SUPPLEMENTS to the manuscript
“RUDDER: Return Decomposition for Delayed Rewards”

Abstract

We present supplementary material for the paper “RUDDER: Return Decomposi-
tion for Delayed Rewards”. We provide proofs for the theorems and statements
in the paper. We give more details on the new concepts of return decomposition,
reward redistribution, and optimal reward redistribution. The experiments are de-
scribed in more detail and completed with additional experiments. A bias-variance
analysis of temporal difference and Monte Carlo learning is given. The exponen-
tially slow correction of the bias of TD in the number of delay steps is proved.
That for MC a delayed reward can affect exponentially many variances of other
estimation is proved. The reproducibility checklist is included at the end.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Contents

S1 Definition of Finite Markov Decision Processes

S2 Reward Redistribution, Return-Equivalent SDPs, Novel Learning Algorithms, and Return

Decomposition e e

S2.1 State Enriched MDPs L

S2.2 Return-Equivalent Sequence-Markov Decision Processes (SDPs)

S2.2.1 Sequence-Markov Decision Processes (SDPs)

S2.2.2 Return-Equivalent SDPs oL

S2.3 Reward Redistribution for Strictly Return-Equivalent SDPs

S2.3.1 Reward Redistribution o

S2.4 Reward Redistribution Constructs Strictly Return-Equivalent SDPs

S2.4.1 Special Cases of Strictly Return-Equivalent Decision Processes: Reward
Shaping, Look-Ahead Advice, and Look-Back Advice

S2.5 Transforming an Immediate Reward MDP to a Delayed Reward MDP

S2.6 Transforming an Delayed Reward MDP to an Immediate Reward SDP

S2.6.1 Optimal Reward Redistribution.

S2.7 Novel Learning Algorithms based on Reward Redistributions

S2.7.1 Q-Value Estimation

S2.7.2 Policy Gradients

S2.7.3 Q-Learning e e

S2.8 Return Decomposition to construct a Reward Redistribution

S2.8.1 Return DecompositionIdea.

S2.8.2 Reward Redistribution based on Return Decomposition

S2.9 Remarks on Return Decomposition

S52.9.1 Return Decomposition for Binary Reward

S52.9.2 Optimal Reward Redistribution reduces the MDP to a Stochastic Contextual

BanditProblem L

S52.9.3 Relation to "Backpropagation through a Model™™

S3 Bias-Variance Analysis of MDP Q-Value Estimators

S3.1 Bias-Variance for MC and TD Estimates of the Expected Return
S3.2 Mean and Variance of an MDP Sample of the Return

S3.3 TD corrects Bias exponentially slowly with Respect to Reward Delay

S3.4 MC affects the Variance of Exponentially Many Estimates with Delayed Reward

S4 EXpPerimentst u e e e

S4.1 Artificial Tasks L

S4.1.1 Task (D): GridWorld

S4.1.2 Task (II): The Choice it ii e

S4.1.3 Task(IIl): Trace-Back

S4.1.4 Task (IV): Charge-Discharge

S4.1.5 Task (V): Solving Trace-Back using policy gradient methods

S42 Atari GAmeSo e e e
S4.2.1 Architecture

S4.2.2 Lessons Replay Buffer

S4.2.3 Game Processing, Update Design, and Target Design

S4.2.4 Exploration e

S4.2.5 Results oL

S5 Discussion and Frequent Questions L. oL
S6 Additional Related Work oL Lo

S7 Reproducibility Checklist e

S8 References

S1 Definition of Finite Markov Decision Processes
We consider a finite Markov decision process (MDP) P, which is a 5-tuple P = (8, A, R, p,7):

 §is a finite set of states; .S; is the random variable for states at time ¢ with value s € 8. S;
has a discrete probability distribution.

* A is a finite set of actions (sometimes state-dependent A(s)); A is the random variable for
actions at time ¢ with value a € A. A, has a discrete probability distribution.

* Ris a finite set of rewards; R;;1 is the random variable for rewards at time (¢ + 1) with
value r € R. R; has a discrete probability distribution.

o p(Si41 =8, Riy1 =1 | S¢ = s, Ay = a) are the transition and reward distributions over
states and rewards, respectively, conditioned on state-actions,

* v € [0, 1] is a discount factor for the reward.

The Markov policy 7 is a distribution over actions given the state: 7(A4; = a | S; = s). We often
equip an MDP P with a policy 7 without explicitly mentioning it. At time ¢, the random variables
give the states, actions, and rewards of the MDP, while low-case letters give possible values. At each
time ¢, the environment is in some state s; € 8. The policy 7 takes an action a; € A, which causes
a transition of the environment to state s;,1 and a reward r; for the policy. Therefore, the MDP
creates a sequence

(So, Ao, R1, 51, A1, R, Sa, A, R, . ..) . (S1)
The marginal probabilities for
p(s',r|s,a) = Pr(Sy1 =68, Rep1 =715 =s,4; = a (S2)
are:
p(r|s,a) = Pr[Ryp1=7|Si =54 =a] = Zp(s’w | s,a), (S3)
"
p(s' | s,a) = Pr(Sep1=5"|Si=s,4=a] = Zp(s',r | s,a). (S4)
.

We use a sum convention: Zm , goes over all possible values of a and b, that is, all combinations which
fulfill the constraints on @ and b. If b is a function of a (fully determined by a), then >, , = > .
We denote expectations:

» E, is the expectation where the random variable is an MDP sequence of states, actions, and
rewards generated with policy 7.

* F; is the expectation where the random variable is S; with values s € S.
* E, is the expectation where the random variable is A; with values a € A.
* E, is the expectation where the random variable is R, with values r € R.

* Eg a,rs,a 1s the expectation where the random variables are S;; with values s'es, S,
with values s € 8, A; with values a € A, A, with values o’ € A, and R, with values
r € R. If more or fewer random variables are used, the notation is consistently adapted.

The return G is the accumulated reward starting from ¢ + 1:
Gi =Y " Rikir . (S5)
k=0

The discount factor v determines how much immediate rewards are favored over more delayed
rewards. For v = 0 the return (the objective) is determined as the largest expected immediate reward,
while for v = 1 the return is determined by the expected sum of future rewards if the sum exists.

State-Value and Action-Value Function. The state-value function v™(s) for policy 7 and state s
is defined as

oo

v(s) = Ex[Gr | Se=3] = Bx [>_ 7" Riypqr | Si=s] . (S6)
k=0

Starting at t = 0:

vf = Er | 7' Repa| = Ex[Go] (S7)
t=0
the optimal state-value function v, and policy 7, are
vi(s) = m;xxv”(s) , (S8)
T = arg mng”(s) forall s . (S9)

The action-value function ¢™ (s, a) for policy = is the expected return when starting from S; = s,
taking action A; = a, and following policy 7:

q”(s,a) = Eﬂ— [Gt |St:8,At:a] = Eﬂ Z’)’k Rt+k¢+1 | St:s,At:a . (SIO)
k=0

The optimal action-value function ¢, and policy 7, are
g«(s,a) = maxq”(s,a), (S11)
T« = argmaxq”(s,a) forall (s,a). (512)

The optimal action-value function g, can be expressed via the optimal value function v,:
g«(s,a) = E[Riy1 + 7 ve(Seq1) | St = 5,4 = a . (S13)

The optimal state-value function v, can be expressed via the optimal action-value function ¢, using
the optimal policy :

ve(s) = mfuxq"* (s,a) = m;LXEm [Ge | St =s8,A: =a] = (S14)
mélem [Riy1 + YGiy1 | St =s,41=d] =
mélXE [Rix1 + Y 0i(Siq1) | Se =5, A =a] .
Finite time horizon and no discount. We consider a finite time horizon, that is, we consider only

episodes of length T, but may receive reward R7; at episode end at time 7" + 1. The finite time
horizon MDP creates a sequence

(SO,AO, R17 Sl, Al, RQ, SQ,A27 RS, ey ST_17AT_1, RT, ST, AT7 RT+1) . (815)

Furthermore, we do not discount future rewards, that is, we set v = 1. The return GG; from time ¢ to
T is the sum of rewards:
T—t

Gi = Y Rijxia- (S16)
k=0

The state-value function v for policy 7 is

T—t

v(s) = Ex[Gy | Si=5] = Ex | D Ripwp1 | Si=s (S17)
k=0
and the action-value function ¢ for policy = is
T—t
q"(s,a) = Ex[Ge| St =5,Ar =a] = E, ZRt+k+1 | S =s5,Ar=a (S18)
k=0

= E;[Rit1 + Giq1 | St =5, 4 =d

S psr] s,a) [r + Son(a | 8) q’f(s',av] .
s'r a’

From the Bellman equation Eq. (S18), we obtain:

D oo(s'[s,0) Y owld [8) g7 (s, a') = q7(s,a) = Y plr]s,a), (S19)

a’

Eo.o g7 (s, d") | s,a] = ¢"(s,a) — r(s,a). (S20)
The expected return at time ¢ = 0 for policy 7 is
T
v§ = Ex[Go] = Ex |) Rin| (S21)
t=0

T = argmax vf .
U

The agent may start in a particular starting state Sp which is a random variable. Often Sy has only
one value sg.

