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Theorem 1. Assume hφ(x, z) is a smooth function of φ. Let z∗ , argmaxẑ{hφ(x, ẑ) + γ(ẑ)} and
z∗(ε) , argmaxẑ{εfθ(x, ẑ) + hφ(x, ẑ) + γ(ẑ)} be two random variables. Then

∇φEγ [fθ(x, z∗)] = lim
ε→0

1

ε

(
Eγ [∇φhφ(x, z∗(ε))−∇φhφ(x, z∗)]

)
(1)

Proof. We use a “prediction generating function"G(φ, ε) = Eγ [maxẑ{εfθ(x, ẑ)+hφ(x, ẑ)+γ(ẑ)}],
whose derivatives are functions of the predictions z∗, z∗(ε). The proof is composed from three steps:

1. We prove that G(φ, ε) is a smooth function of φ, ε. Therefore, the Hessian of G(φ, ε) exists
and it is symmetric, namely

∂φ∂εG(φ, ε) = ∂ε∂φG(φ, ε). (2)

2. We show that encoder gradient is apparent in the Hessian:

∂φ∂εG(φ, 0) = ∇φEγ [θ(x, z∗)]. (3)

3. We derive our update rule as the complement representation of the Hessian:

∂ε∂φG(φ, 0) = lim
ε→0

1

ε

(
Eγ [∇φh(x, z∗(ε))−∇φh(x, z∗)]

)
(4)

First, we prove that G(φ, ε) is a smooth function. Recall, g(γ) =
∏k
z=1 e

−(γ(z)+c+e−(γ(z)+c))

is the zero mean Gumbel probability density function. Applying a change of variable γ̂(z) =
εfθ(x, ẑ) + hφ(x, ẑ) + γ(ẑ), we obtain

G(φ, ε) =

∫
Rk
g(γ)max

ẑ
{εfθ(x, ẑ) + hφ(x, ẑ) + γ(ẑ)}dγ =

∫
Rk
g(γ̂ − εfθ − hφ)max

ẑ
{γ̂(ẑ)}dγ̂.

Since g(γ̂ − εfθ − hφ) is a smooth function of ε and hφ(x, z) and hφ(x, z) is a smooth function of
φ, we conclude that G(φ, ε) is a smooth function of φ, ε. Therefore, the Hessian of G(φ, ε) exists
and symmetric, i.e., ∂φ∂εG(φ, ε) = ∂ε∂φG(φ, ε). We thus proved Equation (2).

To prove Equations (3) and (4) we differentiate under the integral, both with respect to ε and with
respect to φ. We are able to differentiate under the integral, since g(γ̂ − εfθ − hφ) is a smooth
function of ε and φ and its gradient is bounded by an integrable function (cf. [2], Theorem 2.27, using
the continuity of the max function).

We turn to prove Equation (3). We begin by noting that maxẑ{εfθ(x, ẑ) + hφ(x, ẑ) + γ(ẑ)} is a
maximum over linear function of ε, thus by Danskin Theorem (cf. [1], Proposition 4.5.1) holds
∂ε(maxẑ{εfθ(x, ẑ) + hφ(x, ẑ) + γ(ẑ)}) = fθ(x, z

∗(ε)). By differentiating under the integral,
∂εG(φ, ε) = Eγ [fθ(x, z∗(ε))]. We obtain Equation (3) by differentiating under the integral, now
with respect to φ, and setting ε = 0.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



Figure 1: Test loss for k = 20, 30, 40, 50 (left: MNIST, middle: Fashion-MNIST, right: Omniglot)

Finally, we turn to prove Equation (4). By differentiating under the integral ∂φG(φ, ε) =
Eγ [∇φhφ(x, z∗(ε))]. Equation (4) is attained by taking the derivative with respect to ε = 0 on
both sides.

The theorem follows by combining Equation (2) when ε = 0, i.e., ∂φ∂εG(φ, 0) = ∂ε∂φG(φ, 0) with
the equalities in Equations (3) and (4).

1 Gumbel-Max perturbation model and the Gibbs distribution

Theorem 2. [3, 4, 5] Let γ be a random function that associates random variable γ(z) for each
z = 1, ..., k whose distribution follows the zero mean Gumbel distribution law, i.e., its probability
density function is g(t) = e−(t+c+e

−(t+c)) for the Euler constant c ≈ 0.57. Then

ehφ(x,z)∑
ẑ e

hφ(x,ẑ)
= Pγ∼g[z = z∗],

where z∗ , arg max
ẑ=1,...,k

{hφ(x, ẑ) + γ(ẑ)} (5)

Proof. Let G(t) = e−e
−(t+c)

be the Gumbel cumulative distribution function. Then

Pγ∼g[z = z∗] = Pγ∼g[z = arg max
ẑ=1,..,k

{hφ(x, ẑ) + γ(ẑ)}]

=

∫
g(t− φ(x, z))

∏
ẑ 6=z

G(t− hφ(x, ẑ))dt

2



Since g(t) = e−(t+c)G(t) it holds that∫
g(t− hφ(z))

∏
ẑ 6=z

G(t− hφ(ẑ))dt (6)

=

∫
e−(t−hφ(x,z)+c)G(t− hφ(x, z))

∏
ẑ 6=z

G(t− hφ(x, ẑ))dt

=
ehφ(x,z)

Z
(7)

where 1
Z =

∫
e−(t+c)

∏k
ẑ=1G(t−hφ(ẑ))dt is independent of z. Since Pγ∼g[z = z∗] is a distribution

then Z must equal to
∑k
ẑ=1 e

hφ(x,ẑ).
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