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Abstract

Models of disease progression are instrumental for predicting patient outcomes
and understanding disease dynamics. Existing models provide the patient with
pragmatic (supervised) predictions of risk, but do not provide the clinician with
intelligible (unsupervised) representations of disease pathology. In this paper, we
develop the attentive state-space model, a deep probabilistic model that learns
accurate and interpretable structured representations for disease trajectories. Unlike
Markovian state-space models, in which state dynamics are memoryless, our model
uses an attention mechanism to create “memoryful” dynamics, whereby attention
weights determine the dependence of future disease states on past medical history.
To learn the model parameters from medical records, we develop an inference algo-
rithm that jointly learns a compiled inference network and the model parameters,
leveraging the attentive representation to construct a variational approximation of
the posterior state distribution. Experiments on data from the UK Cystic Fibrosis
registry show that our model demonstrates superior predictive accuracy, in addition
to providing insights into disease progression dynamic.

1 Introduction

Chronic diseases — such as cardiovascular disease, cancer and diabetes — progress slowly throughout
a patient’s lifetime, causing increasing burden to the patients, their carers, and the healthcare delivery
system [1]. The advent of modern electronic health records (EHR) provides an opportunity for
building models of disease progression that can predict individual-level disease trajectories, and
distill intelligible and actionable representations of disease dynamics [2]. Models that are both
highly accurate and capable of extracting knowledge from data are important for informing practice
guidelines and identifying the patients’ needs and interactions with health services [3, 4, 5, 6].

In this paper, we develop a deep probabilistic model of disease progression that capitalizes on both
the interpretable structured representations of probabilistic models and the predictive strength of deep
learning methods. Our model uses a state-space representation to segment a patient’s disease trajectory
into “stages” of progression that manifest through clinical observations. But unlike conventional
state-space models, which are predominantly Markovian, our model uses recurrent neural networks
(RNN) to capture more complex state dynamics. The proposed model learns hidden disease states
from observational data in an unsupervised fashion, and hence it is suitable for EHR data where a
patient’s record is seldom annotated with “labels” indicating their true health state [7].

Our model uses an atfention mechanism to capture state dynamics, hence we call it an atfentive state-
space model. The attention mechanism observes the patient’s clinical history, and maps it to attention
weights that determine how much influence previous disease states have on future state transitions. In
that sense, attention weights generated for an individual patient explain the causative and associative
relationships between the hidden disease states and the past clinical events for that patient. Because
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Figure 1: Sequential data models. (a) Graphical model for an RNN. ¢ denotes a deterministic representation,
(b) Graphical model for an HMM. () denotes probabilistic states, (c) Graphical depiction of an attentive state
space model. With a slight abuse of graphical model notation, thickness of arrows reflect attention weights.

the attention mechanism can be made arbitrarily complex, our model can capture complex dynamics
while maintaining its structural interpretability. We implement this dynamic attention mechanism via
a sequence-to-sequence RNN architecture [8].

Because our model is non-Markovian, inference of posterior disease states is intractable and cannot
be conducted using standard forward-backward routines (e.g., [9, 10, 11]). To address this issue, we
devise a structured inference network trained to predict posterior state distributions by mimicking the
attentive structure of our model. The inference network shares attention weights with the generative
model, and uses those weights to create summary statistics needed for posterior state inference. We
jointly train the inference and model networks using stochastic gradient descent.

To demonstrate the practical significance of the attentive state-space model, we use it to model
the progression trajectories of breast cancer using data from the UK Cystic Fibrosis registry. Our
experiments show that attentive state-space models can extract clinically meaningful representations
of disease progression while maintaining superior predictive accuracy for future outcomes.

Related work. Various predictive models based on RNNs have been recently developed for healthcare
settings — e.g., “Doctor AI” [12], “L2D” [13], and “Disease-Atlas” [14]. Unfortunately, RNNs are
of a “black-box” nature since their hidden states do not correspond to clinically meaningful variables
(Figure 1a). Thus, all the aforementioned methods do not provide an intelligible model of disease
progression, but are rather limited to predicting a target outcome.

