−1(s,a)(V̄

k−1
t+1 ) ln 4SAT

δ′

nk−1(s,a) +
2H ln 4SAT

δ′
3nk−1(s,a) , L = 2

√
ln 4SAT

δ′ ,

3: J =
2H ln 4SAT

δ′
3 , Bv =

√
2 ln 4SAT

δ′ , Bp = H
√

2 ln 4SAT
δ′ .

4: for k = 1, 2, .. do
5: Initialize sk1
6: for t = 1, ..,H do
7: #Update Upper Bound on V ∗
8: for a ∈ A do

9: brk(skt , a) =

√
2V̂ar(R(skt ,a)) ln 4SAT

δ′

nk−1(skt ,a)∨1
+

14 ln 4SAT
δ′

3nk−1(skt ,a)∨1

10: bpvk (skt , a) = φ(p̂k−1(· | skt , a), V̄ k−1
t+1 ) +

4J+Bp
nk−1(skt ,a)∨1

+
Bv‖V̄ k−1

t+1 −V
k−1
t+1 ‖2,p̂√

nk−1(skt ,a)∨1

11: Q̄(skt , a) = r̂k−1(skt , a) + brk(skt , a) + p̂k−1(· | skt , a)T V̄ k−1
t+1 + bpvk (skt , a)

12: end for
13: akt ∈ arg maxa Q̄(skt , a)

14: V̄ kt (skt ) = min
{
V̄ k−1
t (skt ), Q̄(skt , a

k
t )
}

15: #Update Lower Bound on V ∗

16: bpvk (skt , a
k
t ) = φ(p̂k−1(· | skt , akt ), V k−1

t+1 ) +
4J+Bp

nk−1(skt ,a
k
t )∨1

+
Bv‖V̄ k−1

t+1 −V
k−1
t+1 ‖2,p̂√

nk−1(skt ,a
k
t )∨1

17: Q(skt , a
k
t ) = r̂k−1(skt , a

k
t )− brk(skt , a

k
t ) + p̂k−1(· | skt , a)TV k−1

t+1 − b
pv
k (skt , a

k
t )

18: V kt (skt ) = max
{
V k−1
t (skt ), Q(skt , a

k
t )
}

19: #Act by the Greedy Policy
20: Apply akt and observe skt+1.
21: end for
22: Update r̂k, p̂k, nk with all experience gathered in episode.
23: end for

Remark 1. Note that the algorithm does not explicitly define r̃k−1(s, a) and p̃k−1(· | s, a). While we
can directly set r̃k−1(s, a) = r̂k−1(s, a) + brk(skt , a), the optimistic transition kernel is only implicitly
defined as

p̃k−1(· | s, a)T V̄ k−1
t = p̂k−1(· | s, a)T V̄ k−1

t+1 + bpvk (s, a)

Nevertheless, throughout the proofs we are only interested in the above quantity, and thus, except for
some abuse of notation, all of the proofs hold. We use this notation since it is common in previous
works (e.g., Zanette and Brunskill 2019, Dann et al. 2017) and for brevity.

In this section, we provide the full proof of Theorem 9 which establishes a regret bound for EULER
with Greedy Policies (EULER-GP). In Zanette and Brunskill [2019] the authors prove their results
using a general confidence interval, which they refer as admissible confidence interval. In Section E.1
we state there definition and state some useful properties. In Section E.2 we define the set of
failure events and show that with high-probability the failure events do not occur. The set of failure
events includes high-probability events derived using empirical Bernstein inequalities [Maurer and
Pontil, 2009], as well as high probability events on Decreasing Bounded Process, as we establish
in Appendix A. In Section E.3 we analyze the optimism EULER-GP and prove it satisfies the same
optimism and pessimism as in Zanette and Brunskill [2019], outside the failure event for all s, t, k
V kt (s) ≤ V ∗t (s) ≤ V̄ kt (s).

In Section E.4, using the above, we give the full proof of Theorem 9. As for the proof of UCRL2-GP,
we apply the new suggested regret decomposition, based on Lemma 7, and use the new results on
Decreasing Bounded Processes. In section E.5 we modify some results of [Zanette and Brunskill,
2019] to our setting, and utilize the new results to bound each term in the regret decomposition in
section E.6.
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E.1 Properties of Confidence Intervals

In this section, we cite the important properties of the confidence intervals of EULER, as was stated
in [Zanette and Brunskill, 2019]. We start from their definition of an admissible confidence interval:
Definition 1. A confidence interval φ is called admissible for EULER if the following properties
hold:

1. φ(p, V ) takes the following functional form:

φ(p, V ) =
g(p, V )√

nk−1(s, a) ∨ 1
+

j(p, V )

nk−1(s, a) ∨ 1
,

for some functions j(p, V ) ≤ J ∈ R, and

|g(p, V1)− g(p, V2)| ≤ Bv‖V1 − V2‖2,p
If the value function is uniform then:

g(p, α1) = 0, ∀α ∈ R.

2. With probability at least 1− δ′ it holds that:

|(p̂k−1(· | s, a)− p(· | s, a))
T
V ∗t+1| ≤ φ(p(· | s, a), V ∗t+1)

jointly for all timesteps t, episodes k, states s and actions a.

3. With probability at least 1− δ′ it holds that:∣∣g(p̂k−1(· | s, a), V ∗t+1)− g(p(· | s, a), V ∗t+1)
∣∣ ≤ Bp√

nk−1(s, a) ∨ 1

jointly for all episodes k, timesteps t, states s, actions a and some constant Bp that does not
depend on

√
nk−1(s, a) ∨ 1.

An admissible confidence interval enjoys many properties, which are summarized in the following
lemma:
Lemma 15. If φ is admissible for EULER, and under the events that properties 2,3 of Definition 1
hold, then:

1. For any V ∈ RS with ‖V ‖∞ ≤ H , it holds that |g(p, V )| ≤ BvH .

2. For any V ∈ RS ,

|φ(p̂k−1(· | s, a), V )− φ(p(· | s, a), V ∗t+1)| ≤
Bv‖V − V ∗t+1‖2,p̂√
nk−1(s, a) ∨ 1

+
Bp + 4J

nk−1(s, a) ∨ 1

3. Let bpvk be the transition bonus, which is defined as

bpvk (p̂k−1(· | s, a), V1, V2) = φ(p̂k−1(· | s, a), V1) +
Bp + 4J

nk−1(s, a) ∨ 1
+
Bv‖V2 − V1‖2,p̂√
nk−1(s, a) ∨ 1

.

For any V1, V2 ∈ RS such that V1 ≤ V ∗ ≤ V2 pointwise, it holds that

bpvk (p̂k−1(· | s, a), V1, V2) ≥ φ(p(· | s, a), V ∗)

bpvk (p̂k−1(· | s, a), V2, V1) ≥ φ(p(· | s, a), V ∗)

Proof. The first property is due to Corollary 1.3 of [Zanette and Brunskill, 2019], and the second one
is Lemma 4 of their paper. The third property is equivalent to Proposition 3 in [Zanette and Brunskill,
2019], but since we allow general value functions V1, V2, we write the full proof for completeness.
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we start by proving that if V1 ≤ V ∗ ≤ V2, then for any transition probability vector p,

‖V2 − V ∗‖2,p ≤ ‖V2 − V1‖2,p
‖V1 − V ∗‖2,p ≤ ‖V2 − V1‖2,p (13)

To this end, notice that ∀s

0 ≤ V2(s)− V ∗(s) ≤ V2(s)− V1(s) ,

and since all of the quantities are non-negative, it also holds that

0 ≤ (V2(s)− V ∗(s))2 ≤ (V2(s)− V1(s))
2
.

The inequality holds pointwise, and therefore holds for any linear combination with non-negative
constants:

0 ≤
∑
s

p(s)(V2(s)− V ∗(s))2 ≤
∑
s

p(s)(V2(s)− V1(s))
2
.

Taking the root of this inequality yields Inequality (13). Substituting in the definition of
bpvk (p̂k−1(· | s, a), V2, V1) yields:

bpvk (p̂k−1(· | s, a), V2, V1) = φ(p̂k−1(· | s, a), V2) +
Bp + 4J

nk−1(s, a) ∨ 1
+
Bv‖V2 − V1‖2,p̂√
nk−1(s, a) ∨ 1

≥ φ(p̂k−1(· | s, a), V2) +
Bp + 4J

nk−1(s, a) ∨ 1
+
Bv‖V2 − V ∗‖2,p̂√
nk−1(s, a) ∨ 1

≥ φ(p(· | s, a), V ∗)

The first inequality is due to (13), and the second is due to the second part of the Lemma. The result
for bpvk (p̂k−1(· | s, a), V1, V2) can be proven similarly, and thus omitted.

Another property that will be useful throughout the proof is the following upper bound on
bpvk (p̂k−1(· | s, a), V1, V2)

Lemma 16. For any V1, V2 such that for all s, V1(s), V2(s) ∈ [0, H]

bpvk (p̂k−1(· | s, a), V2, V1) ≤ 2BvH + 5J +Bp√
nk−1(s, a) ∨ 1

,

Proof. We bound bpvk (p̂k−1(· | s, a), V2, V1) as follows:

bpvk (p̂k−1(· | s, a), V2, V1) = φ(p̂k−1(· | s, a), V2) +
Bp + 4J

nk−1(s, a) ∨ 1
+
Bv‖V2 − V1‖2,p̂√
nk−1(s, a) ∨ 1

(1)

≤ g(p, V )√
nk−1(s, a) ∨ 1

+
j(p, V )

nk−1(s, a) ∨ 1
+

Bp + 4J

nk−1(s, a) ∨ 1
+

BvH√
nk−1(s, a) ∨ 1

(2)

≤ BvH√
nk−1(s, a) ∨ 1

+
J

nk−1(s, a) ∨ 1
+

Bp + 4J

nk−1(s, a) ∨ 1
+

BvH√
nk−1(s, a) ∨ 1

(3)

≤ 2BvH + 5J +Bp√
nk−1(s, a) ∨ 1

In (1), we substituted φ and bounded ‖V2 − V1‖2,p̂ ≤ H . (2) is by Lemma 15 and Definition 1, and
(3) is by noting that n ≥

√
n for n ≥ 1.
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We end this section by stating that Bernstein’s inequality induces an admissible φ. The proof can be
found in [Zanette and Brunskill, 2019], Proposition 2.
Lemma 17. Bernstein inequality induces an admissible confidence interval with g(p, V ) =√

2Vars′∼p(·|s,a)V ln 2SAT
δ′ and j(p, V ) = 2H ln 2SAT

δ′ , or explicitly:

φ(p(· | s, a), V ) =

√
2Vars′∼p(·|s,a)V ln 2SAT

δ′

nk−1(s, a) ∨ 1
+

2H ln 2SAT
δ′

3nk−1(s, a) ∨ 1

with the constants J =
2H ln 2SAT

δ′
3 = Õ(H), Bv =

√
2 ln 2SAT

δ′ = Õ(1) and Bp =

H
√

2 ln 2SAT
δ′ = Õ(H). Using lemma 16, it also implies that for any V1, V2 such that for all

s, V1(s), V2(s) ∈ [0, H], it holds that bpvk (p̂k−1(· | s, a), V2, V1) . Õ(H).

