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Abstract

Recently there has been a significant interest in learning disentangled representa-
tions, as they promise increased interpretability, generalization to unseen scenarios
and faster learning on downstream tasks. In this paper, we investigate the usefulness
of different notions of disentanglement for improving the fairness of downstream
prediction tasks based on representations. We consider the setting where the goal is
to predict a target variable based on the learned representation of high-dimensional
observations (such as images) that depend on both the target variable and an
unobserved sensitive variable. We show that in this setting both the optimal and em-
pirical predictions can be unfair, even if the target variable and the sensitive variable
are independent. Analyzing the representations of more than 12 600 trained state-of-
the-art disentangled models, we observe that several disentanglement scores are con-
sistently correlated with increased fairness, suggesting that disentanglement may be
a useful property to encourage fairness when sensitive variables are not observed.

1 Introduction

In representation learning, observations are often assumed to be samples from a random variable x
which is generated by a set of unobserved factors of variation z [6, 14, 53, 89]. Informally, the goal of
representation learning is to find a transformation r(x) of the data which is useful for different down-
stream classification tasks [6]. A recent line of work argues that disentangled representations offer
many of the desired properties of useful representations. Indeed, isolating each independent factor of
variation into the independent components of a representation vector should make it both interpretable
and simplify downstream prediction tasks [6, 7, 29, 35, 56, 58, 60, 74, 82, 87, 89, 90, 1, 28].

Previous work [54, 61] has alluded to a possible connection between the motivations of disentangle-
ment and fair machine learning. Given the societal relevance of machine-learning driven decision
processes, fairness has become a highly active field [4]. Assuming the existence of a complex causal
graph with partially observed and potentially confounded observations [48], sensitive protected
attributes (e.g. gender, race, etc) can leak undesired information into a classification task in different
ways. For example, the inherent assumptions of the algorithm might cause discrimination towards
protected groups, the data collection process might be biased or the causal graph itself might allow
for unfairness because society is unfair [5, 11, 68, 73, 75, 83]. The goal of fair machine learning al-
gorithms is to predict a target variable y through a classifier ŷ without being biased by some sensitive
factors s. The negative impact of s in terms of discrimination within the classification task can be
quantified using a variety of fairness notions, such as demographic parity [10, 97], individual fairness
[21], equalized odds or equal opportunity [34, 94], and concepts based on causal reasoning [48, 55].
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Figure 1: Causal graph and problem setting. We assume the observations x are manifestations of
independent factors of variation. We aim at predicting the value of some factors of variation y without
being influenced by the unobserved sensitive variable s. Even though target and sensitive variable are
in principle independent, they are entangled in the observations by an unknown mixing mechanism.
Our goal for fair representation learning is to learn a good representation r(x) so that any downstream
classifier will be both accurate and fair. Note that the representation is learned without supervision
and when training the classifier we do not observe and do not know which variables are sensitive.

In this paper, we investigate the downstream usefulness of disentangled representations through the
lens of fairness. For this, we consider the standard setup of disentangled representation learning, in
which observations are the result of an (unknown) mixing mechanism of independent ground-truth
factors of variation as depicted in Figure 1. To evaluate the learned representations r(x) of these obser-
vations, we assume that the set of ground-truth factors of variation include both a target factor y, which
we would like to predict from the learned representation, and an underlying sensitive factor s, which
we want to be fair to in the sense of demographic parity [10, 97], i.e. such that p(ŷ = y|s = s1) =
p(ŷ = y|s = s2) ∀y, s1, s2. The key difference to prior work is that in this setting one never observes
the sensitive variable s nor the other factors of variation except the target variable, which is itself only
observed when learning the model for the downstream task. This setup is relevant when sensitive
variables may not be recorded due to privacy reasons. Examples include learning general-purpose
embeddings from a large number of images or building a world model based on video input of a robot.

Our key contributions can be summarized as follows:

• We motivate the setup of Figure 1 and discuss how general-purpose representations can lead to
unfair predictions. In particular, we show theoretically that predictions can be unfair even if we
use the Bayes optimal classifier and if the target variable and the sensitive variable are independent.
Furthermore, we motivate why disentanglement in the representation may encourage fairness of
the downstream prediction models.