There have been various attempts to create interpretable RNN-based predictive models using attention.
The models in [15, 16, 17] use a reverse-time attention mechanism to learn visit-level attention weights
that explain the predictions of an RNN. The main difference between the way attention is used in our
model and the way it is used in models like “RETAIN” [15] is that our model applies attention to
the latent state space, whereas RETAIN applies attention to the observable sample space. Hence,
attention gives different types of explanations in the two models. In our model, attention interprets
the hidden disease dynamics, hence it provides an explanation for the mechanisms underlying disease
progression. On the contrary, RETAIN uses attention to measure feature importance, hence it can
only explain discriminative predictions, but not the underlying generative disease dynamics.

Almost all existing models of disease progression are based on variants of the HMM model [18, 9, 19].
Disease dynamics in such models are very easily interpretable as they can be perfectly summarized
through a single matrix of probabilities that describes transition rates among disease states. Markovian
dynamics also simplify inference because the model likelihood factorizes in a way that makes efficient
forward and backward message passing possible. However, memoryless Markov models assume
that a patient’s current state d-separates her future trajectory from her clinical history (Figure 1b).
This renders HMM-based models incapable of properly explaining the heterogeneity in the patients’
progression trajectories, which often results from their varying clinical histories or the chronologies
(timing and order) of their clinical events [5]. This limitation is crucial in complex chronic diseases
that are accompanied with multiple morbidities. Our model addresses this limitation by creating
memoryful state transitions that depend on the patient’s entire clinical history (Figure 1c).

Most existing works on deep probabilistic models have focused on developing structured inference
algorithms for deep Markov models and their variants [20, 10, 21, 22, 23]. All such models use
neural networks to model the transition and emission distributions, but are limited to Markovian
dynamics. Other works develop stochastic versions of RNNs for the sake of generative modeling;
examples include variational RNNs [24], SRNN [25], and STORN [26]. These models augment
stochastic layers to an RNN in order to enrich its output distribution. However, transition and



emission distributions in such models cannot be decoupled, and hence their latent states do not map
to clinically meaningful identification of disease states. To the best of our knowledge, ours is the
first deep probabilistic model that provides clinically meaningful latent representations, with non-
Markovian state dynamics that can be made arbitrarily complex while remaining interpretable.

2 Attentive State-Space Models

2.1 Structure of the EHR Data

A patient’s EHR record, denoted as &, is a collection of sequential follow-up data gathered during
repeated hospital visits. We represent a given patient’s record as

Fr = {z ), (1)

where z; is the follow-up data collected during the t*" hospital visit, and 7" is the total number of
visits. The follow-up data x; € X is a multi-dimensional vector that comprises information on
biomarkers and clinical events, such as treatments and ICD-10 diagnosis codes [2].

2.2 Attentive State-Space Representation

We model the progression trajectory of the target disease via a state-space representation. That is, at
each time step ¢, the patient’s health is characterized by a state z; € Z which manifests through the
follow-up data x;. The state space is the (discrete) set of all possible stages of disease progression
Z ={1,...,K}. In general, progression stages correspond to distinct disease phenotypes. For
instance, chronic kidney disease progresses through 5 stages (Stage I to Stage IV), each of which
corresponds to a different level of renal dysfunction [27]. We assume that {z; }; is hidden, i.e., the
true health state of a patient is not observed, and should be learned in an unsupervised fashion. We
model the joint distribution of states and observations via the following factorization:

T
po(Er, Zr) = [ [ po(wr|20) polae| o1, Zi 1), )
t=1 —
Emission Transition
where 2y = {z1,...,2t}, 1 <t < T, and 6 is the set of parameters of our model.

Attentive state transitions. What makes the model in (2) differ from standard state-space models?
The main difference is that the transition probability in (2) assumes that the patient’s health state
at time ¢ depends on their entire history (&;_1, Z;—1). This is a major departure from the standard
Markovian assumption, which posits that pg(z; | £1—1,Z1—1) = pe(z¢|2i—1), i.e., future states
depend only on current state. Most existing disease progression models are Markovian (e.g., [9, 18]).

