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Theorem 1. Assume hy(z, z) is a smooth function of ¢. Let z* £ argmax;{hy(z, 2) + (%)} and
2*(€) & argmax; {efo(x, 2) + hy(x, 2) + 7(2)} be two random variables. Then

VB fola, 2*)] = T (B, [V gh(a, 2*(6) ~ Voho(z, =) 1)

Proof. We use a “prediction generating function" G(¢, €) = E. [max;z{efg(x, 2)+hy(x, £)+7v(2)}],
whose derivatives are functions of the predictions z*, z*(¢). The proof is composed from three steps:

1. We prove that G(¢, €) is a smooth function of ¢, e. Therefore, the Hessian of G(¢, €) exists
and it is symmetric, namely

8¢86G(¢, 6) = 8€8¢G(¢, 6). (2)

2. We show that encoder gradient is apparent in the Hessian:

o0 (,0) = Vo, [6(x, 2")]. 3
3. We derive our update rule as the complement representation of the Hessian:

0.0,0/(6.0) = lim % (B4 [Voh(e. 2" () — Voh(z, =) @)

First, we prove that G(¢, ¢) is a smooth function. Recall, g(y) = H§:1 e~ (V@) Fete” T
is the zero mean Gumbel probability density function. Applying a change of variable ¥(z) =
efo(z, 2) + hy(x, 2) + v(2), we obtain

Gl6.0) = [ gl max{efo(e.2) + hola2) +2(2)ar = [

" 9y — efo — hg) max{7(2)}d7.

Since g(¥ — efy — hy) is a smooth function of € and hy(z, z) and hy(x, 2) is a smooth function of
¢, we conclude that G(¢, €) is a smooth function of ¢, e. Therefore, the Hessian of G(¢, €) exists
and symmetric, i.e., 9,0.G(¢, €) = 0.0,G(¢, €). We thus proved Equation (2).

To prove Equations (3)) and (4) we differentiate under the integral, both with respect to € and with
respect to ¢. We are able to differentiate under the integral, since g(% — efs — hg) is a smooth
function of € and ¢ and its gradient is bounded by an integrable function (cf. [2]], Theorem 2.27, using
the continuity of the max function).

We turn to prove Equation (3). We begin by noting that max:{efy(, 2) 4+ hg(z, 2) +v(%)} is a
maximum over linear function of €, thus by Danskin Theorem (cf. [1]], Proposition 4.5.1) holds
Oc(maxz{efo(x, 2) + hy(x,2) + v(8)}) = fo(z,z*(e)). By differentiating under the integral,
0.G(¢,¢) = E,[fo(x, 2" (¢))]. We obtain Equation (3) by differentiating under the integral, now
with respect to ¢, and setting e = 0.
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Figure 1: Test loss for & = 20, 30,40, 50 (left: MNIST, middle: Fashion-MNIST, right: Omniglot)

Finally, we turn to prove Equation (@) By differentiating under the integral 0;,G(¢,¢) =
E,[Vghg(z, z*(€))]. Equation (EI) is attained by taking the derivative with respect to ¢ = 0 on
both sides.

The theorem follows by combining Equation (2) when € = 0, i.e., 0,0.G(¢,0) = 0:.0,G (¢, 0) with
the equalities in Equations (3)) and (@). O

1 Gumbel-Max perturbation model and the Gibbs distribution
Theorem 2. [3 Let v be a random function that associates random variable ~(z) for each

z =1, ..., k whose distribution follows the zero mean Gumbel distribution law, i.e., its probability
density function is g(t) = e~ (tHete™ ) o the Euler constant ¢ ~ 0.57. Then

€h¢(m,z) .
S emts ~ Pralz =2
where z* £ arg Alrllaxk{h‘b(x’ 2)+v(2)} )

)

_e—(t+o)

Proof. LetG(t) =e be the Gumbel cumulative distribution function. Then

Pogle = 2] = Pyl = arg_max {hs(z, ) +(2)}]

[ ot = (0.2 [T Gt ~ hato. )

Z#z



Since g(t) = e~ *+<)G(t) it holds that

[ott=noen TL 6 - hote)ae ©)
2#z
_ / e~ =@ Gt — hy(z, ) [] Gt — ho(a 2)dt
ZH#z
eh¢(w,z)
pr— 7
7 (N
where 2 = [ e~ (t+9) [15_, G(t—hg(2))dt is independent of z. Since Py y[z = 2*] is a distribution
then Z must equal to 22:1 eho(@:2), O
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