
Appendix

Proof of Theorem 2.2: First, we write a relaxation of (6):

max

X2Rn⇥n
g(hB1, Xi+ ↵1, . . . , hBk, Xi+ ↵k) subject to (7)

tr(X)  d (8)

0 � X � In (9)

Since g(x) is concave in x 2 Rk
and hBi, Xi + ↵i is affine in X 2 Rn⇥n

, we have that g as a

function of X is also concave in X . By assumptions on g, and the fact that the feasible set is convex

and bounded, we can solve the convex program in polynomial time, e.g. by ellipsoid method, to

obtain a (possibly high-rank) optimal solution

¯X 2 Rn⇥n
. (In the case that fi is linear, the relaxation

is also an SDP and may be solved faster in theory and practice). By assumptions on g, without loss of

generality, we let g be nondecreasing in the first coordinate. To reduce the rank of

¯X , we consider an

SDP(II):
max

X2Rn⇥n
hB1, Xi subject to (10)

hBi, Xi =

⌦
Bi, ¯X

↵
8 2  i  k (11)

tr(X)  d (12)

0 � X � In (13)

SDP(II) has a feasible solution

¯X of objective hB1, Xi and note that there are k � 1 constraints

in (11). Hence, we can apply the algorithm in Theorem 1.7 with m = k � 1 to find an extreme

solution X⇤
of SDP(II) of rank at most r⇤. Since g is nondecreasing in hB1, Xi, optimal solutions to

SDP(II) gives objective value g at least the optimum of the relaxation and hence at least the optimum

of the original MULTI-CRITERIA-DIMENSION-REDUCTION problem. 2

Another way to state Theorem 2.2 is that the number of groups must reach

(s+1)(s+2)
2 before additional

s dimensions in the solution matrix P is required to achieve the optimal objective value. For k = 2,

no additional dimension in the solution is necessary to attain the optimum. We state this fact as

follows. In particular, it applies to FAIR-PCA with two groups, proving Theorem 1.1.

Corollary 3.1. The (f, g)-MULTI-CRITERIA-DIMENSION-REDUCTION problem on two groups can
be solved in polynomial time.

4 Approximation algorithm for FAIR-PCA

Recall that we require s :=
jq

2k +

1
4 �

3
2

k
additional dimensions for the projection to achieve the

optimal objective. One way to ensure that the algorithm outputs d-dimensional projection is to solve

the problem in lower target dimension d� s, then apply the rounding described in Section 2. The

relationship of objectives between problems with target dimension d� s and d is at most

d�s
d factor

apart for FAIR-PCA problem because the objective scales linearly with P , giving an approximation

guarantee of 1� s
d . Recall that given A1, . . . , Ak, FAIR-PCA problem is to solve

max

P :PTP=Id
min

1ik
kAiPk2F = hAT

i Ai, PPT i

We state the approximation guarantee and the algorithm formally as follows.

Corollary 4.1. Let A1, . . . , Ak be data sets of k groups and suppose s :=

jq
2k +

1
4 �

3
2

k
< d.

Then there exists a polynomial-time approximation algorithm of factor 1 � s
d = 1 � O(

p
k)

d to
FAIR-PCA problem.

Proof. We find an extreme solution X⇤
of the FAIR-PCA problem of finding a projection from n to

d� s target dimensions. By Theorem 2.2, the rank of X⇤
is at most d.

Denote OPTd, X
⇤
d the optimal value and an optimal solution to FAIR-PCA with target dimension d.

Note that

d�s
d X⇤

d is a feasible solution to FAIR-PCA relaxation on target dimension d� s which is

at least

d�s
d OPTd because the objective scales linearly with X . Therefore, the optimal FAIR-PCA

relaxation of target dimension d�s attains optimum at least

d�s
d OPTd, giving (1� s

d )-approximation

ratio.
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5 Iterative rounding framework with applications to FAIR-PCA

In this section, we first prove Theorem 1.8.