Learning. The goal of learning is to find the policy 7* that maximizes the expected future dis-
counted reward (the return) if starting at ¢ = 0. Thus, the optimal policy 7* is

T = argmax v . (S22)

We consider two learning approaches for (-values: Monte Carlo and temporal difference.

Monte Carlo (MC). To estimate ¢™(s,a), MC computes the arithmetic mean of all observed
returns (G; | S; = s, A; = a) in the data. When using Monte Carlo for learning a policy we use an
exponentially weighted arithmetic mean since the policy steadily changes.

For the ith update Monte Carlo tries to minimize £ M (s, a;)? with the residual M (s;, a;)

T—t—-1

M(sia) = (") (s0.a0) — > ¥ Tesisr s (S23)
7=0

such that the update of the action-value ¢ at state-action (s¢, a;) is

(q") T (se,a) = (¢7)(s¢,a0) — a M(sq,a4) . (S24)
This update is called constant-a MC [78].
Temporal difference (TD) methods. TD updates are based on the Bellman equation. If r(s, a) and

Es o [§7(s',a’) | s,a] have been estimated, the (-values can be updated according to the Bellman
equation:

(@)™ (s,a) = r(s,a) + 7By [d7(s',d) | s,qa] . (S25)

The update is applying the Bellman operator with estimates Eg/ o/ [("(s",a’) | s,a] and (s, a) to §™

to obtain (¢™)"“". The new estimate (¢§™)"“" is closer to the fixed point ¢™ of the Bellman operator,

since the Bellman operator is a contraction
Since the estimates Ey o/ [§7(s",a’) | s, a] and (s, a) are not known, TD methods try to minimize
£ B(s, a)? with the Bellman residual B(s, a):

B(s,a) = ¢"(s,a) — r(s,a) — YEg o [¢7(s',a")] . (S26)
TD methods use an estimate B(s, a) of B(s, a) and a learning rate « to make an update
G"(s,0)"" «— ¢"(s,a) — a B(s,a). (S27)

For all TD methods (s, a) is estimated by R;1 and s’ by S;11, while §™(s’, a’) does not change
with the current sample, that is, it is fixed for the estimate. However, the sample determines which
(s',a’) is chosen. The TD methods differ in how they select a’. SARSA [63] selects a’ by sampling
from the policy:

Eg o [q7(s",a")] = " (Siy1, Arg1)
and expected SARSA [30] averages over selections

Eg o [q7(s,a))] & Y 7w(a| Siy1) @ (Siva,).

a

It is possible to estimate r(s,a) separately via an unbiased minimal variance estimator like the
arithmetic mean and then perform TD updates with the Bellman error using the estimated 7 (s, a) [61].

Q-learning [87] is an off-policy TD algorithm which is proved to converge [88, 12]. The proofs
were later generalized [29, 82]. Q-learning uses
Es .o [7(s',a")] ~ max§(Sii1,a) . (S28)

The action-value function ¢, which is learned by)-learning, approximates g, independently of the
policy that is followed. More precisely, with -learning g converges with probability 1 to the optimal
q.. However, the policy still determines which state-action pairs are encountered during learning.
The convergence only requires that all action-state pairs are visited and updated infinitely often.

S2 Reward Redistribution, Return-Equivalent SDPs, Novel Learning
Algorithms, and Return Decomposition

S2.1 State Enriched MDPs

For MDPs with a delayed reward the states have to code the reward. However, for an immediate
reward the states can be made more compact by removing the reward information. For example,
states with memory of a delayed reward can be mapped to states without memory. Therefore, in
order to compare MDPs, we introduce the concept of homomorphic MDPs. We first need to define a
partition of a set induced by a function. Let B be a partition of a set X. For any z € X, we denote
[] 5 the block of B to which z belongs. Any function f from a set X to a set Y induces a partition
(or equivalence relation) on X, with [z]; = [2']; if and only if f(z) = f(z’). We now can define
homomorphic MDPs.

Definition S1 (Ravindran and Barto [57, 58]). An MDP homomorphism h from an MDP P =
(8,A,R,p,v) to an MDP P = (8,A,R,p,7) is a a tuple of surjections (f,q1,92,---,9n) (1 is
number of states), with h(s,a) = (f(s), gs(a)), where f : & — 8 and gs : As — Ay, for s € 8

(As are the admissible actions in state s and A ¢ are the admissible actions in state). Furthermore,
forall s,s' € 8,a € A:
UG F(8),95(a) = Y p(s" | s,a), (S29)
s"€[s']y
p(7 | f(s),95(a)) = p(r|s,a). (S30)
We use [s]; = [s']y if and only if f(s) = f(s').

We call P the homomorphic image of P under h. For homomorphic images the optimal ()-values
and the optimal policies are the same.

Lemma S1 (Ravindran and Barto [57]). If P is a homomorphic image of ‘P, then the optimal Q-

values are the same and a policy that is optimal in P can be transformed to an optimal policy in P
by normalizing the number of actions a that are mapped to the same action a.

Consequently, the original MDP can be solved by solving a homomorphic image.

Similar results have been obtained by Givan et al. using stochastically bisimilar MDPs: “Any stochas-
tic bisimulation used for aggregation preserves the optimal value and action sequence properties as
well as the optimal policies of the model” [18]. Theorem 7 and Corollary 9.1 in Givan et al. show the
facts of Lemma S1. Li et al. give an overview over state abstraction and state aggregation for Markov
decision processes, which covers homomorphic MDPs [37].

A Markov decision process P is state-enriched compared to an MDP P if P has the same states,
actions, transition probabilities, and reward probabilities as P but with additional information in its
states. We define state-enrichment as follows:

Definition S2. A Markov decision process P is state-enriched compared to a Markov decision
process P if P is a homomorphic image of P, where gs is the identity and f(8) = s is not bijective.
Being not bijective means that there exist §’ and §” with f(3') = f(5"), that is, § has more elements

than 8. In particular, state-enrichment does not change the optimal policies nor the (-values in the
sense of Lemma S1.

Proposition S1. If an MDP P is state-enriched compared to an MDP ‘P, then both MDPs have the
same optimal Q-values and the same optimal policies.

Proof. According to the definition P is a homomorphic image of P. The statements of Proposition S1
follow directly from Lemma S1. O

Optimal policies of the state-enriched MDP P can be transformed to optimal policies of the original
MDP P and, vice versa, each optimal policy of the original MDP P corresponds to at least one
optimal policy of the state-enriched MDP P.

S2.2 Return-Equivalent Sequence-Markov Decision Processes (SDPs)

Our goal is to compare Markov decision processes (MDPs) with delayed rewards to decision processes
(DPs) without delayed rewards. The DPs without delayed rewards can but need not to be Markov in
the rewards. Toward this end, we consider two DPs P and P which differ only in their (non-Markov)

reward distributions. However for each policy 7 the DPs P and P have the same expected return at
t = 0, that is, 9§ = v§, or they have the same expected return for every episode.

S2.2.1 Sequence-Markov Decision Processes (SDPs)

We first define decision processes that are Markov except for the reward, which is not required to be
Markov.

Definition S3. A sequence-Markov decision process (SDP) is defined as a finite decision process
which is equipped with a Markov policy and has Markov transition probabilities but a reward
distribution that is not required to be Markov.

Proposition S2. Markov decision processes are sequence-Markov decision processes.
Proof. MDPs have Markov transition probabilities and are equipped with Markov policies. O

Definition S4. We call two sequence-Markov decision processes P and P that have the same Markov
transition probabilities and are equipped with the same Markov policy sequence-equivalent.

Lemma S2. Two sequence-Markov decision processes that are sequence-equivalent have the same
probability to generate state-action sequences (So, Qg - . ., St,at), 0 < t < T.

Proof. Sequence generation only depends on transition probabilities and policy. Therefore the
probability of generating a particular sequences is the same for both SDPs. O

Next we define the state-value and action-value function for sequence-Markov decision processes
(SDPs). In contrast to MDPs, the state-value and action-value functions for SDPs also depend on the
past since the return distributions are not Markov.

We have to redefine the expectation E;:

Ex [|] = ESO,ao,..-,ST,aT [| } : (S31)

The expectation does not include state and actions that enter the condition.
The state-value function v for policy 7 is

T—t
v(s) = Ex[Gy | Si=5] = Ex |D Ripnpr | S = s] (S32)
k=0
T—t
= ESOaa(Jv---ast,—l7at—17(ltvst+17at+17~--7sT7aT ZRt+k+1 | Sy = S]
k=0
and the action-value function g for policy 7 is
T—t
q”(s,a) = ETr [Gt | St = S,At = a] = Eﬂ Rt+k+1 | St = S,At =a (533)
k=0
T—t
= Es(haﬂvu-astfl1at7175t+11at+17-“7sT1aT Z Rt+k+1 | Sp = S7At =a
k=0

We extend the definitions by including the past in the state-value and action-value functions.

