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1 TurboAE Design Analysis1

1.1 Neural Architecture Design2

1.1.1 Supporting code rates beyond 1/33

In main text, only neural code for code rate R = 1/3 is shown. The TurboAE encoder and decoder4

for code rate 1/2 is shown in Figure 1. Still designed under ‘Turbo principle’, TurboAE with code5

rate 1/2 shows impressive performance under low to moderate SNR, within block length 100. To6

generate code rates beyond 1/2, we can utilize puncturing.7

Figure 1: The encoder structure (up left), decoder structure (down left), and BER performance (right)
of code rate 1/2

1.1.2 CNN with Residual Connection8

The same shape property of 1D-CNN is preserved by setting odd kernel size k equals twice the9

zero-padding length minus one, as shown in Figure 2 left. The encoder simply use 1D-CNN as10

encoder blocks, while the decoder uses residual connection to bypass gradient on iterative decoding11

procedure to improve trainability [1], and also inspired by extrinsic information from Turbo code [2],12

shown in Figure 2 right. Adding residual connection improves training speed and improve final BER13

performance [3].14

1.1.3 Network Size15

In figure 3 left, we show the test loss trajectory of TurboAE with different network size. We keep16

both encoder and decoder with same number of filters. Larger network lead to faster training and17

better performance, with the cost of larger computation and memory usage. We take encoder and18
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Figure 2: 1D CNN visualization on 1 layer (left); CNN with residual connection (right).

decoder with 100 filters, which trains fast given limited computational resource (e.g., training 40019

epochs takes 1 day on one Nvidia 1080Ti.)20

Figure 3: Larger Network has better performance (left); Random interleaving array shows same
performance (right).

1.1.4 Random Interleaving Array During Testing Phase21

Given a fixed pseudo-random interleaving array, one concern is that TurboAE could overfit to spe-22

cific interleaving array, and when both encoder and decoder change the interleaving array, TurboAE23

will have a degraded performance. However, empirically, we observe that TurboAE doesn’t overfit24

to the training fixed pseudo-random interleaving array, as shown in Figure 3 right. The TurboAE is25

trained on one specific interleaving array, and tested on 3 random generated interleaving arrays. For26

TurboAE, whenever the interleaving array is pseudo-random, the neural encoder and decoder still27

learn without overfitting.28

However, when the interleaving array is not random, e.g not applying interleaving as y = π(x),29

termed as ‘no interleaving’, the performance degrades significantly.30

1.2 Training Algorithms31

1.2.1 Joint Training vs Separate Training32

Empirically training encoder and decoder simultaneously is easier to get stuck in local optimum as33

shown in Figure 4 left. Training encoder and decoder separately is less likely to get stuck in local34

optimum [4] [5]. Training decoder more times than encoder, on the other hand, makes decoder better35

approximates optimal decoding algorithm of the encoder, which offers more accurate estimated36

gradient and stabilizes the training process [5]. We training encoder and decoder separately, with37

each epoch trains encoder 100 times and decoder 500 times.38

1.2.2 Large Batch Size Improves Training Significantly39

Large batch size helps training deep generative models such as Generative Adversarial Networks40

(GAN) [6] and Variantional Autoencoder (VAE) [7], and is also critical to training TurboAE. Fig-41

ure 4 right shows that large batch size leads to significantly lower test BER.42
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Figure 4: Training encoder and decoder jointly gets stuck as local optimum (left). Large batch size
improves training (right).

The analysis is on AWGN channel by using the 1st order Taylor expansion on decoder gφ(.) as:43

û = gφ(x+ z) = gφ(x) + zg′φ(x) +O(z2).44

Taking gradient of both sides becomes: ∂û∂x ≈ g
′
φ(x) + zg′′φ(x) and ∂û

∂φ ≈
∂gφ(x)
∂φ + z

∂g′φ(x)

∂φ45

AWGN channel has ∂y
∂x = 1 with iid noise. Consider the normalization layer x = h(b), the gradient46

pass through normalization layer with batch size B is [8]:47

∂xi
∂bj

=
1

σ(b)
(1(i = j)− 1

B
(1 + bibj)) (1)

Known û = sigmoid(q), as q = gφ(h(fθ(u)) + z), the gradient of BCE loss with respect to logit q48

is ∂BCE(u,û)
∂q = û− u, the gradient of encoder is:49

∂BCE(u, û)

∂θ
=
∂BCE(u, û)

∂q

∂q

∂y

∂y

∂x

∂x

∂b

∂b

∂θ
= (û− u)(g′φ(x) + zg′′φ(x))

∂x

∂b

∂fθ(u)

∂θ
(2)

The gradient of decoder is:50

∂L

∂φ
=
∂BCE(u, û)