E.2 Failure Events

E.2.1 Failure Events of EULER

We start by recalling the failure events as stated in [Zanette and Brunskill, 2019], Appendix D. These
events are high probability bounds that are based on the Empirical Bernstein Inequality [Maurer and
Pontil, 2009] and leads to the bonus terms of the algorithm. Importantly, these events depend on the
state-action visitation counter, and, thus, are indifferent to the greedy exploration scheme which we
consider.

Define the following failure events.

F r =

∃s, a, k : |r(s, a)− r̂k−1(s, a)| ≥

√
2V̂ark−1R(s, a) ln 4SAT

δ′

nk−1(s, a) ∨ 1
+

14 ln 4SAT
δ′

3(nk−1(s, a) ∨ 1)


F vr =

∃s, a, k :

∣∣∣∣√V̂ark−1 R(s, a)−
√

Var R(s, a)

∣∣∣∣ ≥
√

4 ln 2SAT
δ′

nk−1(s, a) ∨ 1


F pv =

∃s, a, t, k :
∣∣∣(p̂k−1(· | s, a)− p(· | s, a))TV ∗t+1

∣∣∣ ≥
√

2Vars′∼p(·|s,a)V ∗t+1 ln 4SAT
δ′

nk−1(s, a) ∨ 1
+

2H ln 2SAT
δ′

3(nk−1(s, a) ∨ 1)


F pv2 =

∃s, a, t, k : |‖V ∗t ‖2,p̂ − ‖V ∗t ‖2,p| ≥ H

√
4 ln 2SAT

δ′

nk−1(s, a) ∨ 1


F ps =

∃s, s′, a, k : |p̂k−1(s′ | s, a)− pk−1(s′ | s, a)| ≥

√
p(s′ | s, a)(1− p(s′ | s, a)) ln 2TS2A

δ′

nk−1(s, a) ∨ 1
+

2 ln 2TS2A
δ′

3(nk−1(s, a) ∨ 1)


F pn1 =

∃s, a, k : ‖p̂k−1(· | s, a)− p(· | s, a)‖1 ≥

√
4S ln 3SAT

δ′

nk−1(s, a) ∨ 1


FNk =

∃s, a, k : nk−1(s, a) ≤ 1

2

∑
j<k

wj(s, a)−H ln
SAH

δ′

.

where wj(s, a) :=
∑H
t=1 wtj(s, a). In [Zanette and Brunskill, 2019], Appendix D, it is shown these

events hold individually with probability at most δ′.
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E.2.2 Failure Events of Decreasing Bounded Processes

In this section, we add another failure events to the total set of failure events. This set of failure event
is not present in previous analysis of regret in optimistic RL algorithms (e.g., in Azar et al. 2017,
Dann et al. 2017, 2018, Zanette and Brunskill 2019).

We define the following failure events.

F vDP =

{
∃K ≥ 0 :

K∑
k=1

H∑
t=1

∑
s

V̄ k−1
t (s)− E[V̄ kt (s) | Fk−1] ≥ 9SH2 ln

3SH

δ′

}

F vsDP =

{
∃K ≥ 0 :

K∑
k=1

H∑
t=1

∑
s

(V̄ k−1
t (s)− V k−1

t (s))2 − E[(V̄ kt (s)− V kt (s))2 | Fk−1] ≥ 9SH3 ln
3SH

δ′

}

In this section, we prove that both of these failure events occur with low probability δ′.

We start by proving that
{
V̄ kt (s)

}
is a decreasing processes, independently to the previously defined

failure events. We continue and prove that
{
V̄ kt (s)− V kt (s)

}2

starts as a decreasing process and
then becomes and increasing process.
Lemma 18. The following claims hold.

1. For every s, t,
{
V̄ kt (s)

}
k

is a decreasing process and is bounded by [0, H − (t− 1)].

2. For every s, t,
{
V kt (s)

}
k

is an increasing process and is bounded by [0, H − (t− 1)].

3. For every s, t,
{(

V̄ kt (s)− V kt (s)
)2
}
k

starts as a decreasing process bounded by

[0, (H − (t− 1)2)] and then, possibly, becomes an increasing process.

Proof. We start by proving the first claim.The following holds. By the initialization of the algorithm
∀s, t, V̄ 0

t (s) = H − (t − 1). By construction of the update rule V̄ kt (s) can only decrease (see
Line 14).

We now prove that for every s, t, k,
{
V̄ kt (s)

}
k

is bounded from below by 0. By assumption
r(s, a) ∈ [0, 1], and thus r̂k−1(s, a) ≥ 0 a.s. . By induction, this implies V̄ k−1

t ≥ 0. The base case
holds by initialization, and the induction step by the fact r̂k−1 ≥ 0 and that the bonus terms are
positive.

Proving the second claim is done with similar argument, while using r̂k−1(s, a) ≤ 1 a.s.. By the
update rule (see Line 18),

{
V kt (s)

}
k

is an Increasing Bounded Process in [0, H − (t− 1)] (similar
definition as in 1 with opposite inequality).

To prove the third claim we combine the two claims. Thus,
{(

V̄ kt (s)− V kt (s)
)2
}
k

starts as a

decreasing process. Then, if the upper and lower value function crosses one another, the process
becomes an increasing process.

Remark 2. Notice that the upper bound and lower bound of the optimal value crosses one another
only inside the failure events defined in Section E.2.1). Yet, the analysis in the following will be
indifferent to whether the failure event takes place or not.
Lemma 19. Pr

{
F vDP

}
≤ δ′.

Proof. We wish to bound

Pr{∃K ≥ 0 :

K∑
k=1

H∑
t=1

∑
s

V̄ k−1
h (s)− E[V̄ kh (s) | Fk−1] ≥ 9SH2 ln

3SH

δ′
}.

According to Lemma 18, for every s, t,
{
V̄ kt (s)

}
k≥1

is a decreasing process. Applying Lemma 11
(Appendix A) which bounds the sum of Decreasing Bounded Processes we conclude the proof.
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Lemma 20. Pr
{
F vsDP

}
≤ δ′.

Proof. We wish to bound

Pr

{
∃K ≥ 0 :

K∑
k=1

H∑
t=1

∑
s

(V̄ k−1
t (s)− V k−1

t (s))2 − E[(V̄ kt (s)− V kt (s))2 | Fk−1] ≥ 9SH3 ln
3SH

δ′

}
.

Consider a fixed s, t. Furthermore, define the following event

Ak−1 =
{
V̄ k−1
t (s) > V k−1

t (s)
}
.

We have that
K∑
k=1

(V̄ k−1
t (s)− V k−1

t (s))2 − E[(V̄ kt (s)− V kt (s))2 | Fk−1]

≤
K∑
k=1

(
(V̄ k−1
t (s)− V k−1

t (s))2 − E[(V̄ kt (s)− V kt (s))2 | Fk−1]
)
1{Ak−1}

=

K∑
k=1

(V̄ k−1
t (s)− V k−1

t (s))2
1{Ak−1} − E[(V̄ kt (s)− V kt (s))2

1{Ak−1} | Fk−1]

=

K∑
k=1

(V̄ k−1
t (s)− V k−1

t (s))2
1{Ak−1} − E[(V̄ kt (s)− V kt (s))2

1{Ak} | Fk−1]

−
K∑
k=1

E[(V̄ kt (s)− V kt (s))2(1{Ak−1} − 1{Ak}) | Fk−1]

≤
K∑
k=1

(V̄ k−1
t (s)− V k−1

t (s))2
1{Ak−1} − E[(V̄ kt (s)− V kt (s))2

1{Ak} | Fk−1].

The first relation holds by definition, if the event Ak−1 is false then the term is negative, since
the process becomes increasing, and only decreases the sum. The second relation holds since
1{Ak−1} is FK−1 measureable. The forth relation holds since (V̄ k−1

t (s) − V k−1
t (s))2 ≥ 0 and

(1{Ak−1} − 1{Ak}) ≥ 0. Where the latter holds since 1{Ak} = 1→ 1{Ak−1} = 1, i.e.,

V̄ kt (s) > V kt (s) → V̄ k−1
t (s) > V k−1

t (s).

Differently put, if at the kth episode V̄ kt (s) > V kt (s) then it also holds for the k − 1th episode,
V̄ k−1
t (s) > V kt (s− 1), as the process

{
V̄ kt (s)

}
k≥0

is increasing and
{
V kt (s)

}
k≥0

is decreasing by

Lemma 18.

Furthermore, by Lemma 18,
{

(V̄ kt (s)− V kt (s))2
1{Ak}

}
k

is a Decreasing Bounded Process in

[0, H2]. Initially, it decreases since 1{Ak}k = 1 and
{

(V̄ kt (s)− V kt (s))2
}

is initially decreasing.

Furthermore, when 1{Ak} = 0 it cannot increase. Lastly, (V̄ 0
t (s)− V 0

t (s))
2
1{A0} ≤ H2.

Applying Theorem 3 we get that for a fixed s, t, with probability δ′

SH

K∑
k=1

(V̄ k−1
t (s)− V kt (s))2 − E[(V̄ kt (s)− V k−1

t (s))2 | Fk−1] ≥ 9SH3 ln
3SH

δ′
.

By applying Lemma 11 (Appendix A), which extends this bound to the sum on s, t we conclude the
proof.

Lemma 21. (All Failure Events) If δ′ = δ
9 , then

F := F r
⋃
F vr

⋃
F pr

⋃
F pv

⋃
F pv2

⋃
F ps

⋃
F pn1

⋃
F vDP

⋃
F vsDP

holds with probability at most δ. If the event F does not hold we say the algorithm is outside the
failure event.
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Proof. Applying a union bound on all events, which hold individually with probability at most δ′
yield the result.

E.3 EULER with Greedy Policies is Optimistic

Our algorithm modifies the exploration bonus of [Zanette and Brunskill, 2019] by using V̄k−1, V k−1

instead of V̄k, V k, and uses the following bonus (with some abuse of notation):

bpvk (s, a) = bpvk
(
p̂k−1(· | s, a), V̄k−1, V k−1

)
.