The state-value function v for policy 7 depending on k past state-actions is

T
v (St, At—158t—1y-+,0t—k, Stfk) (S34)
= Er [Gt | St =54, A1 =ar-1,5—1=51—1,.-- -, Ak = @k, Stk = Stfk]
T—t
= Er g Rt+k+1 | Sy = St;Atfl = atfhstfl = St—1,-- ~;At7k = atfkastfk = St—k
k=0
T—t
= ESO,UIO,HwStfk—l,atfk—lxat75t+17at+17'~~)3T~,aT § Rt+k+1 I
k=0
St =54, A1 =ar—1,8-1=5—1,.. ., Ak = @, St—k = St—4]

and the action-value function g for policy 7w depending on k past state-actions is

iy
q (a’tvstaat—178t—17'"7at—k7st—k) (835)
= E:[Gi | Ar=ar, St =54, A1 = ap—1,S¢e—1 = 8415+ A = Gk, St—k = St—i]
Tt
= B, E Ritip1 | Ar=a4,5: = s, Apm1 = ap—1, Se—1 = Se—15 -+, Av ke = Gty St—k = St—k;
k=0
T—t
= E507a07---75t—k—17at—k—1»5t+17at+11-~~7ST7‘1T E Rt+k+1 |
k=0
Ay =a, Sy = 8¢, A1 = ag—1,8t—1 = Sp—1, -, Ay = @4, Sp—p = St—k] .

The state-value function v for policy 7 depending on the complete past is

V" (8¢, ya0,80) = Er[Gy | St = 84y..., A0 = ap, So = 50] (S36)
Tt
= E, ZRt+k+1 | St = 5¢,..., A0 = ag, So = s0
k=0
T—¢
= Ea,, .. sr.ar ZRt+k+1 | St = S¢,..., A0 = ag,So = so
k=0

and the action-value function g for policy 7 depending on the complete past is

q" (at, Sty ..., 00, S0) (S37)
= Er [Gt | Ay =a, St = S¢,..., A0 = ao, 5o :SO]
T—t
= Er E Ritp1| Ar = a, S¢ = s¢,..., Ag = ao, So = 5o
k=0
T—t
= Es, 11,0001, 57,07 E Ritit1 | Ar = as, St = S¢,..., Ao = ao, So = so
k=0

Markov decision processes (MDPs): the state-value function v and the action-value function ¢
remain the same. The rewards do not depend on the past, therefore the past can be integrated out in
the definitions.

The Bellman equation does not hold any longer if the reward depends on the past. For example

T—t
q"(s,a) = Ex[Gy | Si=5,4,=a] = Ex |Y Rijxi1| S =54 =a (S38)
k=0
T—t—1
:Eﬂ"[Rt+1‘St:S7.At:a/]+E7r Z Rt+k+2|St:S,At:CL
k=0

. T—t—1
Since E, does not average over ay, S¢, the term E; { p—o Ityk+2 | S =s, A = a} cannot be

expressed by ¢ (s¢+1, ai+1), which requires an average over a;, s;. Thus, the Bellman equation does
not hold as it is a recursive equation where g™ (s, a;) is expressed by ¢™ (S¢+1, Gry1).

S2.2.2 Return-Equivalent SDPs
We define return-equivalent SDPs which can be shown to have the same optimal policies.

Definition S5. Two sequence-Markov decision processes P and P are return-equivalent if they differ
only in their reward but for each policy ™ have the same expected return v = vj. P and P are
strictly return-equivalent if they have the same expected return for every episode and for each policy
m:

Eﬂ- [éo | S0,Aa0,.-.,ST,aT| = Eﬂ— [GO ‘ S0,A0,---,5T), CLT] . (539)

The definition of return-equivalence can be generalized to strictly monotonic functions f for which
0§ = f(vf). Since strictly monotonic functions do not change the ordering of the returns, maximal
returns stay maximal after applying the function f.

Strictly return-equivalent SDPs are return-equivalent as the next proposition states.

Proposition S3. Strictly return-equivalent sequence-Markov decision processes are return-
equivalent.

Proof. The expected return at ¢ = 0 given a policy is the sum of the probability of generating a
sequence times the expected reward for this sequence. Both expectations are the same for two strictly
return-equivalent sequence-Markov decision processes. Therefore the expected return at time ¢t = 0
is the same. O

The next proposition states that return-equivalent SDPs have the same optimal policies.
Proposition S4. Return-equivalent sequence-Markov decision processes have the same optimal
policies.

Proof. The optimal policy is defined as maximizing the expected return at time ¢ = 0. For each policy
the expected return at time ¢ = 0 is the same for return-equivalent decision processes. Consequently,
the optimal policies are the same. O

Two strictly return-equivalent SDPs have the same expected return for each state-action sub-sequence
(807a07"‘>st7at)70 < t < T.

Lemma S3. Two strictly return-equivalent SDPs P and P have the same expected return for each

state-action sub-sequence (so, ag, . .., St,at), 0 <t < T+
E, [Go | s0,a0,--.,St, at} = E;[Go | s0,a0,.--,8t,a4] - (S40)
Proof. Since the SDPs are strictly return-equivalent, we have
E, [GO | so,ao,...,st,at} (S41)
= g D (St41,Qtt1s .-, ST, a7 | St,04) B [GO | s0,a0,-..,8T,ar
St+1,at41,---,ST,AT
= E Pr(St41, Att1, .-+ STy a7 | $¢,a¢) Ex [Go | S0, a0, - - -, 8T, ar]
St+1,At+1,---,ST,AT
= E.[Go | s0,a0,---,St at -

We used the marginalization of the full probability and the Markov property of the state-action
sequence. O

We now give the analog definitions and results for MDPs which are SDPs.

Definition S6. Two Markov decision processes P and P are return-equivalent if they differ only in
p(7 | s,a) and p(r | s,a) but have the same expected return 0F = v§ for each policy w. P and P

are strictly return-equivalent if they have the same expected return for every episode and for each
policy m:
Eﬂ— [éo | S0,0A0,---,ST,04T = Eﬂ— [GO ‘ S0,QA0,---,5T), aT] . (542)

Strictly return-equivalent MDPs are return-equivalent as the next proposition states.

Proposition S5. Strictly return-equivalent decision processes are return-equivalent.

Proof. Since MDPs are SDPs, the proposition follows from Proposition S3. O
Proposition S6. Return-equivalent Markov decision processes have the same optimal policies.
Proof. Since MDPs are SDPs, the proposition follows from Proposition S4. O

For strictly return-equivalent MDPs the expected return is the same if a state-action sub-sequence is
given.

Proposition S7. Strictly return-equivalent MDPs P and P have the same expected return for a given

state-action sub-sequence (sg, ag, ..., St,a¢), 0 <t < T+
Eﬂ— [éo | S0,A0,.--,St,Q¢| = Eﬂ— [GO ‘ so,ao,...,st,at] . (543)
Proof. Since MDPs are SDPs, the proposition follows from Lemma S3. O

S2.3 Reward Redistribution for Strictly Return-Equivalent SDPs

Strictly return-equivalent SDPs P and P can be constructed by a reward redistribution.
S2.3.1 Reward Redistribution

We define reward redistributions for SDPs.

Definition S7. A reward redistribution given an SDP P is a fixed procedure that redistributes for
each state-action sequence sy, a, - - . , ST, a the realization of the associated return variable Gy =

Z?:o Rt+1 or its expectation E {éo | s0,a0,--.,ST, aT} along the sequence. The redistribution
creates a new SDP ‘P with redistributed reward Ry, at time (t + 1) and return variable Gy =
ZZ;O Ryy1. The redistribution procedure ensures for each sequence either Gy = G or

Eﬂ— |:é0 | S0,AQ0y---,ST, GT} = Eﬂ [GO ‘ S0,A0,---,ST, CLT] . (S44)

Reward redistributions can be very general. A special case is if the return can be deduced from the
past sequence, which makes the return causal.

Definition S8. A reward redistribution is causal if for the redistributed reward Ry the following
holds:

E[Rit1]| 50,00, ...,57,ar] = E[Riy1 | s0,a0,...,5¢ a4 - (545)

For our approach we only need reward redistributions that are second order Markov.

Definition S9. A causal reward redistribution is second order Markov if
E[Riy1 | s0,a0,---,5t,a)) = E[Rey1 | se-1,a0-1,8¢,a4] - (S46)
S2.4 Reward Redistribution Constructs Strictly Return-Equivalent SDPs

Theorem S1. If the SDP P is obtained by reward redistribution from the SDP P, then P and P are
strictly return-equivalent.

Proof. For redistributing the reward we have for each state-action sequence sg, ag, . . . , ST, ar the
same return Go = Gy, therefore

Eﬂ— |:é0 | S0,AQ,.-.,ST,0T = Eﬂ- [GO ‘ S0, ag, - - .,ST,CLT] . (S47)

For redistributing the expected return the last equation holds by definition. The last equation is the
definition of strictly return-equivalent SDPs. O

The next theorem states that the optimal policies are still the same when redistributing the reward.