To capture non-Markovian dynamics, we model the state transition distribution as follows:
po(2t| Ti-1, Z1-1) = po(2t | G, Z1-1), 3)

where @, = {at,...,al_i}, af € [0,1],Vi, Y, af = 1, is a set of artention weights that act as
sufficient statistics of future states. The attention weights admit to a simple interpretation: they
determine the influences of past state realizations on future state transitions via the linear dynamic

t—1
po(ze |Gy, Zy1) = Za;tﬂ P(zy,2), Vt > 1, 4)
=1

where P is a baseline state transition matrix, i.e., P = p;; € [0,1], 3=, p;; = 1, and the initial state

distribution is 7 = [py, . .., px |. The attention weights &; assigned to all previous state realizations
at time ¢ are generated using the patient’s context &, via an attention mechanism A as follows:
Gy = Ay (Te). )

where A is a deterministic algorithm that generates a sequence of functions {A4;}, A, : Xt — [0, 1]°.
We specify our choice of the attention mechanism in Section 2.3.

Emission distribution. The follow-up data z; = (x¢, x?) comprises both a continuous component
¢ (e.g., biomarkers and test results) and a binary component z¥ (e.g., clinical events and ICD-10



codes). To capture both components, we model the emission distribution in (2) through the following
factors pg (¢ | 2¢) = po(x? | ¢, 2¢) - po(x§ | 2¢), where

po(2S | 2t) = N (2, 22,), polal|x, z) = Bernoulli(Logistic(z¢, A, )). (6)

The model in (6) specifies a state-specific distribution for binary (Bernoulli) and continuous (Gaussian)
variables, with state-specific emission distribution parameters (1.,, >.,, A;, ). This, an attentive state-
space model can be completely specified through the parameter set § = (7w, P, A, u, 3, A).

Generality of the attentive representation. For particular choices of the attention mechanism in
(4), our model reduces to various classical models of sequential data as shown in Table 1.

The generality of the attentive

L Model Attention mechanism
state representation is a powerful
feature because it implies that by HMM [9] af 1 =1a=0,j<t—2.
learning the attention functions Order-m HMM [28] al = 1mejcrny, j < t—2.

{A;}+, we are effectively testing
the structural assumptions of var-  Variable-order HMM [29] aj e{0,n '} n=3, Liat>qy-
ious commonly-used time series
models in a data-driven fashion.

Table 1: Representation of familiar elementary functions in terms of.

2.3 Sequence-to-sequence Attention Mechanism

To complete the specification of our model, we now specify the attention mechanism A in (5). Recall
that A is a sequence of deterministic functions that map a patient’s context &, to a set of attention
weights &@; at each time step. Since our model must output an entire sequence of attention weights
every time step, we implement A via a sequence-to-sequence (Seq2Seq) model [8].

Attention Weight
Our Seq2Seq model uses LSTM ention el

encoder-decoder architecture as of a3 a3
shown in Figure 2. For each time Encoder 0 ‘3 t t
step t, the patient context &; is LSTM, Softmax Layer

o 6 the L STM encoder. tnd - T ——

the final state of the encoder, h;,
is viewed as a fixed-size repre-
sentation of the patient’s context,
and is passed together with the x T3 T3 T4 0
last output O to the decoder side.

Decoder

Figure 2: Seq2Seq architecture for the attention mechanism A.

In the decoding phase, the last state of the encoding LSTM is used as an initial state of the decoding
LSTM, and O is used as its first input. Then, the decoding LSTM iteratively uses its output at
one time step as its input for the next step. After ¢ — 1 decoding iterations, we collect the t — 1
(normalized) attention weights via a Softmax output layer.

The main difference between our architecture and other Seq2Seq models — often used in language
translation tasks [30, 8] — is that in our case, we learn an entire sequence of attention weights for
each of the T" data vectors in Zp. We achieve this by running ¢ — 1 decoding iterations to collect
t — 1 outputs for every single encoding step. Moreover, in our setup attention sequence is the target
sequence being learned. This should not be confused with other Seq2Seq schemes with attention,
where attention is used as an intermediate representation within a decoding procedure [31].

2.4 Why Attentive State Space Modeling?

Most existing models of disease progression are based on Hidden Markov models [19, 9, 18, 32].
However, the Markovian dynamic is oversimplified: in reality, a patient transition to a given state
depends not only on her current stage, but also on her individual history of past clinical events
[1]. In this sense, a Markov models is of a “one-size-fits-all” nature — under a Markov model, all
patients at the same stage of progression would have the same expected future trajectory, irrespective
of their potentially different individual clinical histories. Because Markov models explain away
individual-level variations in progression trajectories, their interpretable nature should be thought



of as a bug and not a feature, i.e., a Markov model is easily interpretable only because it does not
explain much, it only encodes our own prior assumptions about disease dynamics.