• We evaluate the demographic parity of more than 90 000 downstream prediction models trained on
more than 10 000 state-of-the-art disentangled representations on seven different data sets. Our
results indicate that there are considerable dissimilarities between different representations in terms
of fairness, indicating that the representation used matters.

• We relate the fairness of the representations to six different disentanglement scores of the same
representations and find that disentanglement, in particular when measured using the DCI Disen-
tanglement score [22], appears to be consistently correlated with increased fairness.

• We further investigate the relationship between fairness, the performance of the downstream
models and the disentanglement scores. The fairness of the prediction also appears to be correlated
to the accuracy of the downstream predictions, which is not surprising given that downstream
accuracy is correlated with disentanglement.

Roadmap: In Section 2, we briefly review the state-of-the-art approaches to extract and evaluate
disentangled representations. In Section 3, we highlight the role of the unknown mixing mechanism
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on the fairness of the classification. In Section 4, we describe our experimental setup and empirical
findings. In Section 5 we briefly review the literature on disentanglement and fair representation
learning. In Section 6, we discuss our findings and their implications.

2 Background on learning disentangled representations

Consider the setup shown in Figure 1 where the observations x are caused by k independent sources
z1, . . . , zk. The generative model takes the form of [71]:

p(x, z) = p(x | z)
∏
i

p(zi).

Informally, disentanglement learning treats the generative mechanisms as latent variables and aims
at finding a representation r(x) with independent components where a change in a dimension of z
corresponds to a change in a dimension of r(x) [6]. This intuitive definition can be formalized in a
topological sense [35] and in the causality setting [87]. A large number of disentanglement scores
measuring different aspects of disentangled representations have been proposed in recent years.

Disentanglement scores. The BetaVAE score [36] measures disentanglement by training a linear
classifier to predict the index of a fixed factor of variation from the representation. The FactorVAE
score [49] corrects a failure case of the BetaVAE score using a majority vote classifier on the relative
variance of each dimension of r(x) after intervening on z. The Mutual Information Gap (MIG) [13]
computes for each factor of variation the normalized gap on the top two entries in the matrix of
pairwise mutual information between z and r(x). The Modularity [79] measures if each dimension
of r(x) depends on at most one factor of variation using the matrix of pairwise mutual information
between factors and representation dimensions. The Disentanglement metric of [22] (which we call
DCI Disentanglement following [61]) is based on the entropy of the probability that a dimension of
r(x) is useful for predicting z. This probability can be estimated from the feature importance of a
random forest classifier. Finally, the SAP score [54] computes the average gap in the classification
error of the two most predictive latent dimensions for each factor.

Unsupervised methods. State-of-the-art approaches for unsupervised disentanglement learning are
based on representations learned by VAEs [51]. For the representation to be disentangled, the loss
is enriched with a regularizer that encourages structure in the aggregate encoder distribution [2, 14,
13, 24, 36, 49, 65]. In causality, it is often argued that the true generative model is the simplest
factorization of the distribution of the variables in the causal graph [74]. Under this hypothesis,
β-VAE [36] and AnnealedVAE [9] limit the capacity of the VAE bottleneck so that it will be forced
to learn disentangled representations. The Factor-VAE [49] and β-TCVAE [13] enforce that the
aggregate posterior q(z) is factorial by penalizing its total correlation. The DIP-VAE [54] and
approach of [65] introduce a “disentanglement prior” for the aggregated posterior. We refer to
Appendix B of [61] and Section 3 of [89] for a more detailed description of these regularizers.

3 The dangers of general purpose representations for fairness

Our goal in this paper is to understand how disentanglement impacts the fairness of general purpose
representations. For this reason, we put ourselves in the simple setup of Figure 1 where we assume
that the observations x depend on a set of independent ground-truth factors of variation through an
unknown mixing mechanism. The key goal behind general purpose representations is to learn a vector
valued function r(x) that allows us to solve many downstream tasks that depend on the ground-truth
factors of variation. From a representation learning perspective, a good representation should thus
extract most of the information on the factors of variation [6], ideally in a way that enables easy
learning from that representation, i.e., with few samples.