Theorem S2. [fthe SDP P is obtained by reward redistribution from the SDP P, then both SDPs
have the same optimal policies.

Proof. According to Theorem S1, the SDP P is strictly return-equivalent to the SDP P. According
to Proposition S3 and Proposition S4 the SDP P and the SDP P have the same optimal policies. [J

10

S2.4.1 Special Cases of Strictly Return-Equivalent Decision Processes: Reward Shaping,
Look-Ahead Advice, and Look-Back Advice

Redistributing the reward via reward shaping [49, 90], look-ahead advice, and look-back advice [91]
is a special case of reward redistribution that leads to MDPs which are strictly return-equivalent to
the original MDP. We show that reward shaping is a special case of reward redistributions that lead to
MDPs which are strictly return-equivalent to the original MDP. First, we subtract from the potential
the constant ¢ = (®(sg,ap) — v ®(s7,ar))/(1 — 1), which is the potential of the initial state
minus the discounted potential in the last state divided by a fixed divisor. Consequently, the sum of
additional rewards in reward shaping, look-ahead advice, or look-back advice from 1 to 7" is zero.
The original sum of additional rewards is

T
> AT (v(si ai) — @(si—1,ai-1)) = ¥ ®(srar) — D(so,a0) - (548)
i=1

If we assume 77 ®(s7, ar) = 0 and (s, ag) = 0, then reward shaping does not change the return
and the shaping reward is a reward redistribution leading to an MDP that is strictly return-equivalent
to the original MDP. For T' — oo only ®(sg, ag) = 0 is required. The assumptions can always be
fulfilled by adding a single new initial state and a single new final state to the original MDP.
Without the assumptions 77 ®(sr,ar) = 0 and ®(sg,a9) = 0, we subtract ¢ = (®(sg,ag) —
yI®(s7,ar))/(1 —~T) from all potentials ®, and obtain

T
Z’Yj’_l (Y(®(sirai) — ¢) = (®(si—1,ai-1) — ¢)) = 0. (549)

i=1

Therefore, the potential-based shaping function (the additional reward) added to the original reward
does not change the return, which means that the shaping reward is a reward redistribution that leads
to an MDP that is strictly return-equivalent to the original MDP. Obviously, reward shaping is a
special case of reward redistribution that leads to a strictly return-equivalent MDP. Reward shaping
does not change the general learning behavior if a constant c is subtracted from the potential function
®. The Q-function of the original reward shaping and the Q-function of the reward shaping, which
has a constant ¢ subtracted from the potential function ®, differ by c for every Q-value [49, 90]. For
infinite horizon MDPs with v < 1, the terms v and v7 ® (s, ar) vanish, therefore it is sufficient to
subtract ¢ = ®(sg, ag) from the potential function.

Since TD based reward shaping methods keep the original reward, they can still be exponentially slow
for delayed rewards. Reward shaping methods like reward shaping, look-ahead advice, and look-back
advice rely on the Markov property of the original reward, while an optimal reward redistribution is
not Markov. In general, reward shaping does not lead to an optimal reward redistribution according
to Section S2.6.1.

As discussed in Paragraph S2.9, the optimal reward redistribution does not comply to the Bellman
equation. Also look-ahead advice does not comply to the Bellman equation. The return for the

look-ahead advice reward RtJrl is

Gy = ZRt+i+1 (S50)
i=0
with expectations for the reward RtJrl
Ex [RtJrl | St41, At41,St, At | = 5(8t+1,at+1,3taat) = '7(1)(3t+17at+1) - (I)(Staat)-
(851)

The expected reward 7(s;41, at+1, S¢, a;) depends on future states s;11 and, more importantly, on
future actions a4 1. It is a non-causal reward redistribution. Therefore look-ahead advice cannot be
directly used for selecting the optimal action at time ¢. For look-back advice we have
; - -1
Er |Riga | 86,08, 8t-1,ai-1| = 7(8¢,a¢,8t-1,0i-1) = P(st,a¢) — v P(st-1,a¢-1) .
(852)

Therefore look-back advice introduces a second-order Markov reward like the optimal reward
redistribution.

11

S2.5 Transforming an Immediate Reward MDP to a Delayed Reward MDP

We assume to have a Markov decision process P with immediate reward. The MDP P is transformed
into an MDP P with delayed reward, where the reward is given at sequence end. The reward-
equivalent MDP P with delayed reward is state-enriched, which ensures that it is an MDP.

The state-enriched MDP P has

e reward:
~ 0 fort <T
Ry = ! = S53
¢ {Z{_ORHI» fort=T+1. (553)
* state:
5 = (st,0t) (S54)
t—1
pr = > Thr1, with Reyy =reps . (S55)
k=0

Here we assume that p can only take a finite number of values to assure that the enriched states S are
finite. If the original reward was continuous, then p can represent the accumulated reward with any
desired precision if the sequence length is 7" and the original reward was bounded. We assume that p
is sufficiently precise to distinguish the optimal policies, which are deterministic, from sub-optimal
deterministic policies. The random variable Ry 1 is distributed according to p(r | sg,ar). We
assume that the time ¢ is coded in s in order to know when the episode ends and reward is no longer
received, otherwise we introduce an additional state variable 7 = ¢ that codes the time.

Proposition S8. If a Markov decision process P with immediate reward is transformed by above

defined R, and 3, to a Markov decision process P with delayed reward, where the reward is given at
sequence end, then: (I) the optimal policies do not change, and (I) for w(a | §) = w(a | s)

t—1
i"(5,a) = ¢"(5,0) + > _Try1, (S56)
k=0

for S, =3 S, =s and A, = a.

Proof. For (I) we first perform an state-enrichment of P by $; = (s¢, pt) with p; = Zf;k) Tpa1 for
Ri41 = ri41 leading to an intermediate MDP. We assume that the finite-valued p is sufficiently
precise to distinguish the optimal policies, which are deterministic, from sub-optimal deterministic
policies. Proposition S1 ensures that neither the optimal)-values nor the optimal policies change
between the original MDP P and the intermediate MDP. Next, we redistribute the original reward
R, 1 according to the redistributed reward R,. The new MDP P with state enrichment and reward
redistribution is strictly return-equivalent to the intermediate MDP with state enrichment but the
original reward. The new MDP P is Markov since the enriched state ensures that R ; is Markov.
Proposition S5 and Proposition S6 ensure that the optimal policies are the same.

For (IT) we show a proof without Bellman equation and a proof using the Bellman equation.
Equivalence without Bellman equation. We have Gy = G. The Markov property ensures that the
future reward is independent of the already received reward:

T
Y Repi | Si=s,Ay=a| . (S57)

T t—1
E, ZRk+1|St:37At:a7p:ZTk+1] = E,
k=t k=0 k=t

We assume 7(a | §) = 7w(a | s).

12

‘We obtain
q"(3,a) = Ez |Go | S =3 A =a} (S58)

T t—1
= Ez ZRk+1 | St:57P:ZTk+1aAt =a

o B
= Ex ZRk-i-l | S ZS,PZZTkH,At =a

= Eﬂ— ZRk+1|St_S At—a
Lk=t

t—1
q"(s,a) + Zrk_H.
k=0

We used Ez = E,, which is ensured since reward probabilities, transition probabilities, and the
probability of choosing an action by the policy correspond to each other in both settings.
Since the optimal policies do not change for reward-equivalent and state-enriched processes, we have

t—1
+ E Tk+1
k=0
t—1

+ Z Tk+1

k=0

q*(5,0) = ¢"(s,0) + Y rhi1- (S59)

Equivalence with Bellman equation. With ¢” (s, a) as optimal action-value function for the original
Markov decision process, we define a new Markov decision process with action-state function ¢”.

For S; = 3, S; = s, and A; = a we have

§"(5,0) == ¢"(s,a) + Y Thi1, (S60)

7(a|8) = w(als).) (S61)

Since ' = (s',p'), p' = r + p, and 7 is constant, the values Sy, 1 = & and R,4; = 7 can be
computed from Ry = r, p, and Sy = s’. Therefore, we have

ﬁ(glaf | s,p,a) = ﬁ(slvplvf |'s,p,a) = p(slvr | s,a) . (S562)

Fort < T, we have ¥ = 0 and p’ = r + p, where we set 7 = 74 1:

q"(3,0) = q"(s,a) + Y T (S63)
:ZP(SI7T|S,CL T+Z /‘5 3 a +Zrk+1
=Y B(s 07| s.p0) |1+ > w(d |s) g7 (s, a)) +Zrk+1
S',p/ a’
=) b7 §aa) T+ Zﬂ(a' | s') q"(s',a) + ZTkH]
= p(5',7]5,a) 7“+Z m(a | s") q" (s, d +2Tk+1]

= p(s', 7] 8,a) —I—Z (a"|8)q (& a)] .