Attentive state space models overcome the shortcomings of Markov models by using attention
weights to create non-stationary, variable-order generalization of Markovian transitions, whereby the
dynamics of each patient changes over time based on her individual clinical context. An attentive state
model can learn state dynamics that are as complex as those of an RNN, but through the factorization
in (2), it ensures that its hidden states correspond to clinically meaningful disease states.

3 Attentive Variational Inference

Learning the model parameter 6 and inferring a patient’s health state in real-time requires computing
the posterior py(Z; | Z1). However, the non-Markovian nature of our model renders posterior compu-
tation intractable. In this Section, we develop a variational learning algorithm that jointly learns the
model parameter 6 and a structured inference network that approximates the posterior py(Z; | Z:).
We show that the attentive representation proposed in Section 2 is useful not only for improving
predictions and extracting clinical knowledge, but also can help improve structured inference.

3.1 Variational Lower Bound
In variational learning, we maximize an evidence lower bound (ELBO) for the data likelihood, i.e.,
log po(€1) > Ey, [logpe(Zr, Z1) — log qs(Zr | 1) ],

where ¢y (Z7 | 1) is a variational distribution that approximates the posterior pg(Zr | Zr). We
model the variational distribution g, (27 | 1) using an inference network that is trained jointly with
the model through the following optimization problem [33, 34]:

0, ¢* = arg né}%x Eqy, [log pe(€r, Z7) — log q¢(Z7 | Z1)] - @)

By estimating 6 and ¢ from the EHR data, we recover the generative model pg (&7, Z7), through
which we can extract clinical knowledge, and the inference network g, (Z'r | 1), through which we
can use to infer the health trajectory of the patient at hand.

3.2 Attentive Inference Network

We construct the inference network g4 (Z7 | 1) so that it mimics the structure of the true posterior
[20]. Recall that the posterior factorizes as follows:

T

po(Zr |&1) = po(z1 | &r) [ [ po (2t | &1, oy, Erer).
=2

Consequently, we impose a similar factorization on the inference network, i.e.,

T

44(Zr | E1) = qo(21 | Z1) H%(Zt |G —1, 241, B.r). ¥
=2

To capture the factorization in (8), we use the architecture in Figure 3 to construct an inference
network that mimics the attentive structure of the generative model. In this architecture, a “combiner
function” C(.) is fed with all the sufficient statistics of a state z;, and outputs its posterior distribution.
The combiner uses the attention weights created by A to condense summary statistics of z;.

As dictated by (8), the parent nodes of z; are the attention weights &, the previous states Z;_; and
the future observations #;.7. The inference network encodes these sufficient statistics as follows.
The attention weights & are shared with the attention network in Figure 2. The future observations
.7 are summarized at time ¢ via a backward LSTM that reads Z7 in a reversed order as shown in
Figure 3. Finally, the previous states Z;_; are sampled from the combiner functions at previous time
steps as described below.
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. . Figure 3: Attentive inference network.
of the combiner function.

The combiner function estimates the posterior p, by emulating the state transition model in (4), i.e.,

P forward = Soihob P(Zy k), k€ {1,..., K},

t t =t ~
hq = [h’q’pl,forward' . "pK,forward]’

P, = Softmax(WqTﬁZ + by). (10)

As shown in (10), the combiner emulates the generative model to compute an estimate of the “filtering”
distribution pf, ¢,,ara = Pe(2t | E1), i.€., it attends to previously sampled states with proportions
determined by the attention weights. Then, to augment information from the future observations &;.r,
it concatenates the filtering distribution with the backward LSTM state and estimates the posterior
through a Softmax output layer.