We give an iterative rounding algorithm. The algorithm maintains three subspaces that are mutually

orthogonal. Let F0, F1, F denote matrices whose columns form an orthonormal basis of these

subspaces. We will also abuse notation and denote these matrices by sets of vectors in their columns.

We let the rank of F0, F1 and F be r0, r1 and r, respectively. We will ensure that r0 + r1 + r = n,

i.e., vectors in F0, F1 and F span Rn
.

We initialize F0 = F1 = ; and F = In. Over iterations, we increase the subspaces spanned by

columns of F0 and F1 and decrease F while maintaining pairwise orthogonality. The vectors in

columns of F1 will be eigenvectors of our final solution with an eigenvalue of 1. In each iteration,

we project the constraint matrices Ai orthogonal to F1 and F0. We will then formulate a residual

SDP using columns of F as a basis and thus the newly constructed matrices will have size r ⇥ r.

To readers familiar with the iterative rounding framework in linear programming, this generalizes

the method of fixing certain variables to 0 or 1 and then formulating the residual problem. We also

maintain a subset of constraints indexed by S where S is initialized to {1, . . . ,m}.

The algorithm is specified in Figure 2. In each iteration, we formulate the following SDP(r) with

variables X(r) which will be a r ⇥ r symmetric matrix. Recall r is the number of columns in F .

max hFTCF,X(r)i
hFTAiF,X(r)i � bi � FT

1 AiF1 i 2 S

tr(X)  d� rank(F1)

0 � X(r) � Ir

1. Initialize F0, F1 to be empty matrices and F = In, S  {1, . . . ,m}.

2. If the SDP is infeasible, declare infeasibility. Else,

3. While F is not the empty matrix.

(a) Solve SDP(r) to obtain extreme point X⇤
(r) =

Pr
j=1 �jvjv

T
j where �j are the

eigenvalues and vj 2 Rr
are the corresponding eigenvectors.

(b) For any eigenvector v of X⇤
(r) with eigenvalue 0, let F0  F0 [ {Fv}.

(c) For any eigenvector v of X⇤
(r) with eigenvalue 1, let F1  F1 [ {Fv}.

(d) Let Xf =

P
j:0<�j<1 �jvjv

T
j . If there exists a constraint i 2 S such that

hFTAiF,Xf i < �(A), then S  S \ {i}.
(e) For every eigenvector v of X⇤

(r) with eigenvalue not equal to 0 or 1, consider the

vectors Fv and form a matrix with these columns and use it as the new F .

4. Return

˜X = F1F
T
1 .

Figure 2: Iterative Rounding Algorithm ITERATIVE-SDP.

It is easy to see that the semi-definite program remains feasible over all iterations if SDP is declared

feasible in the first iteration. Indeed the solution Xf defined at the end of any iteration is a feasible

solution to the next iteration. We also need the following standard claim.

Claim 5.1. Let Y be a positive semi-definite matrix such that Y � I with tr(Y )  l. Let B be real
matrix of the same size as Y and let �i(B) denote the ith largest singular value of B. Then

hB, Y i 
lX

i=1

�i(B).

The following result follows from Corollary 2.1 and Claim 5.1. Recall that

�(A) := max

S✓[m]

b
p

2|S|+1cX

i=1

�i(S).

13



where �i(S) is the i’th largest singular value of

1
|S|

P
i2S Ai.

We let � denote �(A) for the rest of the section.

Lemma 5.2. Consider any extreme point solution X(r) of SDP(r) such that rank(X(r)) > tr(X(r)).
Let X(r) =

Pr
j=1 �jvjv

T
j be its eigenvalue decomposition and Xf =

P
0<�j<1 �jvjv

T
j . Then

there exists a constraint i such that hFTAiF,Xf i < �.