For t = T we have 7 = Z;‘::O rie1 = p' and ¢"(s',a’) = 0 as well as §™ (8',a’) = 0. Both ¢ and §
must be zero for ¢ > T since after time ¢ = 1" + 1 there is no more reward. We obtain for t = T and

13

q"(3,0) = q"(s,0) + D> T (S64)
=Zp(s’,r|s,a T—I—Z (@] s q™(s,a) +Zrk+1
s'r
= Z ﬁ(S/,p,|57p, r 4+ Z /|5 5 CL + Zrk-i-l
s',p',r k=0
= Z ﬁ(s/’p' | s, p, a) [Z Tkt+1 + Zﬂ'(a/ ‘ 3/) qﬂ'(s/,a/)‘|
k=0 a’

s'p'\r
p/ + Zﬂ_(a/ ‘ 8/) qw(8/7a/)‘|
a/

=Zp | 5,a)
S 150 40

r /
§,p

Py wd | §)§(E, a’)} .
Since " (3, a) fulfills the Bellman equation, it is the action-value function for 7.

S2.6 Transforming an Delayed Reward MDP to an Immediate Reward SDP

Next we consider the opposite direction, where the delayed reward MDP P is given and we want to
find an immediate reward SDP P that is return-equivalent to P. We assume an episodic reward for P,
that is, reward is only given at sequence end. The realization of final reward, that is the realization
of the return, 774 is redistributed to previous time steps. Instead of redistributing the realization
741 of the random variable RTH, also its expectation 7(s7,ar) = E [RTH | sT, aT] can be

redistributed since ()-value estimation considers only the mean. We used the Markov property

T
Er [Go | S0, Ag, - - ~,ST,GT} = E Ry | S50,A0, - -+ ST»aT‘| (S65)
t=0
=E [RT+1 | s0,0a0,.. -75T7CLT}

=E [RT+1 | ST,CLT} .

Redistributing the expectation reduces the variance of estimators since the variance of the random
variable is already factored out.

We assume a delayed reward MDP P with reward

~ {O, fort <T

R = ¢ = S66
¢ Rryy, fort=T+1, ()

where R, = 0 means that the random variable R, is always zero. The expected reward at the last
time step is

f(sT,aT) = E [RT+1 | sT,aT} 5 (567)

which is also the expected return. Given a state-action sequence (so, ag, - - . , ST, ar), we want to
redistribute either the realization 77 of the random variable Ry 1 or its expectation 7(s7, ar),

14

S2.6.1 Optimal Reward Redistribution
The main goal in this paper is to derive an SDP via reward redistribution that has zero expected future

rewards. Consequently the SDP has no delayed rewards. To measure the amount of delayed rewards,
we define the expected sum of delayed rewards x(m,t — 1).

Definition S10. For1 <t < T and 0 < m < T —t, the expected sum of delayed rewards at time
(t — 1) in the interval [t + 1,t + m + 1] is defined as

K(m,t—1) = Br | Y Rejrgr | seo1,a01] - (S68)

7=0

The Bellman equation for ()-values becomes
q"(st,ar) = r(se,ar) + K(T—t—1,1), (569)

where (T — t — 1, t) is the expected sum of future rewards until sequence end given (s, a;), that
is, in the interval [t + 2,7 + 1]. We aim to derive an MDP with x(T" — t — 1,¢t) = 0, which
gives ™ (s, a:) = r(s¢, a:). In this case, learning the ()-values reduces to estimating the average
immediate reward r(s;, a;) = E [Ry+1 | st, a¢]. Hence, the reinforcement learning task reduces to
computing the mean, e.g. the arithmetic mean, for each state-action pair (s¢, a;). Next, we define an
optimal reward redistribution.

Definition S11. A reward redistribution is optimal, if (T —t — 1,t) =0for0 <t < T — 1.
Next theorem states that in general an MDP with optimal reward redistribution does not exist, which
is the reason why we will consider SDPs in the following.

Theorem S3. In general, an optimal reward redistribution violates the assumption that the reward
distribution is Markov, therefore the Bellman equation does not hold.

Proof. We assume an MDP P with #(sr,ar) # 0 and which has policies that lead to different
expected returns at time ¢ = 0. If all reward is given at time ¢ = 0, all policies have the same expected
return at time ¢ = 0. This violates our assumption, therefore not all reward can be given at ¢ = 0. In
vector and matrix notation the Bellman equation is

a =7+ Pyiq, (S70)

where P;_,; .1 is the row-stochastic matrix with p(s;11 | s¢,a¢)m(age1 | S¢+1) at positions
((st,at), (St+1,at+1)). An optimal reward redistribution requires the expected future rewards to be
zero:

P 1197, =0 (S71)
and, since optimality requires q;’, ; = 7411, we have
P 1701 = 0, (872)

where 741 is the vector with components 7(s¢11, a;+1). Since (i) the MDPs are return-equivalent,
(@ii) 7(s7, ar) # 0, and (iii) not all reward is given at ¢ = 0, an (¢ + 1) exists with ;11 # 0. We can
construct an MDP P which has (a) at least as many state-action pairs (s, a;) as pairs (S¢41, Gr41)
and (b) the transition matrix P,_,;;; has full rank. P,_,;, ;7,11 = 0 is now a contradiction to
7141 # 0 and P,_,441 has full rank. Consequently, simultaneously ensuring Markov properties and
ensuring zero future return is in general not possible. O

For a particular 7, the next theorem states that an optimal reward redistribution, that is k = 0, is
equivalent to a redistributed reward which expectation is the difference of consecutive @)-values of
the original delayed reward. The theorem states that an optimal reward redistribution exists but we
have to assume an SDP P that has a second order Markov reward redistribution.

Theorem S4. We assume a delayed reward MDP P, where the accumulated reward is given at
sequence end. An new SDP P is obtained by a second order Markov reward redistribution, which

ensures that ‘P is return-equivalent to P. Fora specific T, the following two statements are equivalent:
(I) k(T —t—1,t) =0, i.e. the reward redistribution is optimal,

(II) E[Riy1 | Si—1,a¢-1,50,a¢] = " (S¢,00) — G (Se—1,00-1) - (S73)
Furthermore, an optimal reward redistribution fulfills for | <t < T and0 < m < T —t:
k(m,t—1) = 0. (874)

15

Proof. PART (I): we assume that the reward redistribution is optimal, that is,

k(T —-t—1,t) = 0. (S75)
The redistributed reward R, is second order Markov. We abbreviate the expected R;;1 by h;:
E[Riy1 | st-1,a0-1,5¢,a¢] = hy (576)
The assumptions of Lemma S3 hold for for the delayed reward MDP P and the redistributed reward
SDP P. Therefore for a given state-action sub-sequence (s, ag, - - ., St,a¢), 0 <t < T
ET(|:é0 | 50, Q05 - - -5 St U,t:| = ETI' [GO | 50, Q05 - - - 5 St a‘t} (S77)
with Gy = Zf:o R.+1 and Gy = Rpy1. The Markov property of the MDP P ensures that the
future reward from ¢ + 1 on is independent of the past sub-sequence sg, ag, - - ., St—1,Gt—1:
Tt 7 [T—t
Er | Y Riyipr |sear] = Ex | Y Rijiyr | 50,00, s, at] : (S78)
7=0 J L7=0
The second order Markov property of the SDP P ensures that the future reward from ¢ + 2 on is
independent of the past sub-sequence sqg, ag, - . ., St—1, At—1:
T—t—1] (T—t—1
Er Z Riyoyr | st,ar| = Ex Z Riyoyr ‘ 50,Q05 - -+, St at] . (S79)
7=0 i L =0

Using these properties we obtain

[T—t
q"(st,ar) = Ex ZRt+1+T \ Staat] (S80)

L7=0
[T—t

= Eﬂ- Rt+1+7— ‘ S0,A0, ... 45St, Q¢
L7=0

= Eﬂ- RT+1 | S0, A0, - - -5 St, at:|
A

= Eﬂ— ZRT+1 ‘ S0, A0, .- -4 St, Q¢
L7=0

= E‘n’ [GO | SOaa()a"-7Staa’ti|

= E7r [GO | 50, a0, - - '75taat]
T
= Bg ZRT-Fl ‘ 507a07"'a3t7at]
L7=0
[T—t—1 t
= Eg Z Rt+2+7’ | 80,00,--.,5t, 0| + ZhT
L 7=0 =0
[T—t—1 t
= B Z Rt+2+7’ | Sty Qe | + Zhr
L 7=0 7=0
t
= KT —t-1,t) + Y _h,
7=0
t
Y
7=0
We used
T—t—1
(T —t—1,t) = E. l > Ripair | st,at] =0. (S81)
7=0

16

It follows that
E[Rt+1 \ Stflvatflastvat] = hy (S82)

= q"(st,a¢) — G (8¢-1,a¢-1) -

PART (II): we assume that
E[Ri11 | si-1,at-1,8:,a¢] = hy (S83)

= q"(st,at) — G (5¢-1,a-1) -

The expectations E [. | s;—1, a;—1] like E {RTH | s¢—1, at,l} are expectations over all episodes
starting in (s;—1, a;—1) and ending in some (sr, ar).