As one builds machine learning models for different tasks on top of such general purpose represen-
tations, it is not clear how the properties of the representations relate to the fairness of the predictions.
In particular, for different downstream prediction tasks, there may be different sensitive variables that
we would like to be fair to. This is modeled in our setting of Figure 1 by allowing one ground-truth
factor of variation to be the target variable y and another one to be the sensitive variable s.1

1Please see Section 4.1 for how this is done in the experiments.
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There are two key differences to prior setups in the fairness literature: First, we assume that one
only observes the observations x when learning the representation r(x) and the target variable y
only when solving the downstream classification task. The sensitive variable s and the remaining
ground-truth factors of variation are not observed. We argue that this is an interesting setting because
for many large scale data sets labels may be scarce. Furthermore, if we can be fair with respect to
unobserved but independent ground-truth factors of variation – for example by using disentangled
representations, this might even allow us to avoid biases for sensitive factors that we are not aware
of. The second difference is that we assume that the target variable y and the sensitive variable s are
independent. While beyond the scope of this paper, it would be also interesting to study the setting
where ground-truth factors of variations are dependent.

Why can representations be unfair in this setting? Despite the fact that the target variable y
and the sensitive variable s are independent may seem like a overly restrictive assumption, we
argue that even in this setting fairness is non-trivial to achieve. Since we only observe x or the
learned representations r(x), the target variable y and the sensitive variable s may be conditionally
dependent. If we now train a prediction model based on x or r(x), there is no guarantee that
predictions will be fair with respect to s.

There are additional considerations: first, the following theorem shows that the fairness notion
of demographic parity may not be satisfied even if we find the optimal prediction model (i.e.,
p(ŷ|x) = p(y|x)) on entangled representations (for example when the representations are the
identity function, i.e. r(x) = x).

Theorem 1. If x is entangled with s and y, the use of a perfect classifier for ŷ, i.e., p(ŷ|x) = p(y|x),
does not imply demographic parity, i.e., p(ŷ = y|s = s1) = p(ŷ = y|s = s2),∀y, s1, s2.

The proof is provided in Appendix A. While this result provides a worst-case example, it should
be interpreted with care. In particular, such instances may not allow for good and fair predictions
regardless of the representations2 and real world data may satisfy additional assumptions not satisfied
by the provided counter example.

Second, the unknown mixing mechanism that relates y, s to x may be highly complex and in
practice the downstream learned prediction model will likely not be equal to the theoretically optimal
prediction model p(ŷ|r(x)). As a result, the downstream prediction model may be unable to properly
invert the unknown mixing mechanism and successfully separate y and s, in particular as it may not
be incentivized to do so. Finally, implicit biases and specific structures of the downstream model may
interact and lead to different overall predictions for different sensitive groups in s.

Why might disentanglement help? The key idea why disentanglement may help in this setting is
that disentanglement promises to capture information about different generative factors in different
latent dimensions. This limits the mutual information between different code dimensions and
encourages the predictions to depend only on the latent dimensions corresponding to the target
variable and not to the one corresponding to the sensitive ground-truth factor of variation. More
formally, in the context of Theorem 1, consider a disentangled representation where the two factors of
variations s and y are separated in independent components (say r(x)y only depends on y and r(x)s
on s). Then, the optimal classifier can learn to ignore the part of its input which is independent of
y since p(ŷ|r(x)) = p(y|r(x)) = p(y|r(x)y, r(x)s) = p(y|r(x)y) as y is independent from r(x)s.
While such an optimal classifier on the representation r(x) might be fairer than the optimal classifier
on the observation x, it may also have a lower prediction accuracy.

4 Do disentangled representations matter?

Experimental conditions We adopt the setup of [61], which offers the most extensive benchmark
comparison of disentangled representations to date. Their analysis spans seven datasets: in four of
them (dSprites [36], Cars3D [78], SmallNORB [59] and Shapes3D [49]), a deterministic function of
the factors of variation is incorporated into the mixing process; they further introduce three additional
variants of dSprites, Noisy-dSprites, Color-dSprites, and Scream-dSprites. In the latter datasets, the
mixing mechanism contains a random component that takes the form of noisy pixels, random colors
and structured backgrounds from the scream painting. Each of these seven datasets provides access to

