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A Proofs of Theorems

A.1 Technical Lemmas

Lemma A1. [2] Let the losses and estimators be defined as in Theorem 6 under fixed design setting.
Let γ = V ar[yi], i = 1, ..., n, and X is fixed. Then the expected risk

EY [L(β̂∗)]− L(β∗) ≤ γ rank(X)

n
.

Lemma A2. [6] Let X =
∑n
i=1Xi with possibly dependent Xi’s. Y =

∑n
i=1 Yi where Yi’s are

independent copies of Xi’s (i.e. Yi has same distribution as Xi, i = 1, ..., n). If B is a Chernoff
bound on Pr[Y − E[Y ] ≥ ε], then we have

Pr[X − E[X] ≥ ε] ≤ B 1
n .

Lemma A3. [4] Let (x, y) follows standard bi-variate normal distribution with unit variance and
covariance ρ. Q is a Lloyd-Max quantizer with distortion DQ. Then,

E[xQ(y)] = (1−DQ)ρ.

A.2 Proof of Theorem 3

Proof. The proof idea is similar to [3], but we operate in the quantized space which is more compli-
cated. First, we have

EX,Y [L(hQ(x))] = EX∼X ,Y∼η(X)[Ex∼X ,y∼η(x)[1{hQ(x) 6= y}|X,Y ]]

= EX∼X ,x∼X [Pr
y∼η(x),y

(1)
Q ∼η(x

(1)
Q )

[y
(1)
Q 6= y|X,x]]. (1)

We can bound the inner probability for any two points x, x′ ∼ X as

Pry∼η(x),y′∼η(x′)[y 6= y′|x, x′] = η(x)(1− η(x′)) + η(x′)(1− η(x))

= 2η(x)(1− η(x)) + (η(x)− η(x′))(2η(x)− 1)

≤ 2η(x)(1− η(x)) + ‖η(x)− η(x′)‖, (2)

by the definition of η(x). Here we use the fact |2η(x)− 1| ≤ 1. Combining (2) and (1) we have

EX,Y [L(hQ(x))] ≤ EX∼X ,x∼X [2η(x)(1− η(x)) + ‖η(x)− η(x
(1)
Q )‖].

Notice from a classical result that

L(h∗(x)) = min{η(x), 1− η(x)},
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we obtain

EX,Y [L(hQ(x))] ≤ 2L(h∗(x)) + EX,Y,x∼X [‖η(x)− η(x
(1)
Q )‖].

The first term is the Bayes risk, and it remains to bound the second term. By Theorem 1, given that
k = O(ω−2(γ(T )2 + log(2/δ)), with probability 1− δ we have

(1− ω)‖x− y‖2 ≤ ‖ 1√
k
RTx− 1√

k
RT y‖2 ≤ (1 + ω)‖x− y‖2,∀x, y ∈ X . (3)

Denote this event Ω. Now we proceed our analysis in Ω (with high probability). The space of
projected samples SR = { 1√

k
RTx1, ...,

1√
k
RTxn} is now bounded by

uR = ‖ 1√
k
RTx‖ ≤

√
1 + ω,

by taking y = 0 in (3). Therefore, SR ⊂ [−uR, uR]k. Now we cover [−uR, uR] by NC = (2uR/ε)
k

boxes with length ε. For the test sample x, let Bε(x) be the box containing 1√
k
RTx. In the event Ω,

we have

EX,Y,x[‖η(x)− η(x
(1)
Q )‖|Ω] = EX,Y,x[‖η(x)−η(x

(1)
Q )‖|Ω, V ]Pr(V )

+ EX,Y,x[‖η(x)− η(x
(1)
Q )‖|Ω, V c]Pr(V c),

where the event V = {Bε(x) ∩ SR(X) = ∅}, V c its complement, with SR(X) =
{ 1√

k
RTx1, ...,

1√
k
RTxn} the projected samples. By Lemma 19.2 in [5], we have

Pr(V ) ≤ NC/ne.
Thus,

EX,Y,x[‖η(x)− η(x
(1)
Q )‖|Ω] ≤ NC

ne
+ EX,Y,x[‖η(x)− η(x

(1)
Q )‖|Ω, V c]

≤ NC
ne

+ L · EX,Y,x[‖x− x(1)
Q ‖|Ω, V

c]

≤ NC
ne

+
L√

1− ω
EX,Y,x[‖ 1√

k
RTx− 1√

k
RTx

(1)
Q ‖|V

c],

where the second line is because η(x) is L-Lipschitz and the last line is due to (3).