First, we consider m = 0 and 1 < ¢ < T, therefore k(0,¢t — 1) = E; [R¢41 | S¢—1,a+—1]. Since
7(s¢—1,a1—1) =0for 1 <t < T, we have

G (s¢—1,ai-1) = T(s¢—1,a0-1) + Z P(Stsar | Se—1,a-1) G (S¢,ar) (S84)
St,0¢
= > plsear | si-1,a-1) G (s1,a8) -
St,at

Using this equation we obtain for 1 <t < T"
k(0,t —1) = Es, a;,Reus [Rit1 | St—1,a1-1] (S85)
= Es, a [q"(5¢,a0) — " (St—1,a¢-1) | St—1,a¢—1]

= Zp(smat | st—1,ai-1) (@7 (stsat) — q" (Se-1,at-1))

St,a¢

= ¢ (se-1,00-1) — > p(se,ar | s1-1,00-1) ¢ (51-1,00-1)

St,at
= (" (s¢—1,a¢-1) — G (S¢—1,a4—1) = 0.

Next, we consider the expectation of Z:”:O Rijiyrforl<t<Tandl <m T —t(form > 0)

['m
k(m,t —1) = E; ZRt+1+T | 5t—17at—1‘| (S86)

L7=0

m
= E; Z(dw(87+t7a7+t) = G (Sr4t-1,r+1-1)) | St—laat—1‘|

L7=0

= E; [dﬂ(st-s-m,at-s-m) - qﬁ(st—laat—l) | 8t—1,&t—1]

r T
= Er |Ex E Ry | 3t+m7at+m] |5t—1aat—1]
L T=t+m
T
- Ex |Ex E Repq | se—1,ap—1| | Se—1,ae—1
T=t—1

= E; [RT+1 | 5t71>at71} - Ex {RT+1 | Stflaat71:|
=0.

We used that Rt+1 =0fort<T.
Fort=7+4+1landm =T —t¢t =T — 7 — 1 we have

K(T—-717-1,7) =0, (S87)

which characterizes an optimal reward redistribution.

17

Thus, an SDP with an optimal reward redistribution has a expected future rewards that are zero.
Equation (T — ¢t — 1,t) = 0 means that the new SDP P has no delayed rewards as shown in next
corollary.

Corollary S1. An SDP with an optimal reward redistribution fulfills for 0 < 7 < T —t —1
Ex [Risisr | se1,a-1] = 0. ($88)

The SDP has no delayed rewards since no state-action pair can increase or decrease the expectation
of a future reward.

Proof. For 7 = 0 we use x(m,t — 1) = 0 from Theorem S4 with m = 0:
Eﬂr [Rt+1 ‘ st_l,at_l] = m(O,t — 1) =0. (889)

For 7 > 0, we also use x(m,t — 1) = 0 from Theorem S4:

T T—1
Er [Rt+1+'r | Stflvatfl] = B ZRt+1+k - ZRt+1+k | St—1,01-1 (S90)
k=0 k=0
T T—1
= Er | Reprgr | sevai 1| — Bx | D Ripryr | so1,001
k=0 k=0

=r(nt—1) — k(r—1,t—1) =0—-0=0.
O

A related approach is to ensure zero return by reward shaping if the exact value function is known
[67].

The next theorem states the major advantage of an optimal reward redistribution: ¢™ (s, a;) can be
estimated with an offset that depends only on s; by estimating the expected immediate redistributed
reward. Thus, @-value estimation becomes trivial and the computation of the advantage function of

the MDP P is simplified.
Theorem S5. If the reward redistribution is optimal, then the Q-values of the SDP P are given by
q"(st,at) = r(st,a8) = G (8¢,0¢) — BEsy_yay [T (St-1,00-1) | 8¢ (S91)
= q"(st,at) — P (se) -

The SDP ‘P and the original MDP P have the same advantage function. Using a behavior policy 7
the expected immediate reward is

Ex [Reg1 | se,ai] = @ (se,a8) — ™7 (s4) . (892)

Proof. The expected reward r(s;, a;) is computed for 0 < ¢ < T, where s_1,a_1 are states and
actions, which are introduced for formal reasons at the beginning of an episode. The expected reward
r(st,at) is with ¢"(s—1,a—1) = 0:

T(Sm at) = Em,l [Rt+1 | St7at] = Es,,_l,at_l [(jﬂ(sta at) - qﬂ(stflv at71) \ St, at} (593)

= (TT(St,CLt) - ESt717at—1 [qﬂ-(st—lvat—l) ‘ Staat] .

The expectations E [. | s¢, a¢] like E [RTH | s¢, at} are expectations over all episodes starting in

(st, a;) and ending in some (s7, ar).
The Q-values for the SDP P are defined for 0 < ¢t < T as:

T—t

0" (s,a1) = Br | Resrgr | st (S94)
7=0
= E:[("(sr,ar) — " (St—1,ae-1) | St, a4
= Ex[q"(s7,a7) | st,a¢) — BEx [q" (51—1,ai-1) | 8¢, a4]

= (" (st,a¢) — Egy_ a0 (0" (St—1,00-1) | ¢, a4

= r(s¢, at) .

18

The second equality uses

S

Tt —t
ZRt+1+T = G (St47y017) — @ (St47-1,Ct4r—1) (S95)
7=0

3l

=0
= (" (s7,ar) — " (S¢—1,ae-1) -

The posterior p(s;—1,as—1 | S¢,a¢) is
P(St,at | St—l,at—l) p(St—laat—l)
p(stvat)
_ p(st | Stflvatfl)p(stflaatfl) _ p(8t71,at71 | St) 7
p(St)

where we used p(s¢, as | S4—1,ai—1) = w(ag | $¢)p(st | St—1,ar—1) and p(s¢, ar) = w(ay | s¢)p(st)-
The posterior does no longer contain a;. We can express the mean of previous (-values by the
posterior p(s¢—1,a:—1 | St, at):

B o (07 (St-1,am1) | sad] = Y plse—1,ae-1 | se,a0) G (se-1,a1-1) (S97)

St—1,at—1

= Z P(St—1,ai—1 | 5¢) ¢ (se—1,a¢—1) = Eg, 10y, [0"(S—1,00-1) | 5¢] = ¥ (5¢)

St—1,Qt—1

D(St—1,0i—1 | S¢,a) = (896)

with
wﬂ(st) = ESt—l,at—l [qﬂ-(stflvatfl) ‘ St] . (598)

The SDP P and the MDP P have the same advantage function, since the value functions are the
expected Q-values across the actions and follow the equation v™ (s;) = 97 (s¢) 4+ 1™ (s¢). Therefore
1™ (s¢) cancels in the advantage function of the SDP P.

Using a behavior policy 7 the expected immediate reward is

Ex [Rt+1 | 5t7at] = Ertﬂ,fr [Rt+1 | 3t7at] = Est,l,at,l,fr [qﬂ(shat) - qw(St—lyat—l) | st,at]
(899)
= §"(st,a¢) — Eg,_j a2 [0 (St—1,00-1) | 5¢,04] -

The posterior px (St—1, at—1 | ¢, at) is

pr(star | se—1,ai-1) pr(si—1,ai-1)
px(se,at)
P(St | St—1,0¢—1) Px(St—1,0¢—1
= (5 | 311, 001) Pr(st-1, 001) = pr(st-1,at-1 | 8¢)
Px(5¢t)
where we used px (s, ar | St—1,a:—1) = T(ar | s¢)p(st | st—1,a:—1) and pz(ss,a:) = 7(ar |
st)px(st). The posterior does no longer contain a;. We can express the mean of previous Q-values
by the posterior px(s¢—1, at—1 | St, at):

(S100)

Dr(St—1, -1 | 8¢, a1)

Es var 07 (@ (8t-1,0t-1) | 8¢, 04] = Z Pr(St—1,ai-1 | st,a1) " ($1-1,a0-1) (S101)
St—1,0t—1
= Y el s T (se1,0im1) = Ba s [0 (smn @) [s = 977 (s)
St—1,0t—1
with
O (8) = Egy_yarax [0 (St—1,00-1) | 8e] (S102)
Therefore we have
Ex [Res1 | 5,00 = G (se,a0) — ™" (s1) . (S103)
O

19

S2.7 Novel Learning Algorithms based on Reward Redistributions

We assume v = 1 and a finite horizon or absorbing state original MDP P with delayed reward.
According to Theorem S5, ¢" (s, a:) can be estimated with an offset that depends only on s; by
estimating the expected immediate redistributed reward. Thus, ()-value estimation becomes trivial
and the computation of the advantage function of the MDP P is simplified. All reinforcement
learning methods like policy gradients that use argmax,, ¢"(s¢, a;) or the advantage function
4" (st,a¢) — Eq,G" (8¢, a¢) of the original MDP P can be used. These methods either rely on
Theorem S5 and either estimate ¢™ (s¢, a;) according to Eq. (S91) or the expected immediate reward
according to Eq. (S92). Both approaches estimate ¢™(s;, a;) with an offset that depends only on
s¢ (either ¥™ (s¢) or 1)™7 (s;)). Behavior policies like “greedy in the limit with infinite exploration”
(GLIE) or “restricted rank-based randomized” (RRR) allow to prove convergence of SARSA [71].
These policies can be used with reward redistribution. GLIE policies can be realized by a softmax
with exploration coefficient on the Q-values, therefore 1™ (s;) or ¢)™7 (s;) cancels. RRR policies
select actions probabilistically according to the ranks of their ()-values, where the greedy action
has highest probability. Therefore 1(s;) or 1)™% (s;) is not required. For function approximation,
convergence of the (Q-value estimation together with reward redistribution and GLIE or RRR policies
can under standard assumptions be proven by the stochastic approximation theory for two time-scale
update rules [9, 31]. Proofs for convergence to an optimal policy are in general difficult, since locally
stable attractors may not correspond to optimal policies.