We now show that the modified bonus retains the optimism of the algorithm:
Lemma 22. Outside the failure event of the estimation (see Lemma 21), if the confidence interval is
admissible, then the relation

V k−1
t ≤ V ∗t ≤ V̄ k−1

t

holds pointwise for all timesteps t and episodes k.

Proof. We follow the proof of [Zanette and Brunskill, 2019], Proposition 4, and prove by induction.
We first prove that for all k, V ∗t ≤ V̄ kt .

The claim trivially holds for k = 0, due to the initialization of the value. Suppose that the result holds
for any state s and timestep t in the k − 1th episode. If

r̂k−1(skt , a
k
t ) + brk−1(skt , a

k
t ) + p̂k−1(· | s, akt )T V̄ k−1

t+1 + bpvk−1(skt , a
k
t ) ≥ V̄ k−1

t (st) ,

then by the induction’s assumption we are done. Otherwise, denote the optimal action in the real
MDP at state skt by a∗t . The value is updated as follows:

V̄k(skt ) = r̂k−1(skt , a
k
t ) + brk−1(skt , a

k
t ) + p̂k−1(· | s, akt )T V̄ k−1

t+1 + bpvk−1(skt , a
k
t )

≥ r̂k−1(skt a
∗
t ) + brk−1(skt , a

∗
t ) + p̂k−1(· | s, a∗t )T V̄ k−1

t+1 + bpvk−1(skt , a
∗
t )

≥ r(skt , a∗t ) + p̂k−1(· | s, a∗t )T V̄ k−1
t+1 + bpvk−1(skt , a

∗
t )

The first inequality is since akt is the action that maximizes the greedy value and the second inequality
is due to the optimism of the reward when the reward bonus is added, outside the failure events
(Lemma 21). Next, using the inductive hypothesis (V ∗t+1 ≤ V̄ k−1

t+1 element-wise), we get

V̄ kt (skt ) ≥ r(skt , a∗t ) + p̂k−1(· | s, a∗t )TV ∗t+1 + bpvk−1(skt , a
∗
t )

We now apply Lemma 15, which implies that

bpvk−1(skt , a
∗
t ) ≥ φ(p(· | skt , a∗t ), V ∗) ,

and thus

V̄ kt (skt ) ≥ r(skt , a∗t ) + p̂k−1(· | s, a∗t )TV ∗t+1 + φ(p(· | skt , a∗t ), v∗)

Finally, since φ is admissible, we get the desired result from property (2) of Definition 1:

V̄ kt (skt ) ≥ r(skt , a∗t ) + p(· | s, a∗t )TV ∗t+1 = V ∗t+1(skt )

The proof for V k−1
t ≤ V ∗t is almost identical, and thus omitted from this paper.
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E.4 Proof of Theorem 9

Proof. Throughout the proof, we assume that we are outside the failure events that were defined in
Section E.2, which happens with probability of at least 1− δ (Lemma 21). Specifically, it implies
that the value function is optimistic, namely V ∗1 (s) ≤ V k1 (s) (Lemma 22), and we can bound the
regret by,

Regret(K) =

K∑
k=1

V ∗1 (sk1)− V πk1 (sk1) ≤
K∑
k=1

V̄ k−1
1 (sk1)− V πk1 (sk1).

Next, by applying Lemma 7 the following bound holds,

≤
K∑
k=1

H∑
t=1

E[V̄ k−1
t (skt )− V̄ kt (skt ) | Fk−1]︸ ︷︷ ︸

(A)

+

K∑
k=1

H∑
t=1

E
[
(r̃k−1 − r)(skt , akt ) + (p̃k−1 − p)(· | skt , akt )T V̄ k−1

t+1 | Fk−1

]
︸ ︷︷ ︸

(B)

. (14)

The regret is thus upper bounded by two terms. The first term (A) also appears in the analysis of
RTDP (Theorem 4). Specifically, by Lemma 34 (Appendix F), we can express this term as a sum of
SH Decreasing Bounded Process in [0, H]:

(A) =
∑
s

H∑
t=1

K∑
k=1

V̄ k−1
t (s)− E[V̄ kt (s) | Fk−1].

Bounding (A). Outside failure event F vDP , this term is bounded by 9SH2 ln 3SH
δ′ . Thus,

(A) . Õ(SH2)

Bounding (B). The term (B) is almost the same term that is bounded in [Zanette and Brunskill, 2019],
and its presence is common in recent literature on exploration in RL (e.g., Dann et al. 2017, 2018,
Zanette and Brunskill 2019). The only difference between (B) and the term bounded in [Zanette
and Brunskill, 2019] is the presence of V̄ k−1, the value before the update, instead of V̄ k, the value
after applying the update rule. This is since existing algorithms perform planning from the end of an
episode and backwards. Thus, when choosing an action at some timestep t, these algorithms have
access to the updated value of step t+ 1. In contrast, we avoid the planning stage, and therefore must
rely on the previous value V̄ k−1. We will later see that we can overcome this without affecting the
regret.

Next, let Lk be the set of ’good’ state-action pairs, which is defined in Definition 2 and analyzed
thoroughly in Appendix F.1. We now decompose the sum of (B) to state actions in and outside Lk.
We also note that except for the skt , a

k
t , all of the variables in (B) are Fk−1 measurable, which allows

us to explicitly write the conditional expectation using wtk(s, a), as follows:
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(B) =

K∑
k=1

H∑
t=1

wtk(s, a)
(

(r̃k−1 − r)(s, a) + (p̃k−1 − p)(· | s, a)T V̄ k−1
t+1

)
=

K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)
(

(r̃k−1 − r)(s, a) + (p̃k−1 − p)(· | s, a)T V̄ k−1
t+1

)

+

K∑
k=1

H∑
t=1

∑
(s,a)/∈Lk

wtk(s, a)
(

(r̃k−1 − r)(s, a) + (p̃k−1 − p)(· | s, a)T V̄ k−1
t+1

)
(1)

.
K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)
(

(r̃k−1 − r)(s, a) + (p̃k−1 − p)(· | s, a)T V̄ k−1
t+1

)

+H

K∑
k=1

H∑
t=1

∑
(s,a)/∈Lk

wtk(s, a)

(2)

.
K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)
(

(r̃k−1 − r)(s, a) + (p̃k−1 − p)(· | s, a)T V̄ k−1
t+1

)
+ Õ(SAH2)

For (1), we bound (r̃k−1 − r)(s, a) ≤ r̃k−1(s, a) and (p̃k−1 − p)(· | s, a)T V̄ k−1
t+1 ≤ p̃k−1(· |

s, a)T V̄ k−1
t+1 . The estimated reward is in [0, 1] and it’s bonus is at most Õ(1), and thus the optimistic

reward r̃k−1(s, a) is Õ(1). Due to Lemma 22, the optimistic value V̄ k−1
t+1 ≤ H , and thus p̂k−1(· |

s, a)T ≤ H . The transition bonus is bpvk (s, a) = Õ(H) due to Lemma 17, which implies that the
second term is Õ(H). Together, both terms are Õ(H). (2) is due to Lemma 36 of Appendix F.1.

As in [Zanette and Brunskill, 2019], we continue the decomposition of the remaining term by adding
and subtracting cross-terms that depends on p̂k−1(· | s, a)

K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)
(
(r̃k−1 − r)(s, a) + (p̃k−1 − p)(· | s, a)T V̄ k−1

t+1

)
=

K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)(r̃k−1 − r)(s, a)︸ ︷︷ ︸
(1)

+wtk(s, a)(p̃k−1 − p̂k−1)T (· | s, a)V̄ k−1
t+1︸ ︷︷ ︸

(2)

+ wtk(s, a)(p̂k−1 − p)(· | s, a)TV ∗t+1︸ ︷︷ ︸
(3)

+wtk(s, a)(p̂k−1 − p)(· | s, a)T (V̄ k−1
t+1 − V ∗t+1)︸ ︷︷ ︸

(4)

. (15)

Recall that we use Bernstein’s inequality as the admissible confidence interval. Thus, by Lemma 26,

it holds that J =
2H ln 2SAT

δ′
3 = Õ(H), Bv =

√
2 ln 2SAT

δ′ = Õ(1) and Bp = H
√

2 ln 2SAT
δ′ =

Õ(H). Also let F,D be the constants defined in Lemma 23, and specifically

F := 2L+ LH
√
S + 6BvH = Õ

(
H
√
S
)

D := 18J + 4Bp + 4L2 = Õ(H)

Substituting these constants, terms (1)− (4) are bounded in Lemmas 30, 33, 31 and 32 respectively
as follows:

(1) .
√
C∗rSAT + SA

(2) . min
{√

C∗SAT + S
√
SAH2 + SAH

5
2 ,
√
CπSAT + S

√
SAH

5
2

}
(3) . min

{√
C∗SAT + SAH,

√
CπSAT + S

√
SAH

5
2

}
(4) . S2AH2 + S

√
SAH

5
2
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Thus, term (B) of the regret is bounded by:

(B) . min
{√

C∗SAT ,
√
CπSAT

}
+
√
C∗rSAT + S2AH2 + S

√
SAH

5
2

.
√

min{C∗ + C∗r ,Cπ + C∗r}SAT + S
√
SAH2

(√
S +
√
H
)

Finally, using Lemma 28, we can bound this term by

(B) .

√
min

{
Q∗,
G2

H

}
SAT + S

√
SAH2

(√
S +
√
H
)

and noticing that (A) is negligible compared to (B), we get

Regret(K) .

√
min

{
Q∗,
G2

H

}
SAT + S

√
SAH2

(√
S +
√
H
)

To derive the problem independent bound, we use the fact that the maximal reward in a trajectory is
bounded by G ≤ H , which yields

Regret(K) .
√
HSAT + S

√
SAH2

(√
S +
√
H
)

E.5 Cumulative Squared Value Difference

In this section, we aim to bound the expected cumulative squared value difference. Specifically, we
are interested in a bound for the following quantities:

K∑
k=1

H∑
t=1

∑
s,a

wtk(s, a)p(· | s, a)T
(
V̄ k−1
t+1 − V

k−1
t+1

)2

. (16)

K∑
k=1

H∑
t=1

∑
s,a

wtk(s, a)p(· | s, a)T
(
V̄ k−1
t+1 − V

πk
t+1

)2
(17)

The first quantity allows us to replace Lemma 12 [Zanette and Brunskill, 2019], and the second
allows us to prove Lemma 14 of the same paper. Together, they enable us to use the same analysis
of [Zanette and Brunskill, 2019]. The final results are stated in Lemmas 26 and 27 by the end of
this section. Most of the section will focus on bounding (16), which requires a much more delicate
analysis than the bound of [Zanette and Brunskill, 2019].