Centroid

Figure 1: An illustration of bounding the distance in projected space SR with two covers. For
simplicity we omit the scaling term 1√

k
. Boxes resulted from red dash lines are the ε- cover

constructed by hand, and boxes surrounded by blue solid lines are induced cover by Q.

To bound the second term, we consider another cover of SR which is intrinsically induced by the
borders of Q. Denote x(1)

R as the nearest point of x in the projected space. In this case, we know
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that ‖ 1√
k
RTx− 1√

k
RTx

(1)
R ‖ ≤ ε

√
k. However, ‖ 1√

k
RTx− 1√

k
RTx

(1)
Q ‖ cannot be bounded in this

way, due to the discretization of quantizing function Q. In a simple example (Figure 1), assume we
only have 3 points in a 2-D case. Denote the centroids of these 3 points respectively as µ( 1√

k
RTx),

µ( 1√
k
RTx

(1)
R ) and µ( 1√

k
RTx

(1)
Q ). In this plot, V c is obviously satisfied since there are two points in

the same ε-box. Now the green point ( 1√
k
RTx

(1)
R ) is closer to black point ( 1√

k
RTx

(1)
R ) in the space of

SR, but after quantization, the nearest neighbor returned changes to the pink point ( 1√
k
RTx

(1)
Q ), since

µ( 1√
k
RTx

(1)
Q ) lies closer to µ( 1√

k
RTx) than µ( 1√

k
RTx

(1)
R ). However, ‖ 1√

k
RTx − 1√

k
RTx

(1)
Q ‖

might be greater than ε
√

2.

Note that for uniform quantizer, the distances between nearby reconstruction levels all equal to4,
and the distances between consecutive borders (view−

√
1− ω and

√
1− ω as borders too) are upper

bounded by gQ(−
√

1− ω,
√

1− ω). Using triangle inequality, we get

[‖ 1√
k
RTx− 1√

k
RTx

(1)
Q ‖|V

c] ≤ [‖ 1√
k
RTx− µ(

1√
k
RTx)‖+ ‖ 1√

k
RTx

(1)
Q − µ(

1√
k
RTx

(1)
Q )‖

+ ‖µ(
1√
k
RTx)− µ(

1√
k
RTx

(1)
Q )‖|V c]

≤ 4
√
k

2
+
4
√
k

2
+ ‖µ(

1√
k
RTx)− µ(

1√
k
RTx

(1)
R )‖|V c].

To bound the last term, we need to find out that given two points a, b in a same ε-box, how large
the distance between their quantized centroids µ(a), µ(b) can be. We proceed by noticing that for a
given Bε(x) with any ε, the maximum number of different Q-boxes that can be contained (perhaps
partially) on the diagonal of Bε(x) is equal to b εgQ c+ 2. The largest distance between the centroids
occurs when two points fall into the two regions on the diagonal endpoints (as black and green stars
in Figure 1), which equals to (b εgQ c+ 1)4

√
k. Therefore, we have

‖µ(
1√
k
RTx)− µ(

1√
k
RTx

(1)
R )‖|V c] ≤ (b ε

gQ
c+ 1)4

√
k ≤ (

ε4
gQ

+4)
√
k,

where for simplicity we write gQ instead of gQ(−
√

1− ω,
√

1− ω). Hence, we get the worst case
bound

EX,Y,x[‖ 1√
k
RTx− 1√

k
RTx

(1)
Q ‖|V

c] ≤ (
ε4
gQ

+ 24)
√
k.

Combining with previous result, we obtain

EX,Y,x[‖η(x)− η(x
(1)
Q )‖|Ω] ≤ NC

ne
+

L4ε
√
k

gQ
√

1− ω
+

2L4
√
k√

1− ω
.

Now we choose ε to minimize the RHS. Let f(ε) = (
√

1+ω/ε)k

ne + L4ε
√
k

gQ
√

1−ω . Following the standard
technique, we take the derivative for f with respect to ε and set it to zero, which yields

ε∗ = (2
√

1 + ω)
k
k+1 (

L4
gQ
√

1− ω
ne)−

1
k+1

√
k

1
k+1 .

Plugging in the expression and after some calculation we get

EX,Y,x[‖η(x)− η(x
(1)
Q )‖|Ω] ≤ (

2L4
gQ

√
1 + ω

1− ω
)

k
k+1 (ne)−

1
k+1

√
k(
√
k
− 2k+1
k+1 +

√
k

1
k+1 ).