Reward redistribution can be used for

* (A) Q-value estimation,
* (B) policy gradients, and
* (C) Q-learning.

S2.7.1 Q-Value Estimation

Like SARSA, RUDDER learning continually predicts ()-values to improve the policy. Type (A)
methods estimate (Q-values and are divided into variants (i), (ii), and (iii). Variant (i) assumes an
optimal reward redistribution and estimates ¢™ (s;, a;) with an offset depending only on s;. The
estimates are based on Theorem S5 either by on-policy direct Q-value estimation according to
Eq. (S91) or by off-policy immediate reward estimation according to Eq. (S92). Variant (ii) methods
assume a non-optimal reward redistribution and correct Eq. (S91) by estimating «. Variant (iii)
methods use eligibility traces for the redistributed reward.

Variant (i): Estimation of ™ (s;, a;) with an offset assuming optimality. Theorem S5 justifies
the estimation of §7 (s;, a;) with an offset by on-policy direct ()-value estimation via Eq. (S91) or by
off-policy immediate reward estimation via Eq. (S92). RUDDER learning can be based on policies
like “greedy in the limit with infinite exploration” (GLIE) or “restricted rank-based randomized”
(RRR) [71]. GLIE policies change toward greediness with respect to the ()-values during learning.

Variant (ii): TD-learning of « and correction of the redistributed reward. For non-optimal
reward redistributions (T — ¢t — 1, ¢) can be estimated to correct the Q)-values. TD-learning of .
The expected sum of delayed rewards x(T" — ¢ — 1,¢) can be formulated as

T—t—1
k(T —t—1,t) = E, Z Riyoyr | s¢,a (S104)
=0
T—(t+1)—1
= E; |Rip2 + Z R y1yro4r | 5t a1
7=0
T—(t+1)—1
= E5t+17at+177't+2 Rt+2 + E?T Z R(t+1)+2+‘r | St+1, At+1 St, At
=0

= E5t+17at+17rt+2 [Rt+2 + H(T —t— 2a t+ 1) | St at} .

Therefore, k(T —t — 1, ¢) can be estimated by Ryyo and x(T —t — 2, ¢t + 1), if the last two are drawn
together, i.e. considered as pairs. Otherwise the expectations of Ry o and x(T —t — 2,t + 1) given
(s¢, a;) must be estimated. We can use TD-learning if the immediate reward and the sum of delayed

20

rewards are drawn as pairs, that is, simultaneously. The TD-error §,, becomes

0x(T—t—1,t) = Reyo + k(T —t—2,t+1) — (T —t—1,t). (S105)
We now define eligibility traces for x. Let the n-step return samples of x for 1 <n < T —t be
KT —t—1,t) = Riyo + k(T —t—2,t4+1) (S106)

KT —t—1,t) = Ryyo + Riys + k(T —t—3,t+2)

K(n)(T—t,t) = Rt+2 —|— Rt+3 —|— —|— Rt+n+1 + /@(T—t—n—l,t—kn).

The A-return for x is
T—t—1
RN —t=1,8) = (1= > A RIT —t—1,8) + N TN - 11
n=1

(S107)
‘We obtain
KT —t—1,t) = R + 6(T—t—2,t+1) (S108)
+)\ (Rt+3 + K(T*t*3,t+2) — H(T*t*Q,t‘i’l))
+ A (Riga + w(T—t—4,t+3) — k(T —t—3,t+2))
+ M (Rey 4+ k(0,7 —1) — k(1,T —2)) .
‘We can reformulate this as
T—t—1
R —t—1,t) = k(T —t—1t) + > X' 6(T—t—n—1t+n). (S109)
n=0

The k error A, is
T—t—1

AT —t=11) = M@ —t—1t) — k(T —t—-1,t) = Y N6(T—t—n—11t+n).
n=0

(S110)
The derivative of
2
1/2 Ap(T —t —1,8)% = 1/2 (KW(T— t—1,t) — w(T —t— l,t;w)) (S111)
with respect to w is
- (HW(T— t—1,8) — (T —t— 1,t;w)) Vor(T —t — 1, w) (S112)
T—t—1
= — Z A6 (T —t—n—1,t4+n) Vyur(T —t—1,t;w) .
n=0
The full gradient of the sum of « errors is
T-1
1/2 VwZAK(T—t—l,t)z (S113)
t=0
T—1 T—t—1
== D NT—t—n—1t+n) Vyur(T —t — 1,t;w)
t=0 n=0
T—1 T-1
= — Z Z)\T_t(sm(T—T—l,T) Vurk(T —t—1,t;w)
t=0 7=t
T-1 T
= — 5H(T—T—1,T)Z)\T_tvwli(T—t—l,t;’w).
=0 t=0

21

Wesetn =7 —1t¢,sothatn = Obecomes 7 =tandn =T —t — 1 becomes 7 =T — 1. The
recursion

f@) = Aft-1) + as, f(0) =0 (S114)
can be written as
T
FT) = > N tay. (S115)
t=1

Therefore, we can use following update rule for minimizing ZtT;Ol A (T, t)? with respect to w with
1<7<T-1:

2, =0 (S116)

zr = ANz;—1 + V(T — 7, 7;W) (S117)

0(T —7,7) = Rrgo + k(T —7—1, 7+ Lw) — &(T —7,7;w) (S118)
w' = w + ads(T—7,7) 27 . (S119)

Correction of the reward redistribution. For correcting the redistributed reward, we apply a
method similar to reward shaping or look-back advice. This method ensures that the corrected
redistributed reward leads to an SDP that is has the same return per sequence as the SDP P. The
reward correction is

F(st,ap,8i-1,a¢-1) = k(m,t) — k(m,t —1), (S120)
we define the corrected redistributed reward as
R,y = Rip1 + F(st,ap,80-1,ai-1) = Reyr + k(m,t) — k(m,t—1). (S121)
We assume that x(m, —1) = k(m, T + 1) = 0, therefore

T+1 T+41
ZF(st,at,st_l,at_1) = Z/ﬁ(m,t) — k(m,t—=1) = k(m, T+1) — k(m,—-1) = 0.
t=0 t=0

(S122)

Consequently, the corrected redistributed reward Ry, ; does not change the expected return for a
sequence, therefore, the resulting SDP has the same optimal policies as the SDP without correction.
For a predictive reward of p at time ¢ = k, which can be predicted from time ¢ = [< k to time
t =k — 1, we have:

0, fort<li,
k(m,t) = <p, forl<t<k, (S123)
0, fort>k.
The reward correction is
0, fort <1,
o, fort =1,
F(st,at,st_l,at_l) = 0, forl<t<k, (S124)
—p, fort=k,
0, fort > k.

Using « as auxiliary task in predicting the return for return decomposition. A « prediction can
serve as additional output of the function g that predicts the return and is the basis of the return
decomposition. Even a partly prediction of x means that the reward can be distributed further back.
If g can partly predict x, then g has all information to predict the return earlier in the sequence. If the
return is predicted earlier, then the reward will be distributed further back. Consequently, the reward
redistribution comes closer to an optimal reward redistribution. However, at the same time, s can no
longer be predicted. The function g must find another « that can be predicted. If no such « is found,
then optimal reward redistribution is indicated.

22

Variant (iii): Eligibility traces assuming optimality. We can use eligibility traces to further
distribute the reward back. For an optimal reward redistribution, we have Es, ., [V (s41)] = 0. The
new returns R; are given by the recursion

Ri = rep1 + ARey1, (S125)
Ripa = 0. (S126)

The expected policy gradient updates with the new returns R are E; [Vglog m(a; | s¢;0)R:]. To
avoid an estimation of the value function V'(s;1), we assume optimality, which might not be valid.
However, the error should be small if the return decomposition works well. Instead of estimating a
value function, we can use a correction as it is shown in next paragraph.