In order to bound (16), we start by bounding
(
V̄ k−1
t+1 − V

k−1
t+1

)2

in the following lemma, which
corresponds to Proposition 5 of [Zanette and Brunskill, 2019]:

Lemma 23. Outside the failure event, the following holds:

V̄ kt (skt )− V kt (skt ) ≤ E[V̄ k−1
t+1 (skt+1)− V k−1

t+1 (skt+1) | Fk−1, s
k
t ] + min

{
F +D√

nk−1(skt , a
k
t ) ∨ 1

, H

}
,

where F := 2L+ LH
√
S + 6BvH, D := 18J + 4Bp + 4L2, the constants J,Bv, Bp are defined

in Definition 1 and L := 2
√

ln 4SAT
δ′ .

Proof. The proof is similar to [Zanette and Brunskill, 2019] Proposition 5, which is presented here
with the needed adaptation.
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If the state skt is encountered in the kth episode at the tth time-step, then V̄ kt (skt ), V kt (skt ) will be
updated according to the update rule. Thus,

V̄ kt (skt ) ≤ r̂k−1(skt , a
k
t ) + brk−1(skt , a

k
t ) + p̂k−1(· | skt , akt )T V̄ k−1

t+1 + bpvk (p̂k−1(· | skt , akt ), V̄ k−1
t+1 , V

k−1
t+1 )

V kt (skt ) ≥ r̂k−1(skt , a
k
t )− brk−1(skt , a

k
t ) + p̂k−1(· | skt , akt )TV k−1

t+1 − b
pv
k (p̂k−1(· | skt , akt ), V k−1

t+1 , V̄
k−1
t+1 ).

Subtraction yields:

V̄ kt (skt )− V kt (skt ) ≤ 2brk−1(skt , a
k
t ) + p̂k−1(· | skt , akt )T (V̄ k−1

t+1 − V
k−1
t+1 )

+ bpvk (p̂k−1(· | skt , akt ), V̄ k−1
t+1 , V

k−1
t+1 ) + bpvk (p̂k−1(· | skt , akt ), V k−1

t+1 , V̄
k−1
t+1 ).

Next, we substitute the definition of the confidence bonus, which yields

V̄ kt (skt )− V kt (skt ) ≤2brk−1(skt , a
k
t ) + p̂k−1(· | skt , a)T (V̄ k−1

t+1 − V
k−1
t+1 )

+ φ(p̂k−1(· | skt , akt ), V̄ k−1
t+1 ) +

4J +Bp
nk−1(skt , a

k
t ) ∨ 1

+
Bv‖V̄ k−1

t+1 − V
k−1
t+1 ‖2,p̂√

nk−1(skt , a
k
t ) ∨ 1

+ φ(p̂k−1(· | skt , akt ), V k−1
t+1 ) +

4J +Bp
nk−1(skt , a

k
t ) ∨ 1

+
Bv‖V̄ k−1

t+1 − V
k−1
t+1 ‖2,p̂√

nk−1(skt , a
k
t ) ∨ 1

.

Using Lemma 15, property (2), and Inequalities (13), we get,

V̄ kt (skt )− V kt (skt ) ≤ 2brk−1(skt , a
k
t ) + p̂k−1(· | skt , a)T (V̄ k−1

t+1 − V
k−1
t+1 )

+ 2φ(p(· | skt , akt ), V ∗t+1) + 4

(
4J +Bp

nk−1(skt , a
k
t ) ∨ 1

+
Bv‖V̄ k−1

t+1 − V
k−1
t+1 ‖2,p̂√

nk−1(skt , a
k
t ) ∨ 1

)
= 2brk−1(skt , a

k
t ) + p(· | skt , a)T (V̄ k−1

t+1 − V
k−1
t+1 )

+ (p̂k−1(· | skt , akt )− p(· | skt , akt ))T (V̄ k−1
t+1 − V

k−1
t+1 )

+ 2
g(p(· | skt , akt ), V ∗t+1)√
nk−1(skt , a

k
t ) ∨ 1

+ 2
J

nk−1(skt , a
k
t ) ∨ 1

+ 4

(
4J +Bp

nk−1(skt , a
k
t ) ∨ 1

+
Bv‖V̄ k−1

t+1 − V
k−1
t+1 ‖2,p̂√

nk−1(skt , a
k
t ) ∨ 1

)
,

where in the last relation we substituted φ and added and subtracted p(· | skt , a)T (V̄ k−1
t+1 − V

k−1
t+1 ).

By Lemma 18, we know that V̄ k−1
t+1 , V

k−1
t+1 ∈ [0, H]. Thus,

∥∥∥V̄ k−1
t+1 − V

k−1
t+1

∥∥∥ ≤ H , which also

implies that ‖V̄ k−1
t+1 − V

k−1
t+1 ‖2,p̂ ≤ H . In addition, using Hölder’s inequality, and outside failure

event F pn1, we can bound

(p̂k−1(· | skt , akt )− p(· | skt , akt ))T (V̄ k−1
t+1 − V

k−1
t+1 )

≤
∥∥p̂k−1(· | skt , akt )− p(· | skt , akt )

∥∥
1

∥∥∥V̄ k−1
t+1 − V

k−1
t+1

∥∥∥
∞

≤ H

√
4S ln 2SAT

δ′

nk−1(s, a) ∨ 1
= LH

√
S

nk−1(skt , a
k
t ) ∨ 1

Substituting both of these bounds, we get
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V̄ kt (skt )− V kt (skt ) ≤ 2brk−1(skt , a
k
t ) + p(· | skt , a)T (V̄ k−1

t+1 − V
k−1
t+1 ) + LH

√
S

nk−1(skt , a
k
t ) ∨ 1

+ 2
g(p(· | skt , akt ), V ∗t+1)√
nk−1(skt , a

k
t ) ∨ 1

+ 2
J

nk−1(skt , a
k
t ) ∨ 1

+ 4

(
4J +Bp

nk−1(skt , a
k
t ) ∨ 1

+
BvH√

nk−1(skt , a
k
t ) ∨ 1

)
(18)

We now bound the remaining terms. First, using Lemma 15, property (1), we can bound g(p, V ∗t+1) ≤
BvH . Second, notice that

p(· | skt , a))T (V̄ k−1
t+1 − V

k−1
t+1 ) =

∑
skt+1

p(skt+1 | skt , a))T (V̄ k−1
t+1 (skt+1)− V k−1

t+1 (skt+1))

= E
[
V̄ k−1
t+1 (skt+1)− V k−1

t+1 (skt+1) | Fk−1, s
k
t

]
.

Finally, outside failure event F r, the reward bonus can be bounded by

brk(skt , a
k
t ) =

√
2V̂ar(R(skt , a

k
t )) ln 4SAT

δ′

nk−1(skt , a
k
t ) ∨ 1

+
14 ln 4SAT

δ′

3nk−1(skt , a
k
t ) ∨ 1

≤ L√
nk−1(skt , a

k
t ) ∨ 1

+
2L2

nk−1(skt , a
k
t ) ∨ 1

where we used the fact that for variables in [0, 1], V̂ar(R(skt , a
k
t )) ≤ 1.

Putting it all together in (18), we get

V̄ kt (skt )− V kt (skt ) ≤ E
[
V̄ k−1
t+1 (skt+1)− V k−1

t+1 (skt+1) | Fk−1, s
k
t

]
+

2L+ LH
√
S + 6BvH√

nk−1(skt , a
k
t ) ∨ 1

+
18J + 4Bp + 4L2

nk−1(skt , a
k
t ) ∨ 1

≤ E
[
V̄ k−1
t+1 (skt+1)− V k−1

t+1 (skt+1) | Fk−1, s
k
t

]
+

F +D

nk−1(skt , a
k
t ) ∨ 1

where in the last relation we substituted F and D and used
√
n ≤ n for n ≥ 1.

To finalize the proof note that outside the failure event, V kt (s) ≤ V̄ kt (s), and the first term is therefore
positive. combined with V̄ kt (skt )− V kt (skt ) ≤ H yields

V̄ kt (skt )− V kt (skt ) ≤ min

{
E
[
V̄ k−1
t+1 (skt+1)− V k−1

t+1 (skt+1) | Fk−1, s
k
t

]
+

F +D√
nk−1(skt , a

k
t ) ∨ 1

, H

}

≤ E
[
V̄ k−1
t+1 (skt+1)− V k−1

t+1 (skt+1) | Fk−1, s
k
t

]
+ min

{
F +D√

nk−1(skt , a
k
t ) ∨ 1

, H

}
.

Remark 3. See that the first term in Equation Lemma 23 does not appear in the analysis of [Zanette
and Brunskill, 2019]. Its existence is a direct consequence of the fact we use 1-step greedy policies,
and not solving the approximate model at the beginning of each episode. Remarkably, we will later
see that this term is comparable to the other previously existing terms.
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We now move to bounding the expected squared value difference, as formally stated in as follows:

Lemma 24. Let ∆k
t :=

(
V̄ k−1
t (skt )− V k−1

t (skt )
)
−
(
V̄ kt (skt )− V kt (skt )

)
. Then, outside the failure

event,

E[
(
V̄ k−1
t (skt )− V k−1

t (skt )
)2

| Fk−1]

≤ 2H

H−1∑
t′=t

E
[
∆k
t′(s

k
t′)

2
+ min

{
(F +D)2

nk−1(skt′ , a
k
t′) ∨ 1

, H2

}
| Fk−1

]
,

where F +D is defined in Lemma 23.

Proof. Before proving the bound, we express the bound of Lemma 23 in terms of ∆k
t . For brevity,

we denote Yk(s, a) := min

{
F+D√
nk(s,a)∨1

, H

}
, which is Fk measurable.

Assume the state skt is visited in the kth episode at the tth time-step. Then, by Lemma 23,

V̄ k−1
t (skt )− V k−1

6 (skt ) = ∆k
t + V̄ kt (skt )− V kt (skt )

≤ ∆k
t + Yk−1(skt , a

k
t ) + E

[
V̄ k−1
t+1 (skt+1)− V k−1

t+1 (skt+1) | Fk−1, s
k
t

]
︸ ︷︷ ︸

(∗)

. (19)

Next, by substituting Equation (19) in (*), we get

(∗) ≤ E
[
∆k
t+1 + Yk−1(skt+1, a

k
t+1) + E

[
V̄ k−1
t+2 (skt+2)− V k−1

t+2 (skt+2) | Fk−1, s
k
t+1

]
| Fk−1, s

k
t

]
= E

[
∆k
t+1 + Yk−1(skt+1, a

k
t+1) + V̄ k−1

t+2 (skt+2)− V k−1
t+2 (skt+2) | Fk−1, s

k
t

]
,

where the last relation holds by the tower property.