Proof. Let l = |S|. From Corollary 2.1, it follows that number of fractional eigenvalues of X(r)

is at most � 1
2 +

q
2l + 9

4 
p
2l + 1. Observe that l > 0 since rank(X(r)) > tr(X(r)). Thus

rank(Xf ) 
p
2l + 1. Moreover, 0 � Xf � I , thus from Claim 5.1, we obtain that

*
X

j2S

FTAjF,Xf

+


b
p
2l+1cX

i=1

�i

0

@
X

j2S

FTAjF

1

A 
b
p
2l+1cX

i=1

�i

0

@
X

j2S

Aj

1

A  l ·�

where the first inequality follows from Claim 5.1 and second inequality follows since the sum of top l
singular values reduces after projection. But then we obtain, by averaging, that there exists j 2 S
such that

hFTAjF,Xf i <
1

l
· l� = �

as claimed.

Now we complete the proof of Theorem 1.8. Observe that the algorithm always maintains that end of

each iteration, the trace of Xf plus the rank of F1 is at most d. Thus at the end of the algorithm, the

returned solution has rank at most d. Next, consider the solution X = F1F
T
1 + FXfF

T
over the

course of the algorithm. Again, it is easy to see that the objective value is non-increasing over the

iterations. This follows since Xf defined at the end of an iteration is a feasible solution to the next

iteration.

Now we argue the violation in any constraint i. While the constraint i remains in the SDP, the solution

X = F1F
T
1 + FXfF

T
satisfies

hAi, Xi = hAi, F1F
T
1 i+ hAi, FXfF

T i
=hAi, F1F

T
1 i+ hFTAiF,Xf i  hAi, F1F

T
1 i+ bi � hAi, F1F

T
1 i = bi.

where the inequality again follows since Xf is feasible with the updated constraints.

When constraint i is removed it might be violated by a later solution. At this iteration,

hFTAiF,Xf i  �. Thus, hAi, F1F
T
1 i � bi � �. In the final solution, this bound can only

go up as F1 might only become larger. This completes the proof of the theorem.

We now analyze the runtime of the algorithm which contains at most k iterations. Each iteration

requires solving an SDP and eigenvector decompositions over r ⇥ r matrices and recomputing F .

The SDP has runtime O(r6.5) which exceeds eigenvector decomposition and computing Xf , F takes

O(n2
). However, the result in Section 2 shows that r 

p
2k, and hence the total runtime of iterative

rounding is O(k4.25 + kn2
).

Application to FAIR-PCA . For the FAIR-PCA problem, iterative rounding recovers a rank-d
solution whose variance goes down from the SDP solution by at most �({AT

1 A1, . . . , A
T
kAk}).

While this is no better than what we get by scaling (Corollary 4.1) for the max variance objective

function, when we consider the marginal loss, i.e., the difference between the variance of the common

d-dimensional solution and the best d-dimensional solution for each group, then iterative rounding

can be much better. The scaling solution guarantee relies on the max-variance being a concave

function and for the marginal loss, the loss for each group could go up proportional to the largest max

variance (largest sum of top k singular values over the groups). With iterative rounding applied to the

SDP solution, the loss � is the sum of only O(

p
k) singular values of the average of some subset of

data matrices, so it can be better by as much as a factor of

p
k.
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6 Polynomial time algorithm for fixed number of groups

Functions of quadratic maps. We briefly summarize the approach of Grigoriev and Pasechnik

[2005]. Let f1, . . . , fk : Rn ! R be real-valued quadratic functions in n variables. Let p : Rk ! R
be a polynomial of degree ` over some subring of Rk

(e.g., the usual (⇥,+) or (+,min)) The

problem is to find all roots of the polynomial p(f1(x), f2(x), . . . , fk(x)), i.e., the set

Z = {x : p(f1(x), f2(x), . . . , fk(x)) = 0}.

First note that the set of solutions above is in general not finite and is some manifold and highly

non-convex. The key idea of Grigoriev and Paleshnik (see also Barvinok Barvinok [1993] for a similar

idea applied to a special case) is to show that this set of solutions can be partitioned into a relatively

small number of connected components such that there is an into map from these components to roots

of a univariate polynomial of degree (`n)O(k)
; this, therefore, bounds the total number of components.