∂q

∂q

∂φ
= (û− u)(∂gφ(x)

∂φ
+ z

∂g′φ(x)

∂φ
) (3)

The benefits of large batch size are as follows:51

• Less noisy gradient for encoder. The gradient passes through normalization layer is as52

shown in Equation (1). With large batch size B, the gradient passes through normalization53

reduces the noise introduced by 1
B (1 + bibj), making the gradient passed to encoder less54

noisy.55

• Larger batch size reduces gradient noise. Large batch size makes gradient estimation56

for both encoder and decoder more accurate, as the error term zg′′φ(x) in Equation (2) and57

z
∂g′φ(x)

∂φ in Equation (3) can be reduced with large batch size with expectation E[z] = 0.58

Better gradients for both encoder and decoder improve training.59

• More accurate statistics for normalization. With larger batch size, the mean and the60

standard deviation for normalization used in power normalization are more accurate, which61

introduces less noise.62

1.2.3 Training SNR63

Training noise level (SNR) is an critical parameter for training TurboAE. The training SNR analysis64

can be derived by the gradient analysis of section 1.2.2. The training noise has different effect on65
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encoder and decoder. The training noise affects decoder with noise term z
∂g′φ(x)

∂φ in Equation (3).66

Given an fixed encoder, training decoder with different SNR results in different levels of regulariza-67

tion. For encoder there are two source of noise regularizations: (a) zg′′φ(x) in Equation (2,) and (b)68

noise introduced by normalization layer in Equation (1). Training encoder with different SNR also69

results in different levels of regularization, which differs from training decoders.70

As the effect of decoder training noise has been studied in [9], in this section, we study the training71

SNR of encoder, with fixing decoder training SNR to be 0dB as shown in Figure 5 left. We see72

that the most reliable code can be learned when training SNR matches testing SNR. Throughout the73

paper, we make encoder training SNR equals the testing SNR, e.g we testing TurboAE performance74

at 2dB, we train TurboAE with encoder SNR at 2dB and decoder at 0dB. The BER curve shown in75

main context is the lower envelope of all curves.76

Figure 5: Encoder Training SNR has different coding gain effects (left); Training decoder more lead
to faster convergence (right).

When encoder training SNR is larger than 1dB (e.g., 1dB, 2dB and 3dB), the BER curves remain77

nearly the same. Thus encoder training noise level for high SNR region shows diminishing effects78

on high SNR, which creates an error floor for TurboAE. In main context we state that neural code79

are suboptimal in high SNR region, since the error is hard to encounter (with probability less than80

10−4), which makes it hard to gather negative examples to train encoder. Improving high SNR81

region coding gain with data imbalance is an interesting future research direction.82

1.2.4 Train decoder more than encoder83

We argue that when the decoder is well-paired to the fixed encoder, the gradient passed to encoder is84

more accurate. Training decoder more times will improve performance, as shown in Figure 5 right.85

Training decoder more times lead to faster convergence.86

1.2.5 Learning Rate and Batch Size Scheduling87

Increasing batch size improve generalization rather than reducing learning rate [10]. To reduce88

computational expense, we start with batch size B = 500, and double the batch size when the test89

loss saturates for 20 epochs till B = 2000 which is our GPU memory limit. Figure ?? shows that90

there exists long ‘fake saturating’ points where the test loss saturates for over 20 epochs and then91

continue to drop. When B = 2000, when saturates for longer than 20 epochs, the learning rate lr is92

reduced by 10 times till learning rate reaches lr = 0.000001.93

1.2.6 Block Error Rate Performance comparison94

The loss function used is Binary Cross-Entropy (BCE), which minimizes average cross entropy for95

all bits along the block, aiming at minimizing BER. Optimizing BER doesn’t necessarily result in op-96

timizing block error rate (BLER), as shown in Figure 6. TurboAE-binary shows better performance97

comparing to Turbo code in BER sense under all SNR points, the BLER performance is worse than98

Turbo code.99
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Figure 6: TurboAE BER (left) and BLER (right) performance

2 Complexity Comparison100

Neural networks are known to have high implementation complexity than canonical algorithms.101

CNN structure is more favorable than RNN since it is of less complexity and easier to run in parallel.102

We compare the inference complexity between TurboAE with CNN and GRU implementations (with103

similar performance), as well as canonical Turbo decoder in this section. The neural network com-104

putation is measured via float-point operations (FLOP) in one block. Turbo’s encoder and decoder105

complexity is computed in elementary math operations (EMO), which are are in Table 1 :106

Metric CNN encoder CNN decoder GRU encoder GRU decoder Turbo encoder Turbo decoder
FLOP/EMO 1.8M 294.15M 334.4M 6.7G 104k 408k
Parameters 152.4k 2.45M 1.14M 2.714M N/A N/A