2In this case, even properties of representations such as disentanglement may not help.
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Figure 2: (Left) Distribution of unfairness for learned representations. Legend: dSprites = (A),
Color-dSprites = (B), Noisy-dSprites = (C), Scream-dSprites = (D), SmallNORB = (E), Cars3D = (F),
Shapes3D = (G). (Right) Rank correlation of unfairness and disentanglement scores on the various
data sets.
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Figure 3: Unfairness of representations versus DCI Disentanglement on the different data sets.

the generative model for evaluation purposes. Our experimental pipeline works in three stages. First,
we take the 12 600 pre-trained models of [61], which cover a large number of hyperparameters and
random seeds for the most prominent approaches: β-VAE, AnnealedVAE, Factor-VAE, β-TCVAE,
DIP-VAE-I and II. These methods are trained on the raw data without any supervision. Details on
architecture, hyperparameter, implementation of the methods can be found in Appendices B, C, G,
and H of [61]. In the second stage, we assume to observe a target variable y that we should predict
from the representation while we do not observe the sensitive variable s. For each trained model, we
consider each possible pair of factors of variation as target and sensitive variables. For the prediction,
we consider the same gradient boosting classifier [27] as in [61] which was trained on 10 000 labeled
examples (subsequently denoted by GBT10000) and which achieves higher accuracy than the cross-
validated logistic regression. In the third stage, we observe the values of all the factors of variations
and have access to the whole generative model. With this we compute the disentanglement metrics
and use the following score to measure the unfairness of the predictions

unfairness(ŷ) =
1

|S|
∑
s

TV (p(ŷ), p(ŷ | s = s)) ∀ y

where TV is the total variation. In other words, we compare the average total variation of the
prediction after intervening on s, thus directly measuring the violation of demographic parity. The
reported unfairness score for each trained representation is the average unfairness of all downstream
classification tasks we considered for that representation.

4.1 The unfairness of general purpose representations and the relation to dientanglement

In Figure 2 (left), we show the distribution of unfairness scores for different representations on
different data sets. We clearly observe that learned representations can be unfair, even in the setting
where the target variable and the sensitive variable are independent. In particular, the total variation
can reach as much as 15% − 25% on five out of seven data sets. This confirms the importance of
trying to find general-purpose representations that are less unfair.

We also observe in Figure 2 (left) that there is considerable spread in unfairness scores for different
learned representations. This indicates that the specific representation used matters and that pre-
dictions with low unfairness can be achieved. To investigate whether disentanglement is a useful
property to guarantee less unfair representations, we show rank correlation between a wide range
of disentanglement scores and the unfairness score in Figure 2 (right). We observe that all disen-
tanglement scores except Modularity appear to be consistently correlated with a lower unfairness
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Figure 4: Unfairness of representations versus downstream accuracy on the different data sets.
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Figure 5: Rank correlation between the adjusted disentanglement scores (left) and between original
scores and the adjusted version (right).

score for all data sets. While the considered disentanglement metrics (except Modularity) have been
found to be correlated (see [61]), we observe significant differences in between scores: Figure 2
(right) indicates that DCI Disentanglement is correlated the most followed by the Mutual Information
Gap, the BetaVAE score, the FactorVAE score, the SAP score and finally Modularity. The strong
correlation of DCI Disentanglement is confirmed by Figure 3 where we plot the Unfairness score
against the DCI Disentanglement score for each model. Again, we observe that the large gap in
unfairness seem to be related to differences in the representation. We show the corresponding plots
for all metrics in Figure 9 in the Appendix.

These results provide an encouraging case for disentanglement being helpful in finding fairer rep-
resentations. However, they should be interpreted with care: Even though we have considered a
diverse set of methods and disentangled representations, the computed correlation scores depend on
the distribution of considered models. If one were to consider an entirely different set of methods,
hyperparameters and corresponding representations, the observed relationship may differ.

4.2 Adjusting for downstream performance

Prior work [61] has observed that disentanglement metrics are correlated with how well ground-
truth factors of variations can be predicted from the representation using gradient boosted trees. It
is thus not surprising that the unfairness of a representation is also consistently correlated to the
average accuracy of a gradient boosted trees classifier using 10 000 samples (see Figure 4). In
this section, we investigate whether disentanglement is also correlated with a higher fairness if we
compare representations with the same accuracy as measured by GBT10000 scores. Given two
representations with the same downstream performance, is the more disentangled one also more fair?
The key challenge is that for a given representation there may not be other ones with exactly the same
downstream performance.