Iterating using this technique until t = H , and using V̄H+1 = V H+1 = 0, we conclude the following
bound:

V̄ k−1
t (skt )− V k−1

t (skt ) ≤
H∑
t′=t

E[∆k
t′(s

k
t′) + Yk−1(skt′ , a

k
t′) | Fk−1, s

k
t ],

With this bound at hand, we can derive the desired result as follows:(
V̄ k−1
t (skt )− V k−1

t (skt )
)2

≤

(
H∑
t′=t

E
[
∆k
t′(s

k
t′) + Yk−1(skt′ , a

k
t′) | Fk−1, s

k
t

])2

(CS)

≤ (H − t+ 1)

H∑
t′=t

E
[
∆k
t′(s

k
t′) + Yk−1(skt′ , a

k
t′) | Fk−1, s

k
t

]2
(J)

≤ (H − t+ 1)

H∑
t′=t

E
[(

∆k
t′(s

k
t′) + Yk−1(skt′ , a

k
t′)
)2 | Fk−1, s

k
t

]
(CS)

≤ 2(H − t+ 1)

H∑
t′=t

E
[
∆k
t′(s

k
t′)

2 + Y 2
k−1(skt′ , a

k
t′) | Fk−1, s

k
t

]
≤ 2H

H∑
t′=t

E
[
∆k
t′(s

k
t′)

2 + Y 2
k−1(skt′ , a

k
t′) | Fk−1, s

k
t

]
(CS) denotes Cauchy-Schwarz inequality, and specifically (

∑n
i=1 ai)

2 ≤ n
∑n
i=1 a

2
i . (J) is Jensen’s

inequality. Taking the conditional expectation E[· | Fk−1], using the tower property and substituting
Yk(s, a) gives the desired result.
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After bounding the expected squared value difference in a single state, we now move to bounding its
sum over different time-steps and episode. The main difficulty is in bounding the sum over the first
term, which we bound in the following lemma:
Lemma 25. Outside the failure event,

K∑
k=1

H∑
t=1

H−1∑
t′=t

E[∆k
t′(s

k
t′)

2 | Fk−1] ≤ Õ(SH4),

where ∆k
t (skt ) is defined in Lemma 24.

Proof. We have that

H∑
t=1

H∑
t′=t

E[∆k
t′(s

k
t′)

2 | Fk−1] =

H∑
t=1

tE[∆k
t (skt )

2 | Fk−1] ≤ H
H∑
t=1

E[∆k
t (skt )

2 | Fk−1].

Furthermore,(
∆k
t (skt )

)2
=
((
V̄ k−1
t (skt )− V k−1

t (skt )
)
−
(
V̄ kt (skt )− V kt (skt )

))2

=
(
V̄ k−1
t (skt )− V k−1

t (skt )
)2

+
(
V̄ kt (skt )− V kt (skt )

)2

− 2
(
V̄ k−1
t (skt )− V k−1

t (skt )
)(
V̄ kt (skt )− V kt (skt )

)
≤
(
V̄ k−1
t (skt )− V k−1

t (skt )
)2

+
(
V̄ kt (skt )− V kt (skt )

)2

− 2
(
V̄ kt (skt )− V kt (skt )

)2

=
(
V̄ k−1
t (skt )− V k−1

t (skt )
)2

−
(
V̄ kt (skt )− V kt (skt )

)2

,

where the third relation holds since V̄ k(s), V k(s) decreases and increases, respectively, by Lemma
18, and since outside of the failure event V̄ k(s) ≥ V k(s),∀k (Lemma 22). Another implication these
properties is that

(
V̄ k−1
t (skt )− V k−1

t (skt )
)2

≥
(
V̄ kt (skt )− V kt (skt )

)2

,

Thus,

H

K∑
k=1

H∑
t=1

E[∆k
t (skt )

2 | Fk−1]

≤ H
K∑
k=1

H∑
t=1

E[
(
V̄ k−1
t (skt )− V k−1

t (skt )
)2

−
(
V̄ kt (skt )− V kt (skt )

)2

| Fk−1] . (20)
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For brevity, we define ∆V kt (s) = V̄ kt (s) − V kt (s). Similarly to the technique used in Lemma 34
(Appendix F),

K∑
k=1

H∑
t=1

E[
(
V̄ k−1
t (skt )− V k−1

t (skt )
)2

−
(
V̄ kt (skt )− V kt (skt )

)2

| Fk−1]

=

K∑
k=1

H∑
t=1

E[∆V k−1
t (skt )2 −∆V kt (skt )2 | Fk−1]

(1)
=

K∑
k=1

H∑
t=1

∑
s

E[1
{
skt = s

}
∆V k−1

t (s)2 − 1
{
skt = s

}
∆V kt (s)2 | Fk−1]

(2)
=

K∑
k=1

H∑
t=1

∑
s

E[1
{
skt = s

}
∆V k−1

t (s)2 + 1
{
skt 6= s

}
∆V k−1

t (s)2 | Fk−1]

− E[1
{
skt = s

}
∆V kt (s)2 + 1

{
skt 6= s

}
∆V k−1

t (s)2 | Fk−1]

(3)
=

K∑
k=1

H∑
t=1

∑
s

∆V k−1
t (s)2 − E[∆V kt (s)2 | Fk−1]

Relation (1) holds by adding and subtracting 1
{
s 6= skt

}
V̄ k−1
t (s) while using the linearity of expec-

tation. (2) holds since for any event 1{A}+ 1{Ac} = 1 and since ∆V k−1
t is Fk−1 measurable. (3)

holds by the definition of the update rule. If state s is visited in the kth episode at time-step t, then
both V̄ kt (s), V kt (s) are updated. If not, their value remains as in the k − 1 iteration.

Lastly,

K∑
k=1

H∑
t=1

∑
s

∆V k−1
t (s)2 − E[∆V kt (s)2 | Fk−1]

=

K∑
k=1

H∑
t=1

∑
s

(
V̄ k−1
t (s)− V k−1

t (s)
)2

− E[
(
V̄ kt (s)− V kt (s)

)2

| Fk−1] ≤ Õ(SH3),

where the inequality holds outside the failure event F vsDP , which is defined in Appendix E.2.2.
Plugging this into (20) concludes the proof.
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We are now ready to prove the main results of this section and bound (16) and (17):
Lemma 26. Outside the failure event.

K∑
k=1

H∑
t=1

∑
s,a

wtk(s, a)p(· | s, a)T
(
V̄ k−1
t+1 − V

k−1
t+1

)2

≤ Õ(SAH2(F +D)2 + SAH5).

where F +D is defined in Lemma 23

Proof. Recall that wtk(s, a) = Pr(skt | sk1 , πk) is the probability when following πk in the true
MDP the state-action in the kth episode at the tth time-step is (skt , a

k
t ) = (s, a). Thus, the following

relation holds.∑
s,a

wtk(s, a)p(· | s, a)T (V̄ k−1
t+1 − V

k−1
t+1 )2

=
∑
st

Pr(skt | sk1 , πk)
∑
st+1

p(skt+1 | skt , akt )(V̄ k−1
t+1 (skt+1)− V k−1

t+1 (skt+1))2

=
∑
st+1

Pr(skt+1 | sk1 , πk)(V̄ k−1
t+1 (skt+1)− V k−1

t+1 (skt+1))2

= E[(V̄ k−1
t+1 (st+1)− V k−1

t+1 (st+1))2 | Fk−1].

Since V̄ k−1
H+1(st+1) = V k−1

H+1(st+1 = 0, we obtain,
K∑
k=1

H∑
t=1

∑
s,a

wtk(s, a)p(· | s, a)(V̄ k−1
t+1 − V

k−1
t+1 )2

=

K∑
k=1

H∑
t=1

E[(V̄ k−1
t+1 (skt )− V k−1

t+1 (skt )2 | Fk−1]

≤
K∑
k=1

H∑
t=1

E[(V̄ k−1
t (skt )− V k−1

t (skt )2 | Fk−1].

Thus,
K∑
k=1

H∑
t=1

∑
s,a

wtk(s, a)p(· | s, a)T
(
V̄ k−1
t+1 − V

k−1
t+1

)2
≤

K∑
k=1

H∑
t=1

E[
(
V̄ k−1
t+1 (skt )− V k−1

t+1 (skt )
)2
| Fk−1]

(∗)
≤ 2H

K∑
k=1

H∑
t=1

H∑
t′=t

E[∆k
t′(s

k
t′)

2 | Fk−1] + 2H

K∑
k=1

H∑
t=1

H∑
t′=t

E
[
min

{
(F +D)2

nk−1(skt′ , a
k
t′) ∨ 1

, H2

}
| Fk−1

]

= 2H

K∑
k=1

H∑
t=1

tE[∆k
t (skt )

2 | Fk−1] + 2H

K∑
k=1

H∑
t=1

tE
[
min

{
(F +D)2

nk−1(skt , a
k
t ) ∨ 1

, H2

}
| Fk−1

]

≤ 2H2
K∑
k=1

H∑
t=1

E[∆k
t (skt )

2 | Fk−1] + 2H2
K∑
k=1

H∑
t=1

E
[
min

{
(F +D)2

nk−1(skt , a
k
t ) ∨ 1

, H2

}
| Fk−1

]
(21)

where (∗) last relation holds by Lemma 24, in which ∆k
t (skt ) is defined. The first term is bounded in

Lemma 25 by Õ(SH5). The second term is bounded outside the failure event Using the ’Good Set’
Lk, which is defined and analyzed in Appendix F.1. The bound for this term can be found in Lemma
39. Combining both of the results and substituting into (21) yields

K∑
k=1

H∑
t=1

∑
s,a

wtk(s, a)p(· | s, a)T
(
V̄ k−1
t+1 − V

k−1
t+1

)2

≤ Õ(SH5) + Õ(SAH2(F +D)2 + SAH5)

= Õ(SAH2(F +D)2 + SAH5)
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Lemma 27. Outside the failure event.