3.3 Learning with Stochastic Gradient Descent

In order to simultaneously learn the parameters of the generative model and inference network, we
use stochastic gradient descent to solve (7) as follows:

L. Sample (Eii)a e '72¥)) ~ q¢(2T | fT), = ].7 .. .,N.
2. Estimate ELBO £ = + 3. lo 4(Z7, 27, ..., 2).

3. Estimate the gradients V£ and V¢ﬁ.
4. Update ¢ and 6.

In Step 2, the term ¢y 4(.) denotes the objective function in (7). We estimate the gradients in Step 3
via stochastic backpropagation [35]. In Step 4, we use ADAM [36] to update the parameters of the
attention mechanism (Figure 2) and the inference network (Figure 3). The emission parameters are
updated straightforwardly by their maximum likelihood estimates.

Rao-Blackwellization via attention. As we have seen, our attentive inference network architecture
enables sharing parameters between the generative model and the inference model, which would
definitely accelerate learning. Another key advantage of the attentive structure gy (2; | 1) is that it
acts as a Rao-Blackwellization of the conventional structured inference network which conditions on
all observation (i.e., gy (2¢ | ©r) [20, 11, 21]). Because attention weights (together with Z;_;) and
&:.7)) act as sufficient statistics for state transitions, our inference networks guides the posterior to
focus only on the pieces of information that matter. Rao-Blackwellization helps reduce the variance
of gradient estimates (Step 3 in the learning algorithm above), and hence accelerate learning [37].



4 Experiments

In this Section, we use our attentive state-space framework to model cystic fibrosis (CF) progression
trajectories. CF is a life-shortening disease that causes lung dysfunction, and is the most common
genetic disease in Caucasian populations [38]. Experimental details are listed hereunder.

Implementation. We implemented our model using Tensorflow!. The LSTM cells in both the
attention network (Figure 2) and the inference network (Figure 3) had 2 hidden layers of size 100.
The model and inference networks were trained using ADAM with a learning rate of 5 x 10™4, and a
mini-batch size of 100. The same hyperparameters’ setting was used for all baseline models involving
RNNSs. All prediction results reported in this Section where obtained via 5-fold cross-validation.

Data description. We used data from a cohort of patients enrolled in the UK CF registry, a database
held by the UK CF trust>. The dataset records annual follow-ups for 10,263 patients over the period
from 2008 and 2015, with a total of 60,218 hospital visits. Each patient is associated with 90 variables,
including information on 36 possible treatments, diagnoses for 31 possible comorbidities and 16
possible infections, in addition to biomarkers and demographic information. The FEV1 biomarker (a
measure of lung function) is the main measure of illness severity in CF patients [39].

Training. In Figure 4, we show the model’s log-likelihood
(LL) versus the number of training epochs. As we can see,
the more training iterations we apply, the better the model
likelihood gets: it jumped from —4 x 1076 in the initial
iterations to —8 x 107° after training was completed. The
best value of the log-likelihood is 0, which is achieved when
the inference network g, (2; | €r) coincides with the true
model py(z; | E1), and the observed data likelihood given
the model is 1. Attentive inference is accurate because it © T umber of itertions
utilizes the minimally sufficient set if past information, which

reduces the variance in gradient estimates (Section 3.3).

Log-likelihood (1e-6)

Figure 4: LL vs. training epochs.

Use cases. We assess our model with respect to the two use cases it was designed for: (1) extracting
clinical knowledge on disease progression mechanisms from the data, and (2) predicting a patient’s
health trajectory over time. We assess each use case separately in Sections 4.1 and 4.2.

4.1 Understanding CF Progression Mechanisms

Population-level phenotyping. Our model learned a representation of K = 3 CF progression stages
(Stages 1, 2 and 3) in an unsupervised fashion, i.e., each stage is a realization of the hidden state z;.
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Figure 5: Distribution of observations in each progression stage.

The FEV1 biomarker is currently used by clinicians as a proximal measure of a patient’s health in
order to guide clinical and therapeutic decisions [40]. In order to check that the learned progression
stages correspond to different levels of disease severity, we plot the estimated mean of the emission
distribution for the FEV1 biomarker in Stages 1, 2 and 3 in Figure 5 (left). As we can see from
Figure 5 (left), the mean values of the FEV1 biomarker in each stage were 79%, 68% and 53%,
respectively. These values matched with the cutoff values on FEV1 used in current guidelines for
referring critically-ill patients to a lung transplant [40]. Thus, the learned progression stages can be
translated into actionable information for clinical decision-making.