For this, we adjust all the disentanglement scores and the unfairness score for the effect of downstream
performance. We use a k-nearest neighbors regression from Scikit-learn [72] to predict, for any model,
each disentanglement score and the unfairness from its five nearest neighbor in terms of GBT10000
(which we write as N(GBT10000)). This can be seen as a one-dimensional non-parametric estimate
of the disentanglement score (or fairness score) based on the GBT10000 score. The adjusted metric
is computed as the residual score after the average score of the neighbors is subtracted, namely

Adj. Metric = Metric− 1

5

∑
i∈N(GBT10000)

Metrici

Intuitively, the adjusted metrics measure how much more disentangled (fairer) a given representation
is compared to an average representation with the same downstream performance.
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Figure 6: Latent traversals (each column corresponds to a different latent variable being varied) on
Shapes3D for the model with best adjusted MIG.

In Figure 5 (left), we observe that the rank correlation between the adjusted disentanglement scores
(except Modularity) on Color-dSprites is consistenly positive. This indicates that the adjusted scores
do measure a similar property of the representation even when adjusted for performance. This
result is consistent across data sets (Figure 10 of the Appendix). The only exception appears to be
SmallNORB, where the adjusted DCI Disentanglement, MIG and SAP score correlate with each
other but do not correlate well with the BetaVAE and FactorVAE score (which only correlate with
each other). On Shapes3D we observe a similar result, but the correlation between the two groups of
scores is stronger than on SmallNORB. Similarly, Figure 5 (right) shows the rank correlation between
the disentanglement metrics and their adjusted versions. As expected, we observe that there still is a
significant positive correlation. This indicates the adjusted scores still capture a significant part of the
unadjusted score. We observe in Figure 11 of the Appendix that this result appears to be consistent
across the different data sets, again with the exception of SmallNORB. As a sanity check, we finally
confirm by visual inspection that the adjusted metrics still measure disentanglement. In Figure 6, we
plot latent traversals for the model with highest adjusted MIG score on Shapes3D and observe that
the model appears well disentangled.
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Figure 7: Rank correlation of unfairness
and disentanglement scores on the various
data sets (left). Rank correlation of ad-
justed unfairness and adjusted disentangle-
ment scores on the various data sets (right).

Finally, Figure 7 shows the rank correlation between the
adjusted disentanglement scores and the adjusted fair-
ness score for each of the data sets. Overall, we observe
that higher disentanglement still seems to be correlated
with an increased fairness, even when accounting for
downstream performance. Exceptions appear to be the
adjusted Modularity score, the adjusted BetaVAE and
the FactorVAE score on Shapes3D, and the adjusted
MIG, DCI Disentanglement, Modularity and SAP on
SmallNORB. As expected, the correlations appear to
be weaker than for the unadjusted scores (see Figure 2
(right)) but we still observe some residual correlation.

How do we identify fair models? In this section, we
observed that disentangled representations allow to train
fairer classifiers, regardless of their accuracy. This leaves
us with the question of how can we find fair representa-
tions? [61] showed that without access to supervision or

inductive biases, disentangled representations cannot be identified. However, existing methods heavily
rely on inductive biases such as architecture, hyperparameter choices, mean-field assumptions, and
smoothness induced through randomness [65, 80, 86]. In practice, training a large number of models
with different losses and hyperparameters will result in a large number of different representations,
some of which might be more disentangled than others as can be seen for example in Figure 3. From
Theorem 1, we know that optimizing for accuracy on a fixed representation does not guarantee to
learn a fair classifier as the demographic parity theoretically depends on the representation when the
sensitive variable is not observed.