Following [3], we have 2
k
k+1 (
√
k
− 2k+1
k+1 +

√
k

1
k+1 ) ≤ 2

√
2. Replacing the terms and combining all

parts together, the proof is complete.
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A.3 Proof of Theorem 4

Proof. The proof is based on the probability that x(1)
Q is different from x(1). First we have

EX,Y,R[L(hQ(x))] = EX,Y [Ex,y,R[1{hQ(x) 6= y}|X,Y ]]

= EX,Y {Ex,y,R[1{hS(x) 6= y}1{hQ(x) = hS(x)}
+ 1{hS(x) = y}1{hQ(x) 6= hS(x)}|X,Y ]}

≤ EX,Y {Ex,y,R[1{hS(x) 6= y}+ 1{hQ(x) 6= hS(x)}|X,Y ]}
, A+B.

We recognize the term A is simply the risk of data space NN classifier, A = EX,Y [L(hS(x))]. It
suffices to study term B. Note that

B = E
X∼X ,x∼X ,y(1)∼η(x(1)),y

(1)
Q ∼η(x

(1)
Q ),R

1{y(1)
Q 6= y(1)}]

= EX,x{Pry(1)∼η(x(1)),y
(1)
Q ∼η(x

(1)
Q ),R

[x
(1)
Q 6= x(1), y

(1)
Q 6= y(1)|X,x]}

≤ EX,x{PrR[x
(1)
Q 6= x(1)|X,x]}

, EX,x{Pc},

where the second line is because y(1)
R 6= y(1) implies that x(1)

R 6= x(1). For a fixed X and x, we
denote the set G = X/x(1). Then for the inner probability, we have

Pc =
∑
i:xi∈G

PrR[x
(1)
Q = xi|X,x]

=
∑
i:xi∈G

Pr[
⋂

xj 6=xi

{ρ̂Q(x, xi) ≥ ρ̂Q(x, xj)}|X,x]

≤
∑
i:xi∈G

Pr[ρ̂Q(x, xi) ≥ ρ̂Q(x, x(1))|X,x] (4)

due to the equivalence of inner product and Euclidean distance estimation. Under the asymptotic
assumption k →∞, by Central Limit Theorem (CLT) we know that for any x, y ∈ X ,

ρ̂Q(x, y) ∼ N(αρx,y,
σ2
x,y

k
),

for σx,y = V ar[Q(rTx)TQ(rT y)] a fixed constant given x, y. Here r is a column of R. Next, we
obtain for ∀i, j,
ρ̂Q(x, xi)− ρ̂Q(x, xj) ∼ N(α(ρx,xi − ρx,xj ), σ2

x,xi + σ2
x,xj − 2Corr(ρ̂Q(x, xi)ρ̂Q(x, xj)σx,xiσx,xj ).

Therefore,

Pr[ρ̂Q(x, xi) ≥ ρ̂Q(x, xj)] = Pr[ρ̂Q(x, xi)− ρ̂Q(x, xj) ≥ 0]

= Φ
( √

kα(ρx,xi − ρx,xj )√
σ2
x,xi + σ2

x,xj − 2Corr(ρ̂Q(x, xi), ρ̂Q(x, xj))σx,xiσx,xj

)
= Φ

( √
k(ρx,xi − ρx,xj )√

ξ2
x,xi + ξ2

x,xj − 2Corr(ρ̂Q(x, xi), ρ̂Q(x, xj))ξx,xiξx,xj

)
,

since by the definition of debiased variance we have ξ2
x,xi =

σ2
x,xi

α2 . Now plugging above equation
into (4), we have

B = EX,x[
∑
i:xi∈G

Φ
( √

k(cos(x, xi)− cos(x, x(1)))√
ξ2
x,xi + ξ2

x,x(1) − 2Corr(ρ̂Q(x, xi), ρ̂Q(x, x(1)))ξx,xiξx,x(1)

)
],

by noting that ρx,xi = cos(x, xi). Combining parts together, we get the result as required.
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A.4 Proof of Lemma 1

Proof. Denote the random projection matrix R ∈ Rd×k. Recall that the estimates of ρxy and ρxz are

ρ̂R(x, y) =
xTRRT y

k
, ρ̂R(x, z) =

xTRRT z

k
.

Denote the columns of R as [r1, ..., rk], we have

E[ρ̂R(x, y)ρ̂R(x, z)]

=
1

k2
E[xRRT yTxRRRzT ]

=
1

k2
[〈x, r1〉, ..., 〈x, rk〉]

〈y, r1〉
...