!The code is provided at ht tps: / /bitbucket .org/mvdschaar/mlforhealthlabpub.
Mttps://www.cysticfibrosis.org.uk/the-work-we-do/uk-cf-registry/
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Diabetes ABPA Depression  Pancreatitus P. Aeruginosa
Model AUC-ROC AUC-ROC AUC-ROC AUC-ROC AUC-ROC

Attentive SS 0.709 £ 0.02 0.787 £0.01 0.751 £0.03 0.696 +=0.04  0.680 £ 0.01

HMM 0.625 £0.02 0.686 £0.03 0.667 £0.08 0.625+0.04 0.610 £ 0.02
RNN 0.634 £0.03 0.727£0.10 0.575£0.01 0.590+0.06 0.654 £ 0.01
LSTM 0.675£0.03 0.740£0.07 0.609£0.12 0.578+0.05 0.671 £0.01
RETAIN 0.610£0.06 0.718 £0.05 0.580£0.09 0.600+0.08 0.676 £ 0.02

Table 2: Performance of the different competing models for the 5 prognostic tasks under consideration.

The progression stages learned by our model represented clinically distinguishable phenotypes with
respect to multiple clinical variables. To illustrate these phenotypes, in Figure 5 (right) we plot the
risks of various comorbities (Diabetes, asthma, ABPA, hypertension and depression) for patients
in the 3 CF progression stages learned by the model. (Those risks were obtained directly from the
learned emission distribution corresponding to the binary component z of the clinical observation
x;.) As we can see, the incidences of those comorbidities and infections increase significantly in the
more severe progression Stages 2 and 3 as compared to Stage 1.

Markovian regime 10

Individualized contextual diagnosis. Population level ° .’ I
modeling of disease stages can be already obtained with . Non-Markovian regime - 0.5
simple HMM models, but our model captures more com- £
plex dynamics that are specific to individuals, and can F ‘ Markovian regime [~ 0.6
be made non-Markovian and non-stationary depending g
on the patient’s context. To demonstrate the complex é o4

O«

and non-stationary nature of the learned state dynamics,
we plot the average attention weights assigned to the
patients’ previous state realizations in every "chrono-
logical" time step of a patient trajectory. The average
attention weights per time step is plotted in Figure 6.
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Previous time steps

Figure 6: Average attention weights over time.

As we can see, a patient’s state trajectory behaves in a quasi-Markovian fashion (only current state
takes all the weight) only on its edges. That is, at the first time step and the last time step, the only
thing that matters for prediction is the patient’s current state. This is because in the first time step, the
patient has no history, whereas in the final step, the patient is already in the most severe state and
hence her current health deterioration depends overrides all past clinical events. Memory becomes
important only in intermediate Stages — this is because patients in Stages 2 and 3 are more likely to
have been diagnosed with more comorbidities in the past.

4.2 Predicting Prognosis

As we have seen in Section 4.2, our model is capable of extracting clinical intelligence from data,
but does this compromise its predictive ability? To test the predictive ability of attentive state-space
models, we sequentially predict the 1-year risk of 4 comorbidities (ABPA, diabetes, depression and
pancreatitus), and 1 lung infections (Pseudomonas Aeruginosa) that are common in the CF population.
We use the area under receiver operating characteristic curve (AUC-ROC) for performance evaluation.
We report average AUC-ROC with 95% confidence intervals. We compare our model with 4 baselines:
a vanilla RNN and an LSTM trained for sequence prediction, a state-of-the-art predictive model for
healthcare data known as RETAIN [17, 15], and an HMM.

As we can see in Table 2, our model did not incur any performance loss when compared to models
trained and tailored for the given prediction task (RNN, LSTM and RETAIN), and was in fact more
accurate on all of the 5 tasks. The source of the predictive power in attentive state-space models
comes from the usage of LSTM networks to model state dynamics in a low-dimensional space that
summarizes the 90 variables associated with each patient. While HMMs can also learn interpretable
representations of disease progression, they displayed modest predictive performance because of their
oversimplified Markovian dynamics. Because attentive state-space models are capable of combining
the interpretational benefits of probabilistic models and the predictive strength of deep learning, we
envision them being used for large-scale disease phenotyping and clinical decision-making.
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