When we fix a classification algorithm, in our case GBT10000, and we train it over a variety of
representations with different degrees of disentanglement we obtain both different degrees of fairness
and downstream performance. If the disentanglement of the representation is the only confounder
between the performance of the classifier and its fairness as depicted in Figure 8, the classification
accuracy may be used as a proxy for fairness. To test whether this holds in practice, we perform the
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following experiment. We sample a data set, a seed for the unsupervised disentanglement models and
among the factors of variations we sample one to be y and one to be s. Then, we train a classifier
predicting y from r(x) using all the models trained on that data set on the specific seed. We compare
the unfairness of the classifier achieving highest prediction accuracy on y with a randomly chosen
classifier from the ones we trained. We observe that the classifier selected using test accuracy is
also fairer 84.2% of the times. We remark that this result explicitly make use of a large amount of
representations of different quality on which we train the same classification algorithm. Under the
assumption of Figure 8, the disentanglement of the representation is the only difference explaining
different predictions, the best performing classifier is also more fair than one trained on a different
representation. Since disentanglement is likely not the only confounder, model selection based on
downstream performance is not guaranteed to always be fairer than random model selection.

5 Related Work

Disentanglement

Downstream
Performance

Fairness

Figure 8: If disentanglement is a causal
parent of downstream performance and
fairness and there are no hidden con-
founders, then the former can be used as a
proxy for the latter.

Ideas related to disentangling the factors of variations
have a long tradition in machine learning, dating back to
the non-linear ICA literature [17, 3, 46, 42, 43, 44, 32].
Disentangling pose from content and content from
motion are also classical computer vision problems that
have been tackled with various degrees of supervision
and inductive bias [92, 93, 40, 25, 18, 31, 42]. In
this paper, we intend disentanglement in the sense
of [6, 87, 35, 61]. [61] recently proved that without ac-
cess to supervision or inductive biases, disentanglement
learning is impossible as disentangled models cannot be
identified. In this paper, we evaluate the representation
using the supervised downstream task where both target
and sensitive variables are observed. Semi-supervised

variants have been extensively studied during the years. [77, 15, 66, 70, 50, 52, 1] assume partially
observed factors of variation that should be disentangled from the other unobserved ones. Weaker
forms of supervision like relational information or additional assumptions on the effect of the
factors of variation were also studied [39, 16, 47, 31, 91, 26, 19, 41, 93, 62, 53, 81, 8] and applied
in the sequential data and reinforcement learning settings [88, 85, 57, 69, 37, 38]. Overall, the
disentanglement literature is interested in isolating the effect of every factor of variation regardless
of how the representation should be used downstream.

On the fairness perspective, representation learning has been used as a mean to separate the detrimental
effects that labeled sensitive factors could have on the classification task [67, 34]. We remark that this
setup is different from what we consider in this paper, as we do not assume access to any labeled infor-
mation when learning a representation. In particular, we do not assume to know what the downstream
task will be and what are the sensible variables (if any). [21, 95] introduce the idea that a fair repre-
sentation should preserve all information about the individual’s attributes except for the membership
to protected groups. In practice, [63] extends the VAE objective with a Maximum Mean Discrepancy
[33] to ensure independence between the latent representation and the sensitive factors. [12] intro-
duces the idea of data pre-processing as a tool to control for downstream discrimination. The authors
of [84] instead propose an information-theoretic approach in which the mutual information between
the data and the representation is maximized, while the one between the sensitive attributes and the rep-
resentation is minimized. Furthermore, there are several approaches that employ adversarial [30] train-
ing to avoid information leakage between the sensitive attributes and the representation [23, 64, 96].
Finally, representation learning has recently proved to be useful in counterfactual fairness [55, 45].

6 Conclusion

In this paper, we observe the first empirical evidence that disentanglement might prove beneficial
to learn fair representations, providing evidence supporting the conjectures of [61, 54]. We show that
general purpose representations can lead to substantial unfairness, even in the setting where both the
sensitive variable and target variable are independent and one only has access to observations that
depend on both of them. Yet, the choice of representation appears to be crucial as we find that that
increased disentanglement of a representation is consistently correlated with increased fairness on

8



downstream prediction tasks across a wide range of representations and data sets. Furthermore, we dis-
cuss the relationship between fairness, downstream accuracy and disentanglement and find evidence
that the correlation between disentanglement metrics and the unfairness of the downstream prediction
tasks appears to also hold if one accounts for the downstream accuracy. We believe that these results
serve as a motivation for further investigation on the practical benefits of disentangled representations,
especially in the context of fairness. Finally, we argue that fairness should be among the desired
properties of general purpose representation learning beyond VAEs [20, 76]. As we highlighted in this
paper, it appears possible to learn representations that are both useful, interpretable and fairer. Progress
on this problem could allow machine-learning driven decision making to be both better and fairer.
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A Proof of Theorem 1

Theorem 1. If x is entangled with s and y, the use of a perfect classifier for ŷ, i.e., p(ŷ|x) = p(y|x),
does not imply demographic parity, i.e., p(ŷ = y|s = s1) = p(ŷ = y|s = s2),∀y, s1, s2.