〈y, rk〉

 [〈x, r1〉, ..., 〈x, rk〉]

〈z, r1〉
...

〈z, rk〉


=

1

k2
(

k∑
i=1

〈x, r1〉〈y, r1〉) · (
k∑
i=1

〈x, r1〉〈z, r1〉)

=
1

k2
[

k∑
i=1

(

d∑
p=1

xprip)(

d∑
q=1

yqriq)] · [
k∑
j=1

(

d∑
s=1

xsrjs)(

d∑
t=1

ytrjt)]

=
1

k2

k∑
i=1

k∑
j=1

[

d∑
p=1

d∑
q=1

d∑
s=1

d∑
t=1

xpyqxsztE[ripriqrjsrjt]]

=
1

k2
{
k∑
i=1

k∑
j 6=i

[

d∑
p=1

d∑
q=1

d∑
s=1

d∑
t=1

xpyqxsztE[ripriqrjsrjt]] +

k∑
i=1

[

d∑
p=1

d∑
q=1

d∑
s=1

d∑
t=1

xpyqxsztE[ripriqrisrit]]}

,A+B.

For the first term A, since i 6= j and all entries of R are i.i.d. standard normal, the expectation is
non-zero only when p = q and s = t. Also note the each row vector ri and rj are independent.
Consequently we obtain

A =
k(k − 1)

k2
(

d∑
p=1

d∑
s=1

xpypxszs) =
k − 1

k
〈x, y〉 · 〈x, z〉 =

k − 1

k
ρxyρxz.

For term B, we note that the expectation is non-zero when: (i) p = q and s = t; (ii) p = s and q = t;
or (iii) p = t and q = s. In these cases, when p, q, s, t are not all equal, the expected value is simply
E[r2

ipr
2
iq] = 1. When p = q = s = t, the expected value is E[r4

ip] = 3. Therefore we have

B =
k

k2
{
d∑
p=1

d∑
s=1

xpypxszs +

d∑
p=1

d∑
q=1

xpyqxpzq +

d∑
p=1

d∑
q=1

xpyqxqzp − 2× 3

d∑
p=1

xpypxpzp}

=
1

k
[〈x, y〉 · 〈x, z〉+ ‖x‖2〈y, z〉+ 〈x, y〉 · 〈x, z〉+ 3× 2

d∑
p=1

xpypxpzp − 2× 3

d∑
p=1

xpypxpzp]

=
1

k
(ρyz + 2ρxyρxz),

where the first line is due to the fact that we count the case p = q = s = t for three times. Now
putting parts together, we have

Cov(ρ̂R(x, y), ρ̂R(x, z)) =
1

k2
E[xTRRT yxTRRRz]− E[ρ̂R(x, y)]E[ρ̂R(x, z)]

=
(k − 1)ρxyρxz + ρyz + 2ρxyρxz

k
− ρxyρxz

=
1

k
(ρyz + ρxyρxz).
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A.5 Proof of Proposition 1

Proof. To start with, we notice that for xi, yi, i = 1, ..., k all i.i.d. standard normal,

Fk,k(
1− ρ
1 + ρ

) = Pr[

k∑
i=1

x2
i ≤

1− ρ
1 + ρ

k∑
i=1

y2
i ] = Pr[

1

k

k∑
i=1

x2
i ≤

1− ρ
1 + ρ

(
1

k

k∑
i=1

y2
i )].

By Central Limit Theorem we have w = 1
k

∑k
i=1 x

2
i ∼ N(1, 2/k), z = 1

k

∑k
i=1 y

2
i ∼ N(1, 2/k)

and they are independent. Hence, when k →∞, we have

fk(ρ) =Fk,k(
1− ρ
1 + ρ

) = Pr[w ≤ 1− ρ
1 + ρ

z]

=

∫ ∞
−∞

√
k

2
√
π
e−

k(z−1)2

4

∫ 1−ρ
1+ρ z

−∞

√
k

2
√
π
e−

k(w−1)2

4 dwdz

=

∫ ∞
−∞

√
k

2
√
π
e−

k(z−1)2

4 Φ
(√k

2
(
1− ρ
1 + ρ

z − 1)
)
dz

=

∫ ∞
−∞

1√
2π
e−

s2

2 Φ
( (1− ρ)s−

√
2kρ

1 + ρ

)
ds

= Es[Φ
( (1− ρ)s−

√
2kρ

1 + ρ

)
],

where the second and third line are derived by simple change of variable, and s ∼ N(0, 1). For
another v ∼ N(0, 1) independent of s, by law of total expectation we obtain

Es[Φ
( (1− ρ)s−

√
2kρ

1 + ρ

)
]

=Es,v[1{v ≤
(1− ρ)s−

√
2kρ

1 + ρ
}]

=Pr[v − 1− ρ
1 + ρ

s ≤ −
√

2kρ

1 + ρ
]

=Pr
[ v − (1−ρ)

1+ρ s√
1 + (1−ρ)2

(1+ρ)2

≤ −
√

2kρ

(1 + ρ)
√

1 + (1−ρ)2
(1+ρ)2

]
=Φ(−

√
kρ√

1 + ρ2
) = f̃k(ρ).