Table 1: FLOP and number of parameter comparison on block length 100 and 6 iterations

CNN encoder and decoder are considered as small, comparing to typical deep learning models which107

take about 1G FLOP per instance. GRU has much larger FLOP comparing to CNN. Empirically us-108

ing GRU takes 10x GPU memory and is 10x slower to train. However comparing to canonical Turbo109

encoder and decoder, FLOP of TurboAE with CNN is still much larger than canonical decoders.110

We are expecting continuing research would lead to smaller FLOP, as well as the advance of AI-chips111

will increase the performance when applying CNN to TurboAE.112

Due to TurboAE complexity and flexibility, and superior performance on moderate block length113

on low-to-moderate SNR, the best application area for TurboAE is on dynamical environment (e.g114

operating on moderate block length and channel with uncertainty) such as low latency code and115

control plane. On high throughput data plane where canonical codes such as LDPC and Turbo,116

or neural decoder can be the best method with low complexity and high reliability. In the future,117

combining both adaptive neural code and human-designed capacity-approaching codes will give118

more seamless and high reliable communication experience.119

3 TurboAE Performance120

3.1 Benchmarks121

We use MATLAB-based Vienna 5G simulator and Python-based Commpy [12] as our benchmarks.122

3.1.1 Vienna 5G simulator123

The detailed implementation details of Vienna 5G are:124

• LDPC code with PWL-Min-Sum decoding algorithm, with 32 decoding iterations.125
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• Polar code with CRC-List-SC decoding algorithm, with list size 32.126

• Turbo code with Linear-Log-MAP decoding algorithm, with 6 decoding iterations.127

• TBCC code with MAX-Log-MAP decoding algorithm.128

TurboAE and Turbo code uses the same number of iterations. Turbo codes simulation results are129

different between Commpy and Vienna 5G simulator, since Commpy implements vanilla Turbo130

code, and Vienna 5G simulator implements more advanced coding Turbo schemes. We use Commpy131

Turbo code as our benchmark. Note that Commpy shows better performance than Vienna 5G, but132

shows less coding gain on high SNR. We use Commpy as the benchmark, which is the same as [9].133

For Vienna 5G simulator, we find that the code rate for each channel coding is not enforced, e.g134

when setting code rate R = 1/3 with block length K = 100, the encoder not necessarily outputs135

codeword with block length N = 300, but rather outputs longer block length N = 384. To make136

a fair comparison, we tune the code rate to enforce the output of encoder to have block length137

N = 300, which results in a different setup code rate:138

• Polar code: for code rate R = 1/2, the setup code rate is R = 0.62; for code rate R = 1/3,139

the setup code rate is R = 0.415.140

• TBCC Code: for code rate R = 1/2, the setup code rate R = 0.64, for code rate R = 1/3,141

the setup code rate R = 0.4275.142

• Turbo Code: for code rate R = 1/2, the setup code rate R = 0.62, for code rate R = 1/3,143

the setup code rate R = 0.4175.144

• LDPC code: for code rate R = 1/2, the setup code rate R = 0.705, for code rate R = 1/3,145

the setup code rate R = 0.522.146

Interested reader can contact Vienna 5G simulator’s authors to get access to the code.147

3.1.2 Commpy on Turbo Code148

RSC code with generating function (1, f1(x)f2(x)
) is the component code for Turbo code. The generating149

function of Turbo’s RSC affects the performance. Two commonly used configurations of RSC are150

implemented in Commpy:151

• code rate R = 1/3, with f1(x) = 1 + x2 and f2(x) = 1 + x + x2, which is denoted as152

Turbo-757.153

• code rate R = 1/3, with f1(x) = 1 + x2 + x3 and f2(x) = 1 + x+ x3, which is standard154

Turbo code used in LTE system, denoted as Turbo-LTE.155

In main context, the benchmarks are using with Turbo-757, while the performance comparison156

between Turbo-757 and Turbo-LTE are shown in Figure 7. The performance trend are the same,157

while Turbo-LTE shows slightly better performance. The same claim in main text on Turbo-757,158

works for Turbo-LTE.159

3.2 Continuous Channels160

Continuous channel refers to the channel where the received signal y can is continuous, where both161

TurboAE-continuous and Turbo-binary can be supported. We discussed short block performance on162

AWGN and non-AWGN channels, and in this section we discuss the longer block length, and other163

channels.164

3.2.1 Scale to Long Code Block Length is hard165

Figure 8 left shows that after fine-tuning at block length 1000, fine-tuned TurboAE shows improved166

performance comparing to TurboAE trained on block length 100 and tested on block length 1000.167