The proof of this mapping is based on an explicit decomposition of space with the property that if a

piece of the decomposition has a solution, it must be the solution of a linear system. The number of

possible such linear systems is bounded as nO(k)
, and these systems can be enumerated efficiently.

The core idea of the decomposition starts with the following simple observation that relies crucially

on the maps being quadratic (and not of higher degree).

Proposition 6.1. The partial derivatives of any degree d polynomial p of quadratic forms fi(x),
where fi : Rn ! R, is linear in x for any fixed value of {f1(x), . . . , fk(x)}.

To see this, suppose Yj = fj(x) and write

@p

@xi
=

kX

j=1

@p(Y1, . . . , Yk)

@Yj

@Yj

@xi
=

kX

j=1

@p(Y1, . . . , Yk)

@Yj

@fj(x)

@xi
.

Now the derivatives of fj are linear in xi as fj is quadratic, and so for any fixed values of Y1, . . . , Yk,

the expression is linear in x.

The next step is a nontrivial fact about connected components of analytic manifolds that holds in

much greater generality. Instead of all points that correspond to zeros of p, we look at all “critical”

points of p defined as the set of points x for which the partial derivatives in all but the first coordinate,

i.e.,

Zc = {x :

@p

@xi
= 0, 82  i  n}.

The theorem says that Zc will intersect every connected component of Z [Grigor’ev and Vorobjov Jr,

1988].

Now the above two ideas can be combined as follows. We will cover all connected components of Zc.

To do this we consider, for each fixed value of Y1, . . . , Yk, the possible solutions to the linear system

obtained, alongside minimizing x1. The rank of this system is in general at least n� k after a small

perturbation (while Grigoriev and Pasechnik [2005] uses a deterministic perturbation that takes some

care, we could also use a small random perturbation). So the number of possible solutions grows only

as exponential in O(k) (and not n) and can be effectively enumerated in time (`d)O(k)
. This last step

is highly nontrivial and needs the argument that over the reals, zeros from distinct components need

only to be computed up to finite polynomial precision (as rationals) to keep them distinct. Thus, the

perturbed version still covers all components of the original version. In this enumeration, we check

for true solutions. The method actually works for any level set of p, {x : p(x) = t} and not just its

zeros. With this, we can optimize over p as well. We conclude this section by paraphrasing the main

theorem from Grigoriev and Pasechnik [2005].

Theorem 6.2. [Grigoriev and Pasechnik, 2005] Given k quadratic maps q1, . . . , qk : Rk ! R and a
polynomial p : Rk ! R over some computable subring of R of degree at most `, there is an algorithm
to compute a set of points satisfying p(q1(x), . . . , qk(x)) = 0 that meets each connected component
of the set of zeros of p using at most (`n)O(k) operations with all intermediate representations
bounded by (`n)O(k) times the bit sizes of the coefficients of p, q1, . . . , qk. The minimizer, maximizer
or infimum of any polynomial r(q1(x), . . . , qk(x)) of degree at most ` over the zeros of p can also be
computed in the same complexity.
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6.1 Proof of Theorem 1.6

We apply Theorem 6.2 and the corresponding algorithm as follows. Our variables will be the entries

of an n⇥d matrix P . The quadratic maps will be fi(P ) plus additional maps for qii(P ) = kPik2� 1

and qij(P ) = PT
i Pj for columns Pi, Pj of P . The final polynomial is

p(f1, . . . , fk, q11, . . . , qdd) =
X

ij

qij(P )

2.

We will find the maximum of the polynomial r(f1, . . . fk) = g(f1, . . . , fk) over the set of zeros of

p using the algorithm of Theorem 6.2. Since the total number of variables is dn and the number of

quadratic maps is k + d(d+ 1)/2, we get the claimed complexity of O(`dn)O(k+d2)
operations and

this times the input bit sizes as the bit complexity of the algorithm.