This completes the proof.

A.6 Proof of Theorem 5

Proof. The proof follows from [1]. First by classical VC theory [7], with probability 1− δ we have

Pr[ĤQ(x)) 6= y] ≤ L̂(0,1)(SQ, ĥQ) + 2

√
(k + 1) log 2en

k+1 + log 1
δ

n
,

where L̂(0,1)(SQ, ĥQ) = 1
n

∑n
i=1 L(0,1)(ĤQ(Q(RTxi)), yi) the empirical loss in the quantized

space (with optimal ERM quantizer ĥQ in SQ). Since ĥQ is the minimizer of L̂(0,1)(SQ, ĥQ), we
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have

L̂(0,1)(SQ, ĥQ) ≤ L̂(0,1)(SQ, Q(RT ĥ))

= L̂(0,1)(S, ĥ) + (L̂(0,1)(SQ, Q(RT ĥ))− L̂(0,1)(S, ĥ))

≤ L̂(0,1)(S, ĥ) +
1

n

n∑
i=1

1{sign(Q(ĥTR)Q(RTxi)) 6= sign(ĥTxi)}

:=≤ L̂(0,1)(S, ĥ) +M.

We note that M is a sum of dependent flipping probabilities because of the commonly used projection
matrix R. Using Markov’s Inequality we have

M ≤ (1 +
1− δ
δ

)ER[M ]

with probability 1− δ. To get a better bound with small δ, we make use of Lemma A2. By applying
the lemma, if M∗ is an independent copy of M , standard Chernoff bound gives

Pr[M∗ ≥ (1 + ε)ER[M∗]] ≤ exp(−nER[M∗]ε2/3).

Then, Lemma A2 yields

Pr[M ≥ (1 + ε)ER[M ]] ≤ exp(−nER[M∗]ε2/3)
1
n

= exp(−ER[M ]ε2/3).

Transforming probability bound to expectation bound, we obtain with probability 1− δ,

M ≤ ER[M ] +

√
3ER[M ] log

1

δ
.

The proof is completed by noting that ER[M ] =
∑n
i=1 Φ(−

√
k|ρi|
ξρi

) as k → ∞, which could be
easily derived from Central Limit Theorem and Proposition 1.

A.7 Proof of Theorem 6

Proof. By applying Lemma A1 we have

EY |R[LQ(β̂∗Q)]− LQ(β∗Q) ≤ γ k
n
. (5)

Since β∗Q is the minimizer of the squared loss in the quantized space, by elementary algebra we have
that

LQ(β∗Q) ≤ LQ(
1√

k(1−DQ)
RTβ∗)

=
1

n
EY |R[‖Y − 1

k(1−DQ)
Q(XR)RTβ∗]

(a)
=

1

n
EY |R[‖Y −Xβ∗‖2] +

1

n
‖Xβ∗ − 1

k(1−DQ)
Q(XR)RTβ∗‖2

= L(β∗) + (β∗)TΣβ∗ − 2

nk(1−DQ)
(β∗)TRQ(XR)TXβ∗

+
1

nk2(1−DQ)2
(β∗)TRQ(XR)TQ(XR)RTβ∗, (6)

where (a) is due to Y −Xβ∗ = ε is i.i.d zero-mean Gaussian independent of R. Here, the factor
1

1−DQ is again related to cosine estimation, and we will provide some discussions at the end of
the proof. Recall the notation X = [x1, ..., xn]T with xi having unit norm, and R = [r1, ..., rk].
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We denote zip , 〈xi, rp〉. Hence, the quantized matrix Q(XR) has zip as the (i, p)-th entry, for
i = 1, ..., n and p = 1, ..., k. It is obvious that(

zip
zjp

)
∼ N

((
0
0

)
,

(
1 ρij
ρij 1

))
, (7)

where ρij = 〈xi, xj〉. Moreover, Lemma A3 then gives E[zipQ(zjp)] = (1−DQ)〈xi, xj〉. Further
denote β̃ = β∗/‖β∗‖ the standardized true parameter vector. It follows that