However, TurboAE-continuous shows worse performance comparing to canonical Turbo code. As168

shown in main context, TurboAE’s coding gain on long block length is smaller than Turbo code due169

to trainability and computation issues. Improving performance on long block length is an interesting170

future research direction.171
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Figure 7: Commpy TurboAE with different trellis performance BER (left), and BLER (right)

3.2.2 TurboAE on iid Rayleigh Fading Channel172

Non-coherent Rayleigh Fading Channel is defined as yi = hixi + zi, where iid zi ∼ N(0, σ2),173

and hi is normalized iid Rayleigh distribution fading noise as hi ∼
√
U2+V 2√
π/2

, while U and V174

are IID unit Gaussian variables. Non-coherent setting means the decoder doesn’t know hi: the175

benchmarks (canonical decoders include Turbo, TBCC, and LDPC) are not aware of the fading176

component by still taking log-likelihood as decoder input, while TurboAE is not further trained to177

learn hi. The performance of Non-coherent Rayleigh Fading Channel are shown in Figure 8 right.178

On Non-coherent Rayleigh Fading Channel, TurboAE-binary and TurboAE-continuous outperforms179

LDPC, TBCC and Turbo code in a wide SNR region.180

Figure 8: TurboAE performance on block length 1000 (left) and TurboAE on Rayleigh Fading
Channel (right)

3.2.3 TurboAE-continuous combines Modulation and Coding181

In the main context, we show that on ATN channel, TurboAE-continuous outperforms TurboAE-182

binary. TurboAE-continuous outperforms TurboAE-binary significantly at high SNR since183

TurboAE-continuous jointly learns modulating and coding in continuous value domain, which has184

better advantage at high SNR schemes.185

To investigate the fundamental coding gain of TurboAE-continuous in high SNR schemes, we in-186

vestigate the channel capacity of non-AWGN channel (take ATN as example) and AWGN chan-187

nel, as shown in Figure 9 right. Binary-AWGN and Continuous-AWGN refers to the channel ca-188

pacity where code x is binary and continuous at AWGN channel, respectively. Binary-ATN and189

Continuous-ATN refers to the channel capacity where code x is binary and continuous at ATN chan-190
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nel. We use estimated Mutual Information (MI) via KSG estimator [13] as the surrogate measure191

for channel capacity, as there is no close-form channel capacity for ATN channel.192

Under the SNR range where most channel coding operates around (0dB), the MI between Binary-193

AWGN and Continuous-AWGN is very close, thus applying continuous coding doesn’t improve cod-194

ing gain significantly on AWGN channel. However, the MI between binary-ATN and Continuous-195

ATN is significant, thus applying continuous code can further increase the channel capacity compar-196

ing to using binary code on non-AWGN channel. Moreover, at high SNR, the capacity of continuous197

code is much larger than binary code, which shows that Turbo-AE, as a method to learn continuous198

code, has theoretical advantage on high SNR schemes.199

Figure 9: KSG estimated Mutual Information for AWGN and ATN channel

3.3 Binary Channels200

Binary channels restrict the decoder input to be binary, which only supports binary operations. Only201

TurboAE-binary is supported. We use the following canonical binary channels:202

• iid Binary Symmetric Channel (BSC), x ∈ {−1,+1} and y ∈ {−1,+1}, flip rate P (y 6=203

x) = pbsc, and P (y = x) = 1− pbsc.204

• iid Binary Erasure Channel(BEC), x ∈ {−1,+1} and y ∈ {−1, 0,+1}, while y = 0205

represents erasure. Erasure rate P (y = 0) = pbec, and P (y = x) = 1− pbec.206

Figure 10: BEC and BSC performance

On BSC channel, TurboAE-binary and Turbo works nearly the same, which implies that AWGN-207

trained TurboAE can generalize to BSC channel.208
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On BEC channel, TurboAE-binary trained on AWGN works worse than Turbo, since on AWGN209

channel there doesn’t exist erasure. However TurboAE fine-tuning on BEC channel still has gap210

comparing to Turbo. The result shows that the trainability of TurboAE still needs improvement.211

3.4 Interleaved Encoding Visualization212

We test the random coding effect of interleaved encoder with 2 same message, u1 and u2, and213

perturb at position index 20, which makes the only difference between u1 and u2 is s1[20] = 1.0214

and s1[20] = 0.0. We plot the absolute maximized code difference |fθ(s1) − fθ(s2)| for all three215

encoding blocks. With interleaved encoder, one single message bit change (at code bit 20) can cause216

random non-adjacent bits (at code bit 75) to change, which adds encoding randomness, shown in217

Figure 11.218

Figure 11: Randomness added via interleaving
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