7 Hardness

Theorem 7.1. The FAIR-PCA problem:

max

z2R,P2Rn⇥d
z subject to (14)

⌦
Bi, PPT

↵
� z , 8i 2 [k] (15)

PTP = Id (16)

for arbitrary n⇥ n symmetric real PSD matrices B1, . . . , Bk is NP-hard for d = 1 and k = O(n).

Proof of Theorem 7.1: We reduce another NP-hard problem of MAX-CUT to the stated fair PCA

problem. In MAX-CUT, given a simple graph G = (V,E), we optimize

max

S✓V
e(S, V \ S) (17)

over all subset S of vertices. Here, e(S, V \ S) = |{eij 2 E : i 2 S, j 2 V \ S}| is the size of the

cut S in G. As common NP-hard problems, the decision version of MAX-CUT:

9?S ✓ V : e(S, V \ S) � b (18)

for an arbitrary b > 0 is also NP-hard. We may write MAX-CUT as an integer program as follows:

9?v 2 {�1, 1}V :

1

2

X

ij2E

(1� vivj) � b (19)

Here vi represents whether a vertex i is in the set S or not:

vi =

⇢
1 i 2 S

�1 i /2 S
(20)

and it can be easily verified that the objective represents the desired cut function.

We now show that this MAX-CUT integer feasibility problem can be formulated as an instance of the

fair PCA problem (14)-(16). In fact, it will be formulated as a feasibility version of the fair PCA by

checking if the optimal z of an instance is at least b. We choose d = 1 and n = |V | for this instance,

and we write P = [u1; . . . ;un] 2 Rn
. The rest of the proof is to show that it is possible to construct

constraints in the fair PCA form (15)-(16) to 1) enforce a discrete condition on ui to take only two

values, behaving similarly as vi; and 2) check an objective value of MAX-CUT.

The reason ui as written cannot behave exactly as vi is that constraint (16) requires

Pn
i=1 ui

2
= 1

but

Pn
i=1 vi

2
= n. Hence, we scale the variables in MAX-CUT problem by writing vi =

p
nui and

rearrange terms in (19) to obtain an equivalent formulation of MAX-CUT:

9?u 2 {� 1p
n
,

1p
n
}n : n

X

ij2E

�uiuj � 2b� |E| (21)
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We are now ready to give an explicit construction of {Bi}ki=1 to solve MAX-CUT formulation (21).

Let k = 2n+ 1. For each j = 1, . . . , n, define

B2j�1 = bn · diag(ej), B2j =
bn

n� 1

· diag(1� ej)

where ej and 1 denote vectors of length n with all zeroes except one at the jth coordinate, and with

all ones, respectively. It is clear that B2j�1, B2j are PSD. Then for each j = 1 . . . , n, the constraints⌦
B2j�1, PPT

↵
� b and

⌦
B2j , PPT

↵
� b are equivalent to

u2
j �

1

n
, and

X

i 6=j

u2
j �

n� 1

n

respectively. Combining these two inequalities with

Pn
i=1 u

2
i = 1 forces both inequalities to be

equalities, implying that uj 2 {� 1p
n
, 1p

n
} for all j 2 [n], as we aim.

Next, we set

B2n+1 =

bn

2b� |E|+ n2
· (nIn �AG)

where AG = (I[ij 2 E])i,j2[n] is the adjacency matrix of the graph G. Since the matrix nIn �AG

is diagonally dominant and real symmetric, B2n+1 is PSD. We have that

⌦
B2n+1, PPT

↵
� b is

equivalent to

bn

2b� |E|+ n2

0

@n

nX

i=1

u2
i �

X

ij2E

uiuj

1

A � b

which, by

Pn
i=1 u

2
i = 1, is further equivalent to

n
X

ij2E

�uiuj � 2b� |E|

To summarize, we constructed B1, . . . , B2n+1 so that checking whether an objective of fair PCA

is at least b is equivalent to checking whether a graph G has a cut of size at least b, which is NP-hard. 2

8 Integrality gap

We showed that FAIR-PCA for k = 2 groups can be solved up to optimality in polynomial time using

an SDP. For k > 2, we used a different, non-convex approach to get a polytime algorithm for any

fixed k, d. Here we show that the SDP relaxation of FAIR-PCA has a gap even for k = 3 and d = 1.