Proof. Our proof is by counter example. We present a simple case for which y is predicted from x in
such a way that p(ŷ|x) = p(y|x), but which does not satisfy demographic parity.

We assume all variables to be Bernoulli-distributed p(s = 1) = q, 0 < q < 1 and p(y = 1) =
b, 0 < b < 1 and our mixing mechanism to be x = min(y, s). The assumption of demographic
parity yields:

DP =⇒ p(ŷ = 1|s = 1) = p(ŷ = 1|s = 0)

=⇒
∑

x∈{0,1}

p(ŷ = 1,x|s = 1) =
∑

x∈{0,1}

p(ŷ = 1,x|s = 0)

where the first implication comes from the definition of demographic parity. Using the causal Markov
condition [74], we can rewrite p(ŷ = 1,x|s) = p(ŷ = 1|x)p(x|s) and thus

DP =⇒
∑

x∈{0,1}

p(ŷ = 1|x)p(x|s = 1) =
∑

x∈{0,1}

p(ŷ = 1|x)p(x|s = 0)

The rest of the proof follows as a proof by contradiction. Assuming that the classifier is perfect, i.e.,
p(ŷ|x) = p(y|x), we have

DP =⇒
∑

x∈{0,1}

p(y = 1|x)p(x|s = 1) =
∑

x∈{0,1}

p(y = 1|x)p(x|s = 0)

=⇒
∑

x∈{0,1}

p(y = 1|x) [p(x|s = 1)− p(x|s = 0)] = 0

=⇒ p(y = 1|x = 0) [p(x = 0|s = 1)− p(x = 0|s = 0)]+

p(y = 1|x = 1) [p(x = 1|s = 1)− p(x = 1|s = 0)] = 0.

At this point, using the fact that x = min(y, s), we have p(x = 0|s = 1) = p(y = 0), p(x = 0|s =
0) = 1, p(y = 1|x = 1) = 1, p(x = 1|s = 1) = p(y = 1), and p(x = 1|s = 0) = 0, therefore

DP =⇒ p(y = 1|x = 0) [p(y = 0)− 1] + 1 · [p(y = 1)− 0] = 0

=⇒ −b · p(y = 1|x = 0) + b = 0

=⇒ p(y = 1|x = 0) = 1

=⇒ p(x = 0|y = 1)p(y = 1) = p(x = 0)

=⇒ p(s = 0)p(y = 1) = p(x = 0)

=⇒ (1− q)b = (1− q) + q(1− b)
=⇒ 0 = (1− q)(1− b) + q(1− b)
=⇒ b = 1

Hence we have our desired contradiction as, by assumption, b < 1.

B Additional Results

In Figure 9, we plot the unfairness of the classifier against the disentanglement of the representation
measured with all the different disentanglement metrics. We observe that unfairness and disentangle-
ment appear to be generally correlated with the exception of Modularity and, partially, of the SAP
score. This plot extends Figure 3 to all disentanglement scores.

In Figure 10, we plot the rank correlation between the adjusted metrics. We observe a similar
correlation to the one observed in [61] with the non-adjusted metrics. In Figure 11, we plot the
rank correlation between adjusted and non-adjusted metrics. These plots extend Figure 5 to all data
sets. We conclude that the correlation between the disentanglement metrics is not exclusively driven
by the downstream performance and the adjusted metrics are suitable to discuss the fairness of the
representation independently from the classification accuracy of the downstream classifier.
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Figure 9: Unfairness of representations versus disentanglement scores on the different data sets.
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Figure 10: Rank correlation between the adjusted disentanglement scores.
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Figure 11: Rank correlation between disentanglement scores and the adjusted version.
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