K∑
k=1

H∑
t=1

∑
s,a

wtk(s, a)p(· | s, a)T
(
V̄ k−1
t+1 − V

πk
t+1

)2 ≤ Õ(SAH3(F +D)2 + SAH5)

where F +D is defined in Lemma 23

Proof. Similarly to Lemma 26, we have that

K∑
k=1

H∑
t=1

∑
s,a

wtk(s, a)p(· | s, a)T
(
V̄ k−1
t+1 − V

πk
t+1

)2
≤

K∑
k=1

H∑
t=1

E
[(
V̄ k−1
t+1 (skt )− V πkt+1(skt )

)2 | Fk−1

]
≤

K∑
k=1

H∑
t=1

E
[(
V̄ k−1
t (skt )− V πkt (skt )

)2 | Fk−1

]
. (22)

where the last inequality is since V̄ k−1
H+1(st+1) = V πkH+1(st+1 = 0. Applying Lemma 7, we get,

E[
(
V̄ k−1
t (skt )− V πkt (skt )

)2
| Fk−1]

(1)

≤ E

( H∑
t′=t

E
[
V̄ k−1(skt′)− V̄ k(skt′) + (r̃k−1 − r)(skt′ , akt′) + (p̃k−1 − p)(skt′ , akt′)V̄ k−1

t+1 | Fk−1, s
k
t

])2

| Fk−1


(2)

≤ 3HE

[
H∑
t′=t

E
[(
V̄ k−1(skt′)− V̄ k(skt′)

)2
| Fk−1, s

k
t

]
| Fk−1

]

+ 3HE

[
H∑
t′=t

E
[(

(r̃k−1 − r)(skt′ , akt′)
)2

+
(

(p̃k−1 − p)(skt′ , akt′)V̄ k−1
t+1

)2
| Fk−1, s

k
t

]
| Fk−1

]
(3)
= 3H

H∑
t′=t

E
[(
V̄ k−1(skt′)− V̄ k(skt′)

)2
| Fk−1

]

+ 3H

H∑
t′=t

E
[(

(r̃k−1 − r)(skt′ , akt′)
)2

+
(

(p̃k−1 − p)(skt′ , akt′)V̄ k−1
t+1

)2
| Fk−1

]
.

Inequality (1) is by Lemma 12. (2) is due to Jensen’s inequality, and using the inequality
(
∑n
i=1 ai)

2 ≤ n
∑n
i=1 a

2
i , and (3) is by the tower property.

Plugging this back into (22),

(22) ≤ 3H

K∑
k=1

H∑
t=1

H∑
t′=t

E
[(
V̄ k−1(skt′)− V̄ k(skt′)

)2 | Fk−1

]
+ 3H

K∑
k=1

H∑
t=1

H∑
t′=t

E
[(

(r̃k−1 − r)(skt′ , akt′)
)2

+
(
(p̃k−1 − p)(skt′ , akt′)V̄ k−1

t+1

)2 | Fk−1

]
≤ 3H2

K∑
k=1

H∑
t=1

E
[(
V̄ k−1(skt )− V̄ k(skt )

)2 | Fk−1

]
︸ ︷︷ ︸

(∗)

+ 3H2
K∑
k=1

H∑
t=1

E

((r̃k−1 − r)(skt , akt )
)2︸ ︷︷ ︸

(∗∗)

+
(
(p̃k−1 − p)(skt , akt )V̄ k−1

t+1

)2︸ ︷︷ ︸
(∗∗∗)

| Fk−1

. (23)
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We now bound each term of the above. First, we have that

(∗) =

H∑
t=1

H∑
t=1

E
[(
V̄ k−1(skt )− V̄ k(skt )

)2 | Fk−1

]
=

H∑
t=1

H∑
t=1

E
[(
V̄ k−1(skt )

)2
+
(
V̄ k(skt )

)2 − 2V̄ k(skt )V̄ k−1(skt ) | Fk−1

]
(1)

≤
H∑
t=1

H∑
t=1

E
[(
V̄ k−1(skt )

)2
+
(
V̄ k(skt )

)2 − 2
(
V̄ k(skt )

)2 | Fk−1

]
=

H∑
t=1

H∑
t=1

E
[(
V̄ k−1(skt )

)2 − (V̄ k(skt )
)2 | Fk−1

]
(2)
=

H∑
t=1

H∑
t=1

∑
s

(
V̄ k−1(s)

)2 − E
[(
V̄ k(s

)2 | Fk−1

]
.

Relation (1) holds since 0 ≤ V̄ k ≤ V̄ k−1 (see Lemma 18). (2) is proven similarly to Lemma 34
(Appendix F), as follows

K∑
k=1

H∑
t=1

E
[(
V̄ k−1(skt )

)2 − (V̄ k(skt )
)2 | Fk−1

]
(1)
=

K∑
k=1

H∑
t=1

∑
s

E[1
{
skt = s

}(
V̄ k−1(s)

)2 − 1{skt = s
}(
V̄ k(s)

)2 | Fk−1]

(2)
=

K∑
k=1

H∑
t=1

∑
s

E[1
{
skt = s

}(
V̄ k−1(s)

)2
+ 1

{
skt 6= s

}(
V̄ k−1(s)

)2 | Fk−1]

− E[1
{
skt = s

}(
V̄ k(s)

)2
+ 1

{
skt 6= s

}(
V̄ k−1(s)

)2 | Fk−1]

(3)
=

K∑
k=1

H∑
t=1

∑
s

(
V̄ k−1(s)

)2 − E[
(
V̄ k(s)

)2 | Fk−1]

(1) holds by adding and subtracting 1
{
s 6= skt

}
V̄ k−1
t (s) while using the linearity of expectation. (2)

holds since for any event 1{A} + 1{Ac} = 1 and since ∆V k−1
t is Fk−1 measurable. (3) holds

by the definition of the update rule. If state s is visited in the kth episode at time-step t, then both
V̄ kt (s), V kt (s) are updated. If not, their value remains as in the k − 1 iteration.

Next, by Lemma 18 for a fixed s, t,
{
V̄ kt (s)

}
k≥0

is a Decreasing Bounded Process in [0, H2].
Applying Lemma 11 we conclude that

(∗) ≤
K∑
k=1

H∑
t=1

∑
s

(
V̄ k−1(s)

)2 − E[
(
V̄ k(s)

)2 | Fk−1] . Õ(H3S).
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We now turn to bound (∗∗).

K∑
k=1

H∑
t=1

E
[(

(r̃k−1 − r)(skt , akt )
)2 | Fk−1

]
(1)

≤ 2

K∑
k=1

H∑
t=1

E
[(

(r̂k−1 − r)(skt , akt )
)2 | Fk−1

]
+ 2

K∑
k=1

H∑
t=1

E
[(
brk(skt , a

k
t )
)2 | Fk−1

]
(2)

≤ 4

K∑
k=1

H∑
t=1

E
[(
brk(skt , a

k
t )
)2 | Fk−1

]

= 4

K∑
k=1

H∑
t=1

E


√2V̂ar(R(skt , a

k
t )) ln 4SAT

δ′

nk−1(skt , a
k
t ) ∨ 1

+
14 ln 4SAT

δ′

3nk−1(skt , a
k
t ) ∨ 1

2

| Fk−1


(3)

.
K∑
k=1

H∑
t=1

E
[

1

nk−1(skt , a
k
t ) ∨ 1

| Fk−1

]
(4)

. Õ(SAH).

In (1), we used the definition of r̃k−1 and the inequality (a+ b)2 ≤ 2a2 + 2b2. (2) is since outside
the failure event F r, (r̂k−1 − r)(s, a) ≤ brk(s, a). (3) uses the fact that R(s, a) ∈ [0, 1], and thus
V̂ar(R(s, a) ≤ 1, and

√
n ≤ n for n ≥ 1. Finally, (4) is due to Lemma 39.

Lastly, we bound (∗ ∗ ∗).

K∑
k=1

H∑
t=1

E
[(

(p̃k−1 − p)(skt , akt )T V̄ k−1
t+1

)2 | Fk−1

]
=

K∑
k=1

H∑
t=1

E
[(

(p̂k−1 − p)(skt , akt )T V̄ k−1
t+1 + bpvk (skt , a

k
t )
)2 | Fk−1

]
(1)

≤ 2

K∑
k=1

H∑
t=1

E
[(

(p̂k−1 − p)(skt , akt )T V̄ k−1
t+1

)2
+
(
bpvk (skt , a

k
t )
)2 | Fk−1

]
(2)

≤ 2

K∑
k=1

H∑
t=1

E
[(
‖p̂k−1 − p‖1‖V̄ k−1

t+1 ‖∞
)2

+
(
bpvk (skt , a

k
t )
)2 | Fk−1

]
(3)

≤ 2

K∑
k=1

H∑
t=1

E
[
H2‖p̂k−1 − p‖21 +

(
bpvk (skt , a

k
t )
)2 | Fk−1

]
(4)

.
K∑
k=1

H∑
t=1

E

[
H2S

nk−1(skt , a
k
t )

+
(2BvH + 5J +Bp)

2

nk−1(skt , a
k
t )

| Fk−1

]
.

(5)

. Õ(SAH(F +D)2)

Similarly to the bound on the reward, (1) uses the inequality (a+ b)2 ≤ 2a2 + 2b2. Inequality (2) is
due to Hölder’s inequality, and (3) bounds ‖V̄ k−1

t+1 ‖∞ ≤ H , which is due to Lemma 18. Next, (4)

bounds the transition error outside to failure event F pn1 and bpvk according to Lemma 16. Finally, (5)
is by Lemma 39 and noting that H2S + (2BvH + 5J +Bp)

2 . (F +D)2.

Substituting all of the results into (23), and remembering the H2 factor in this equation, gives the
desired result.
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E.6 Bounding Different Terms in the Regret Decomposition

In this section, we bound each of the individual terms of the regret decomposition (Equation 15),
relaying on results from [Zanette and Brunskill, 2019], as well as on the new lemmas derived in
Section E.5, Lemma 26 and Lemma 27. First, we present the problem dependent constants of
[Zanette and Brunskill, 2019] for general admissible confidence intervals, and their relation to
problem dependent constants with Bernstein’s inequality

Lemma 28. Let C∗ and Cπ be upper dependent bounds on the following qualities:

C∗ ≥ 1

T

K∑
k=1

H∑
t=1

∑
s,a

wtk(s, a)g(p, V ∗t+1)2

Cπ ≥ 1

T

K∑
k=1

H∑
t=1

∑
s,a

wtk(s, a)g(p, V πkt+1)2 ,

with g(p, V ) =
√

2Vars′∼p(·|s,a)V (s′) ln 2SAT
δ′ , and let

C∗r =
1

T

 K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)VarR(s, a)

 ,

whereLk is defined in Definition 2. Finally, let Q∗ := maxs,a,t
(
VarR(s, a) + Vars′∼p(·|s,a)V

∗
t+1(s′)

)
.