E[(β∗)TRQ(XR)TXβ∗] = E[(β∗)TRQ(XR)T ]Xβ∗

= E
[
(β̃)TRQ(XR)T

]
Xβ∗‖β∗‖

= E

[
[

k∑
p=1

zβ̃,pQ(z1p), ...,

k∑
p=1

zβ̃,pQ(znp)]
T

]
Xβ∗‖β∗‖

(b)
= k(1−DQ)(β∗)TXTXβ∗

= nk(1−DQ)(β∗)TΣβ∗. (8)

Here, zβ̃,p = 〈β̃, rp〉, and (b) is due to Lemma A3. Note that for (x, y) following distribution (7)
with cosine ρ, we have

E[x2Q(y)2] = E[(ρy +
√

1− ρ2W )2Q(y)2]

= ρ2ξ2,2 + (1− ρ2)(1−DQ), (9)

where W ∼ N(0, 1) is independent of x, y, and ξ2,2 , E[y2Q(y)2] for y ∼ N(0, 1). Denote
ρβ̃,i = 〈β̃, xi〉. Now we can obtain

E[(β∗)TRQ(XR)TQ(XR)RTβ∗]

= ‖β∗‖2E
[
β̃TRQ(XR)TQ(XR)RT β̃

]
= ‖β∗‖2E

 n∑
i=1

(
k∑
p=1

zβ̃,pQ(zip)

)2


= ‖β∗‖2
n∑
i=1

E

 k∑
p=1

z2
β̃,p
Q(zip)

2 +

k∑
p=1

k∑
q 6=p

zβ̃,pQ(zip)zβ̃,qQ(ziq)


= ‖β∗‖2

n∑
i=1

[
k(ξ2,2ρ

2
β̃,i

+ (1− ρ2
β̃,i

)(1−DQ)) + k(k − 1)(1−DQ)2ρ2
β̃,i

]
. (10)

In the above, (10) holds because of (9) and the fact that zβ̃,pQ(zip) is independent of zβ̃,qQ(ziq) for
any p 6= q. By noticing that

n∑
i=1

ρ2
β̃,i

=
(β∗)TXTXβ∗

‖β∗‖2
=
n(β∗)TΣβ∗

‖β∗‖2
,

we can further have
E[(β∗)TRQ(XR)TQ(XR)RTβ∗]

= ‖β∗‖2
[
k(ξ2,2

n∑
i=1

ρ2
β̃,i

+ (n−
n∑
i=1

ρ2
β̃,i

)(1−DQ)) + k(k − 1)(1−DQ)2
n∑
i=1

ρ2
β̃,i

]
= nk(1−DQ)‖β∗‖2 + n

[
k(ξ2,2 − 1 +DQ) + k(k − 1)(1−DQ)2

]
(β∗)TΣβ∗. (11)

Now, taking expectation on both sides of (6) w.r.t. R and combining (8) and (11), we have
ER[LQ(β∗Q)]

≤ L(β∗) +

[
1− 2 +

ξ2,2 − 1 +DQ

k(1−DQ)2
+
k − 1

k

]
(β∗)TΣβ∗ +

1

k(1−DQ)
‖β∗‖2

= L(β∗) +
1

k
‖β∗‖2Ω, (12)

8



where Ω = [
ξ2,2−1+DQ

(1−DQ)2 − 1]Σ + 1
1−DQ Id, with ‖β∗‖Ω =

√
(β∗)TΩβ∗, and Id the identity matrix.

Lastly, taking expectation w.r.t. R in (5), we obtain

EY,R[LQ(β̂∗Q)] ≤ E[LQ(β∗Q)] + γ
k

n

≤ γ k
n

+ L(β∗) +
1

k
‖β∗‖2Ω.

This completes the proof. Now we briefly discuss the role of factor 1
1−DQ in (6). Note that in our

model, Xβ∗ = ‖β∗‖Xβ̃ = ‖β∗‖[ρβ̃,1, ..., ρβ̃,n]T can be regarded as the scaled cosine between data
vectors and the true parameter, and Q(XR)RTβ∗ is then a biased estimator of Xβ∗ with mean
equal to (1 −DQ)Xβ∗, according to Lemma A3. Therefore, the factor 1

1−DQ acts as a debiasing
operation—Similar in spirit to the previous analysis for classification problems.
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