Lemma 8.1. The FAIR-PCA SDP relaxation:
max z

hBi, Xi � z i 2 {1, . . . , k}
tr(X)  d

0 � X � I

for k = 3, d = 1, and arbitrary PSD {Bi}ki=1 contains a gap, i.e. the optimum value of the SDP
relaxation is different from one of exact FAIR-PCA problem.

Proof of Lemma 8.1: Let B1 =


2 1

1 1

�
, B2 =


1 1

1 2

�
, B3 =


2 �1
�1 2

�
. It can be checked that

Bi are PSD. The optimum of the relaxation is 7/4 (given by the optimal solution X =


1/2 1/8
1/8 1/2

�
).

However, an optimal exact FAIR-PCA solution is

ˆX =


16/17 4/17
4/17 1/17

�
which gives an optimum

26/17 (one way to solve for optimum rank-1 solution

ˆX is by parameterizing

ˆX = v(✓)v(✓)T for

v(✓) = [cos ✓; sin ✓], ✓ 2 [0, 2⇡)). 2
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Figure 3: NSW objective of standard PCA compared to our SDP-based algorithms on Default Credit

data. SDPRoundNSW and SDPRoundMar-Loss are two runs of the SDP algorithms maximizing

NSW objective and minimizing maximum marginal loss. Left: k = 4 groups. Right: k = 6.

Figure 4: Marginal loss and NSW objective of standard PCA compared to our SDP-based algorithms

on Adult Income data. SDPRoundNSW and SDPRoundMar-Loss are two runs of the SDP algorithms

maximizing NSW objective and minimizing maximum marginal loss.

9 Extended experiments

We also assess the performance of PCA with NSW objective, summarized in Figure 3. For NSW,

standard PCA performs marginally worse (about 10%) compared to our algorithms. It is worth

noting from Figures 1 and 3 that our algorithms that try to optimize either marginal loss function or

NSW also perform well on the other fairness objective, making these PCAs promising candidates for

fairness application.

The same experiments were done on the Adult Income data [Repository]. Some categorial features

are preprocessed into integers vectors and some categorical features and rows with missing values

are discarded. The final preprocessed data contains m = 32560 data points in n = 59 dimensions,

partitioned into k = 5 groups based on race. Figure 4 shows the performance of our SDP-based

algorithms compared to standard PCA on marginal loss and NSW objectives. Similar to the Credit

Data, optimizing either marginal loss or NSW gives a PCA solution that also performs well in another

criterion, and better than the standard PCA in both objectives. Almost all SDP solutions are exact

without any rank violation.

We found that the running time of solving SDP, which depends on n, is the bottleneck in all

experiments. Each run (for one value of d) of the experiments is fast (< 0.5 seconds) on Default

Credit data which has n = 23, whereas one on Adult Income data (n = 59) takes between 10 and

15 seconds. However, it is worth noting that the runtime does not increase in noticeably from the

numbers of data points and groups: larger m only increases the data preprocessing time to obtain

n⇥ n matrices and larger k increases the number of constraints. SDP solver and rounding algorithms

can handle a moderate number of affine constraints efficiently. This observation is as expected from

the theoretical analysis.

18


	Introduction
	Results and techniques
	Related work

	Low-rank solutions of Multi-Criteria-Dimension-Reduction 
	Experiments
	Approximation algorithm for Fair-PCA 
	Iterative rounding framework with applications to Fair-PCA 
	Polynomial time algorithm for fixed number of groups
	Proof of Theorem 1.6

	Hardness
	Integrality gap
	Extended experiments