Then,

C∗r + C∗ . Q∗

Cπ .
G2

H

C∗r ≤
G2

H

Proof. We follow proposition 6 of [Zanette and Brunskill, 2019], and start by substituting g(p, V )
into C∗r + C∗

C∗r + C∗ .
1

T

 K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)VarR(s, a)


+

1

T

K∑
k=1

H∑
t=1

∑
s,a

wtk(s, a)Vars′∼p(·|s,a)V
∗
t+1(s′)

≤ 1

T

 K∑
k=1

H∑
t=1

∑
(s,a)

wtk(s, a)(VarR(s, a)) + Vars′∼p(·|s,a)V
∗
t+1(s′)


≤ 1

T

 K∑
k=1

H∑
t=1

∑
(s,a)

wtk(s, a) max
s,a,t
{VarR(s, a)}+ Vars′∼p(·|s,a)V

∗
t+1(s′)


=

Q∗

T

 K∑
k=1

H∑
t=1

∑
(s,a)

wtk(s, a)


= Q∗

where the last equality is since
∑

(s,a) wtk(s, a) = 1 and T = HK.
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Next, we bound Cπ:

Cπ .
1

T

K∑
k=1

H∑
t=1

∑
s,a

wtk(s, a)Vars′∼p(·|s,a)V
πk
t+1(s′)

(1)
=

1

T

K∑
k=1

E

( H∑
t=1

r(skt , a
k
t )− V πk1 (sk1)

)2

| Fk−1


≤ 1

T

K∑
k=1

E

( H∑
t=1

r(skt , a
k
t )

)2

| Fk−1


(2)

≤ 1

T
KG2 =

G2

H
,

where (1) is due to the Law of Total Variance (LTV), which was used in [Azar et al., 2017], and was
stated formally in Lemma 15 of [Zanette and Brunskill, 2019]. In (2), we bound the reward in an
episode by G.

Finally, the bound on C∗r is proven in Lemma 8 of [Zanette and Brunskill, 2019], which concludes
this proof.

We also prove the following lemma that helps translating bounds that depend on C∗ to bounds that
depends on Cπ. This lemma is equivalent to lemma 14 of [Zanette and Brunskill, 2019], but the
prove requires Lemma 27, that was not proved in their paper. This is since they rely on the inequality
V k−1
t ≤ V πk , which does not seem to hold.

Lemma 29 (Bound Translation Lemma). Outside the failure event, it holds that

K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)
g(p, V ∗t+1)√
nk−1(s, a) ∨ 1

−
K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)
g(p, V πkt+1)√
nk−1(s, a) ∨ 1

= Õ
(
BvSAH

3
2 (F +D) +BvSAH

5
2

)
where F,D are defined in Lemma 23.

Proof. We start as in the original Lemma 14 of [Zanette and Brunskill, 2019]:
K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)
g(p, V ∗t+1)√
nk−1(s, a) ∨ 1

−
K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)
g(p, V πkt+1)√
nk−1(s, a) ∨ 1

(1)

≤ Bv

K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)

∥∥V ∗t+1 − V
πk
t+1

∥∥
2,p√

nk−1(s, a) ∨ 1

(2)

≤ Bv

√√√√ K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)

nk−1(s, a) ∨ 1

√√√√ K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)
∥∥V ∗t+1 − V

πk
t+1

∥∥2

2,p

(3)

. Bv
√
SA

√√√√ K∑
k=1

H∑
t=1

∑
(s,a)

wtk(s, a)p(· | s, a)T
(
V̄ k−1
t+1 − V

πk
t+1

)2
where in (1) we use property 1 of Definition 1, and (2) is due to Cauchy-Schwarz in-
equality. In (3) we used Lemma 37. Next, we apply Lemma 27 to bound the re-
maining term by Õ

(√
SAH3(F +D)2 + SAH5

)
and bound

√
SAH3(F +D)2 + SAH5 ≤√

SAH3(F +D)2 +
√
SAH5, which yields the desired result
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We are now ready to bound each of the terms of the regret. To bound the first term, we cite Lemma 8
of [Zanette and Brunskill, 2019]:
Lemma 30 (Optimistic Reward Bound). Outside the failure event, it holds that

K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)(r̃k−1 − r)(skt , akt ) = Õ
(√

C∗rSAT + SA
)

The next three lemmas correspond to the remaining terms, and follow Lemmas 9,10 and 11 of
[Zanette and Brunskill, 2019], with slight modifications:
Lemma 31 (Empirical Transition Bound). Outside the failure event, it holds that

K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)(p̂k−1 − pk−1)(· | s, a)TV ∗t+1 = Õ
(√

C∗SAT + JSA
)

The following bound also holds:

K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)(p̂k−1 − pk−1)(· | s, a)TV ∗t+1

= Õ
(√

CπSAT + JSA+BvSAH
3
2 (F +D) +BvSAH

5
2

)
where F,D are defined in Lemma 23.

Proof. Similarly to Lemma 9 of [Zanette and Brunskill, 2019], by the definition of φ (Definition 1),
and outside failure event F pv ,

K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)(p̂k−1 − pk−1)(· | s, a)TV ∗t+1

≤
K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)

(
g(p, V ∗t+1)√
nk−1(s, a) ∨ 1

+
J

nk−1(s, a) ∨ 1

)
(24)

(∗)
≤

√√√√ K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)g(p, V ∗t+1)2

√√√√ K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)

nk−1(s, a) ∨ 1

+ J

K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)

nk−1(s, a) ∨ 1

where the last inequality is by Cauchy-Schwarz Inequality. Substituting the definition of C∗, and
using Lemma 37, we get

.
√
TC∗
√
SA+ JSA ,

which concludes the first statement of the lemma. To get the second statement, we apply Lemma
29 before inequality (∗) and only then use Cauchy-Schwarz Inequality. This creates the additional
constant term of Õ

(
BvSAH

3
2 (F +D) +BvSAH

5
2

)
. Then, by applying Lemma 37, we get the

bound with Cπ .
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Lemma 32 (Lower Order Term). Let F,D be the constants defined in Lemma 23. Outside the failure
event, it holds that

K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)
∣∣(p̂k−1 − p)(· | s, a)T (V̄ k−1

t+1 − V ∗t+1)
∣∣

= Õ
(
S

3
2AH(F +D +H

3
2 ) + S2AH

)
Proof. Similarly to Lemma 11 of [Zanette and Brunskill, 2019], by the definition of φ (Definition 1),
and outside failure event F ps,

K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)
∣∣(p̂k−1 − p)(· | s, a)T (V̄ k−1

t+1 − V ∗t+1)
∣∣

.
K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)
∑
s′

√
p(s′ | s, a)(1− p(s′ | s, a))

nk−1(s, a) ∨ 1

∣∣V̄ k−1
t+1 (s′)− V ∗t+1(s′)

∣∣
+

K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)
∑
s′

∣∣V̄ k−1
t+1 (s′)− V ∗t+1(s′)

∣∣
nk−1(s, a) ∨ 1

≤
K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)
∑
s′

√
p(s′ | s, a)(1− p(s′ | s, a))

nk−1(s, a) ∨ 1

∣∣V̄ k−1
t+1 (s′)− V ∗t+1(s′)

∣∣
+

K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)
HS

nk−1(s, a) ∨ 1
,

where in the last inequality we used the fact that V ∗t+1 and V̄ k−1
t+1 are in [0, H], by Lemma 18. Next,

using the optimism of the value V k−1
t+1 ≤ V ∗t+1 ≤ V̄ k−1

t+1 (Lemma 22), and since (1 − p) ≤ 1 for
p ∈ [0, 1], we can bound

≤
K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)
∑
s′

√
p(s′ | s, a)

nk−1(s, a) ∨ 1

∣∣∣V̄ k−1
t+1 (s′)− V k−1

t+1 (s′)
∣∣∣

+HS

K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)

nk−1(s, a) ∨ 1

(CS)

≤
K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)

√
Sp(· | s, a)T

(
V̄ k−1
t+1 − V

k−1
t+1

)2
nk−1(s, a) ∨ 1

+HS
K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)

nk−1(s, a) ∨ 1

(CS)

≤
√
S

√√√√ K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)

nk−1(s, a) ∨ 1

√√√√ K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)p(· | s, a)T
(
V̄ k−1
t+1 − V

k−1
t+1

)2
+HS

K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)

nk−1(s, a) ∨ 1

(∗)
.
√
S
√
SA
√
SAH2(F +D)2 + SAH5 + SH · SA

= Õ
(
S

3
2AH(F +D +H

3
2 ) + S2AH

)
(CS) denotes Cauchy-Schwarz. Specifically, the first inequality uses

∑n
i=1 aibi ≤

√
n
∑n
i=1 a

2
i b

2
i .

In (∗), we used Lemmas 37 and 26.
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Lemma 33 (Optimistic Transition Bound). Let F,D be the constants defined in Lemma 23. Outside
the failure event, it holds that

K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)(p̃k−1 − p̂k−1)(· | s, a)T V̄ k−1
t+1

= Õ
(√

C∗SAT + (J +Bp)SA+BvSAH
(
F +D +H

3
2

)
+BvSA

√
S

1
2H(F +D +H

5
2 ) + SH2

)
The following bound also holds:

K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)(p̂k−1 − p̂k−1)(· | s, a)TV ∗t+1

= Õ
(√

CπSAT + (J +Bp)SA+BvSAH
3
2 (F +D +H) +BvSA

√
S

1
2H(F +D +H

5
2 ) + SH2

)

Proof. Similarly to Lemma 10 of [Zanette and Brunskill, 2019], by the definition of the bonus,

K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)(p̃k−1 − p̂k−1)(· | s, a)T V̄ k−1
t+1

=

K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)bpvk (s, a)

=

K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)

(
φ(p̂k−1(· | s, a), V k−1

t+1 ) +
Bv‖V̄ k−1

t+1 − V k−1
t+1 ‖2,p̂√

nk−1(s, a) ∨ 1
+

4J +Bp
nk−1(s, a) ∨ 1

)

≤
K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)

(
φ(p(· | s, a), V ∗) + 2

Bv‖V̄ k−1
t+1 − V k−1

t+1 ‖2,p̂√
nk−1(s, a) ∨ 1

+ 2
4J +Bp

nk−1(s, a) ∨ 1

)
.

In the last inequality, we applied Lemma 15, Property(3), and used Equation (13) together with the
optimism of the value function, that is V k−1

t+1 ≤ V ∗t+1 ≤ V̄ k−1
t+1 (Lemma 18). Next, we substitute the

definition of φ (Definition 1), and get

.
K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)

(
g(p, V ∗t+1)

nk−1(s, a) ∨ 1
+

J +Bp
nk−1(s, a) ∨ 1

)
(25)

+

K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)
Bv‖V̄ k−1

t+1 − V
k−1
t+1 ‖2,p̂√

nk−1(s, a) ∨ 1
. (26)

The term in Equation (25) is almost identical to Equation (24) of Lemma 31, and can be similarly
bounded by replacing J with J +Bp. This yields a bound of either Õ

(√
C∗SAT + (J +Bp)SA

)
or Õ

(√
CπSAT + (J +Bp)SA+BvSAH

3
2 (F +D) +BvSAH

5
2

)
. We now move to bounding

the second term. Notice that

‖V̄ k−1
t+1 − V

k−1
t+1 ‖22,p̂ = p̂k−1(· | s, a)T

(
V̄ k−1
t+1 − V

k−1
t+1

)2

= p(· | s, a)T
(
V̄ k−1
t+1 − V

k−1
t+1

)2

+ (p̂k−1 − p)(· | s, a)T
(
V̄ k−1
t+1 − V

k−1
t+1

)2

= ‖V̄ k−1
t+1 − V

k−1
t+1 ‖22,p + (p̂k−1 − p)(· | s, a)T

(
V̄ k−1
t+1 − V

k−1
t+1

)2

(27)
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Next, applying Cauchy-Schwartz Inequality on (26), we get

(26) ≤ Bv

√√√√ K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)

nk−1(s, a) ∨ 1

√√√√ K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)‖V̄ k−1
t+1 − V

k−1
t+1 ‖22,p̂

. Bv
√
SA

√√√√ K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)‖V̄ k−1
t+1 − V

k−1
t+1 ‖22,p

+Bv
√
SA

√√√√ K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)

∣∣∣∣(p̂k−1 − p)(· | s, a)T
(
V̄ k−1
t+1 − V

k−1
t+1

)2
∣∣∣∣ ,

where the last inequality is by Lemma 37, substituting (27) and using the inequality
√
a+ b ≤√

a+
√
b. The first term can be directly bounded by Lemma 26. The second term can be bounded

using Lemma 32 as follows:

K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)

∣∣∣∣(p̂k−1 − p)(· | s, a)T
(
V̄ k−1
t+1 − V

k−1
t+1

)2
∣∣∣∣

≤ H
K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)
∣∣∣(p̂k−1 − p)(· | s, a)T

(
V̄ k−1
t+1 − V

k−1
t+1

)∣∣∣
= Õ

(
S

3
2AH(F +D +H

5
2 ) + S2AH2

)
,

where we trivially bounded the value difference by H at the first inequality (due to Lemma 18) and
used Lemma 32 at the second one. Summing both terms yields

(26) = Õ
(
Bv
√
SA
√
SAH2(F +D)2 + SAH5 +Bv

√
SA

√
S

3
2AH(F +D +H

5
2 ) + S2AH2

)
= Õ

(
BvSAH

(
F +D +H

3
2

)
+BvSA

√
S

1
2H(F +D +H

5
2 ) + SH2

)

Combining both bounds on (25) and (26) concludes the proof.
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F General Lemmas

Lemma 34 (On Trajectory Regret to Sum of Decreasing Bounded Processes Regret). For Algorithm 1
and Algorithm 2 it holds that,

K∑
k=1

H∑
t=1

E[V̄ k−1
t (skt )− V̄ kt (skt ) | Fk−1] =

H∑
t=1

∑
s

K∑
k=1

V̄ k−1
t (s)− E[V̄ kt (s) | Fk−1]

Proof. The following relations hold.
K∑
k=1

H∑
t=1

E[V̄ k−1
t (skt )− V̄ kt (skt ) | Fk−1] (28)

=

K∑
k=1

H∑
t=1

∑
s

E[1
{
s = skt

}
V̄ k−1
t (s)− 1

{
s = skt

}
V̄ kt (s) | Fk−1]

(1)
=

H∑
t=1

∑
s

K∑
k=1

E[1
{
s = skt

}
V̄ k−1
t (s) + 1

{
s 6= skt

}
V̄ k−1
t (s) | Fk−1]

− E[1
{
s = skt

}
V̄ kt (s) + 1

{
s 6= skt

}
V̄ k−1
t (s) | Fk−1]

(2)
=

H∑
t=1

∑
s

K∑
k=1

V̄ k−1
t (s)− E[1

{
s = skt

}
V̄ kt (s) + 1

{
s 6= skt

}
V̄ k−1
t (s) | Fk−1]

(3)
=

H∑
t=1

∑
s

K∑
k=1

V̄ k−1
t (s)− E[V̄ kt (s) | Fk−1]. (29)

Relation (1) holds by adding and subtracting 1
{
s 6= skt

}
V̄ k−1
t (s) while using the linearity of expec-

tation. (2) holds since for any event 1{A}+ 1{Ac} = 1 and since ∆V k−1
t is Fk−1 measurable. (3)

holds by the definition of the update rule. If state s is visited in the kth episode at time-step t, then
both V̄ kt (s), V kt (s) are updated. If not, their value remains as in the k − 1 iteration.

F.1 The Good Set Lk and Few Lemmas

We introduce that set Lk. The construction is similar to [Dann et al., 2017] and we follow the one
formulated in [Zanette and Brunskill, 2019]. The idea is to partition the state-action space at each
episode to two sets, the set of state-action pairs that have been visited sufficiently often, and the ones
that were not.
Definition 2. The set Lk is defined as follows.

Lk :=

(s, a) ∈ S ×A :
1

4

∑
j<k

wj(s, a) ≥ H ln
SAH

δ′
+H


where wj(s, a) :=

∑H
t=1 wtj(s, a)

We now state some useful lemmas. See proofs in [Zanette and Brunskill, 2019], Lemma 6, Lemma 7,
Lemma 13.
Lemma 35. Outside the failure event, it holds that if (s, a) ∈ Lk, then

nk−1(s, a) ≥ 1

4

∑
j≥k

wj(s, a) ,

which also implies that nk−1(s, a) ≥ H ln SAH
δ′ +H ≥ 1

Lemma 36. Outside the failure event, it holds that
K∑
k=1

H∑
t=1

∑
(s,a)/∈Lk

wtk(s, a) ≤ Õ(SAH).
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Lemma 37. Outside the failure event, it holds that

K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)

nk−1(s, a)
≤ Õ(SA).

Combining these lemmas we conclude the following one.
Lemma 38. Outside the failure event, it holds that

K∑
k=1

H∑
t=1

E

[√
1

nk−1(skt , πk(skt )) ∨ 1
| Fk−1

]
≤ Õ(

√
SAT + SAH)

Proof. The following holds relations hold.

K∑
k=1

H∑
t=1

E

[√
1

nk−1(skt , πk(skt )) ∨ 1
| Fk−1

]

=

K∑
k=1

H∑
t=1

∑
s,a

wtk(s, a)

√
1

nk−1(s, a) ∨ 1

≤
K∑
k=1

H∑
t=1

∑
s,a∈Lk

wtk(s, a)

√
1

nk−1(s, a)
+

K∑
k=1

H∑
t=1

∑
s,a/∈∈Lk

wtk(s, a)

≤
K∑
k=1

H∑
t=1

∑
s,a∈Lk

wtk(s, a)

√
1

nk−1(s, a)
+ SAH. (30)

The first relation holds by definition. The second relation holds by the following argument. For the
first term, if (s, a) ∈ Lk then by Lemma 35, nk−1(s, a) ≥ 1, and thus nk−1(s, a) ∨ 1 = nk−1(s, a).
The second term is bounded by taking the worst case for the fraction, which is nk−1(s, a) ∨ 1 ≥ 1.
The third relation holds by Lemma 36.

Consider the first term in (30).

K∑
k=1

H∑
t=1

∑
s,a∈Lk

wtk(s, a)

√
1

nk−1(s, a)

≤

√√√√ K∑
k=1

H∑
t=1

∑
s,a∈Lk

wtk(s, a)

√√√√ K∑
k=1

H∑
t=1

∑
s,a∈Lk

wtk(s, a)

nk−1(s, a)

≤

√√√√ K∑
k=1

H∑
t=1

∑
s,a

wtk(s, a)

√√√√ K∑
k=1

H∑
t=1

∑
s,a∈Lk

wtk(s, a)

nk−1(s, a)

=
√
T

√√√√ K∑
k=1

H∑
t=1

∑
s,a

wtk(s, a)

nk−1(s, a)
. Õ(

√
SAT ).

The first relation holds by Cauchy-Schartz inequality. In the second relation, we replaced the sum in
the first term to cover all of the state-action pairs, thus adding positive quantities. The third relation
holds since by definition

∑H
t=1

∑
s,a wtk(s, a) = H and T = KH . The last relation holds by

Lemma 37.

Combining the result in (30) concludes the proof.
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Lemma 39. Let u, v ≥ 0 be some non-negative constants. Outside the failure event,

K∑
k=1

H∑
t=1

E
[
min

{
u

nk−1(skt′ , a
k
t′) ∨ 1

, v

}
| Fk−1

]
≤ Õ(SAu+ SAHv) ,

and specifically,

K∑
k=1

H∑
t=1

E
[

u

nk−1(skt′ , a
k
t′) ∨ 1

| Fk−1

]
≤ Õ(SAHu) .

Proof. The proof partially follows [Zanette and Brunskill, 2019], Lemma 12:

K∑
k=1

H∑
t=1

E
[
min

{
u

nk−1(skt′ , a
k
t′) ∨ 1

, v

}
| Fk−1

]
(1)
=

K∑
k=1

H∑
t=1

∑
s,a

wtk(s, a) min

{
u

nk−1(s, a) ∨ 1
, v

}
(2)

≤
K∑
k=1

H∑
t=1

∑
(s,a)∈Lk

wtk(s, a)
u

nk−1(s, a)
+ v

K∑
k=1

H∑
t=1

∑
(s,a)/∈Lk

wtk(s, a)

(3)

. SAu+ SAHv

(1) is from the definition of wtk(s, a) and the fact that nk−1(s, a) is Fk−1 measurable. In (2) we
divided the sum into state-actions in and outside Lk. For state-actions in Lk, we bounded the
minimum by the first term, and otherwise we bounded it by H2. Note that for any (s, a) ∈ Lk,
nk−1(s, a) ≥ 1, from Lemma 35. (3) is due to Lemmas 36 and 37.

The second part of the lemma is a direct result of fixing v = u.
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