S2.7.2 Policy Gradients

Type (B) methods are policy gradients. In the expected updates E; [Vylogm(a | s;0)q™ (s, a)]
of policy gradients, the value ¢ (s, a) is replaced by an estimate of (s, a) or by samples of the
redistributed reward. Convergence to optimal policies is guaranteed even with the offset)™ (s) in
Eq. (S91) similar to baseline normalization for policy gradients. With baseline normalization, the
baseline b(s) = E,[r(s,a)] = >, m(a | s)r(s,a) is subtracted from 7(s, a), which gives the policy
gradient E; [V log(a | s;0)(r(s,a) — b(s))]. With eligibility traces using A € [0, 1] for G [78],
we have the new returns G; = ry + AG; 41 with Gpi o = 0. The expected updates with the new returns
Gare E; [Vglogm(a; | s¢;0)Gy].

S2.7.3 Q-Learning

The type (C) method is @Q-learning with the redistributed reward. Here, QQ-learning is justified if
immediate and future reward are drawn together, as typically done. Also other temporal difference
methods are justified when immediate and future reward are drawn together.

S2.8 Return Decomposition to construct a Reward Redistribution

We now propose methods to construct reward redistributions which ideally would be optimal. Learn-
ing with non-optimal reward redistributions does work since the optimal policies do not change
according to Theorem S2. However reward redistributions that are optimal considerably speed up
learning, since future expected rewards introduce biases in TD-methods and the high variance in
MC-methods. The expected optimal redistributed reward is according to Eq. (S73) the difference
of -values. The more a reward redistribution deviates from these differences, the larger are the
absolute k-values and, in turn, the less optimal is the reward redistribution. Consequently we aim
at identifying the largest J-value differences to construct a reward redistribution which is close to
optimal. Assume a grid world where you have to take a key to later open a door to a treasure room.
Taking the key increases the chances to receive the treasure and, therefore, is associated with a large
positive (Q-value difference. Smaller positive ()-value difference are steps toward the key location.

Reinforcement Learning as Pattern Recognition. We want to transform the reinforcement learn-
ing problem into a pattern recognition problem to employ deep learning approaches. The sum of the
@-value differences gives the difference between expected return at sequence begin and the expected
return at sequence end (telescope sum). Thus, ()-value differences allow to predict the expected
return of the whole state-action sequence. Identifying the largest (Q-value differences reduce the
prediction error most. ()-value differences are assumed to be associated with patterns in state-action
transitions like taking the key in our example. The largest (Q-value differences are expected to be
found more frequently in sequences with very large or very low return. The resulting task is to predict
the expected return from the whole sequence and identify which state-action transitions contributed
most to the prediction. This pattern recognition task is utilized to construct a reward redistribution,
where redistributed reward corresponds to the contribution.

S2.8.1 Return Decomposition Idea

The return decomposition idea is to predict the realization of the return or its expectation by a function
g from the state-action sequence

(s,a)o.r == (S0,00,51,01,...,87,ar) . (S127)

The return is the accumulated reward along the whole sequence (s, a)o.r. The function g depends
on the policy 7 that is used to generate the state-action sequences. Subsequently, the prediction
or the realization of the return is distributed over the sequence with the help of g. One important

23

advantage of a deterministic function g is that it predicts with proper loss functions and if being
perfect the expected return. Therefore, it removes the sampling variance of returns. In particular
the variance of probabilistic rewards is averaged out. Even an imperfect function g removes the
variance as it is deterministic. As described later, the sampling variance may be reintroduced when
strictly return-equivalent SDPs are ensured. We want to determine for each sequence element its
contribution to the prediction of the function g. Contribution analysis computes the contribution of
each state-action pair to the prediction, that is, the information of each state-action pair about the
prediction. In principle, we can use any contribution analysis method. However, we prefer three
methods: (A) Differences in predictions. If we can ensure that g predicts the sequence-wide return at
every time step. The difference of two consecutive predictions is a measure of the contribution of
the current state-action pair to the return prediction. The difference of consecutive predictions is the
redistributed reward. (B) Integrated gradients (IG) [76]. (C) Layer-wise relevance propagation (LRP)
[1]. The methods (B) and (C) use information later in the sequence for determining the contribution
of the current state-action pair. Therefore, they introduce a non-Markov reward. However, the
non-Markov reward can be viewed as probabilistic reward. Since probabilistic reward increases the
variance, we prefer method (A).

Explaining Away Problem. We still have to tackle the problem that reward causing actions do
not receive redistributed rewards since they are explained away by later states. To describe the
problem, assume an MDP P with the only reward at sequence end. To ensure the Markov property,
states in P have to store the reward contributions of previous state-actions; e.g. st has to store all
previous contributions such that the expectation 7(st, ar) is Markov. The explaining away problem
is that later states are used for return prediction, while reward causing earlier actions are missed. To
avoid explaining away, between the state-action pair (s;, a;) and its predecessor (s;_1, a;—1), where
(s—1,a—1) are introduced for starting an episode. The sequence of differences is defined as

Aoy = (A(s—1,a-1,50,0a0), ..., A(sp_1,ar—_1, s7,a7)) - (S128)
We assume that the differences A are mutually independent [28]:
P (A(st-1,at-1, 8¢, a1) | A(s—1,a-1,50,00), - - -, A(8t—2,a1-2, 811, a1-1), (S129)
A(se, ap, Se41,ae41) - AlsTo1,ar—1,s7,07)) = P(A(S1-1, 11, S8, 41)) -

The function g predicts the realization of the sequence-wide return or its expectation from the
sequence Ag.r:

9(Aor) = E {RT+1 | ST,GT} = TT41 - (S130)

Return decomposition deconstructs g into contributions h; = h(A(st—1,as—1, St,a:) at time ¢:

T
9(Bor) = D h(A(si-1, a1, 81,a1)) = Froa - (S131)
t=0

If we can assume that g can predict the return at every time step:
9(Ao:) = Ex [RTH | s¢, at} , (5132)

then we use the contribution analysis method "differences of return predictions", where the contribu-
tions are defined as:

ho = h(A(s_1,a_1,50,a0)) = g(Dow) (S133)

hy = h(A(si-1, -1, 50,a1)) = g(Dox) — g(Do.—1)) - (S134)

We assume that the sequence-wide return cannot be predicted from the last state. The reason is
that either immediate rewards are given only at sequence end without storing them in the states or
information is removed from the states. Therefore, a relevant event for predicting the final reward
must be identified by the function g. The prediction errors at the end of the episode become, in
general, smaller since the future is less random. Therefore, prediction errors later in the episode are
up-weighted while early predictions ensure that information is captured in h; for being used later.
The prediction at time 7" has the largest weight and relies on information from the past.

If g does predict the return at every time step, contribution analysis decomposes g. For decomposing
a linear g one can use the Taylor decomposition (a linear approximation) of g with respect to the
h[1, 45]. A non-linear g can be decomposed by layerwise relevance propagation (LRP) [, 46] or
integrated gradients (IG) [76].

24

S2.8.2 Reward Redistribution based on Return Decomposition
We assume a return decomposition

T
9(Bor) = h, (S135)
=0
with
ho = h(A(s-1,a-1,50,a0)) , (S136)
ht = h(A(st,l,at,l,st,at)) forO <t < T. (5137)

We use these contributions for redistributing the reward. The reward redistribution is given by the
random variable R, for the reward at time ¢ 4+ 1. These new redistributed rewards R;; must have
the contributions A; as mean:

E[Rit1 | st—1,a0-1,8t,a] = Iy (S138)
The reward I%T-&-l of P is probabilistic and the function g might not be perfect, therefore neither

g(Ag.1) = 741 for the return realization 7711 nor g(Ag.r) = 7(st, ar) for the expected return
holds. To assure strictly return-equivalent SDPs, we have to compensate for both a probabilistic

reward J%TH and an imperfect function g. The compensation is given by

T
Fron — > he. (S139)
7=0

We compensate with an extra reward Ry o at time 7"+ 2 which is immediately given after R at
time 7" + 1 after the state-action pair (s, ar). The new redistributed reward Ry is

E[R: | s0,a0] = ho, (S140)

E[Rt+1 ‘ st_l,at_l,st,at] = h; forO0<t< T, (S141)
T

Rryz = Rrgr — » he, (S142)
t=0

where the realization 77 is replaced by its random variable I:BTH. If the prediction of g is perfect,
then we can set Ry o = 0 and redistribute the expected return which is the predicted return. Ry o
compensates for both a probabilistic reward R7; and an imperfect function g. Consequently all
variance of sampling the return is moved to Rr42. Only the imperfect function g must be corrected
while the variance does not matter. However, we cannot distinguish, e.g. in early learning phases,
between errors of g and random reward. A perfect g results in an optimal reward redistribution.
Next theorem shows that Theorem S4 holds also for the correction Ry 5.
Theorem S6. The optimality conditions hold also for reward redistributions with corrections:
K(T—t+1,t—1) = 0. (S143)
Proof. The expectation of k(T —t + 1,6 — 1) = S T Ry 1, thatis k(m, t — 1) with m =
T—-t+1.
T—t+1

g Riiiyr | Se—1,a0—1
7=0

Ex (S144)

Tt
= Ex [Rrp1 — @ (smyar) + D (@ (5r16:0r40) — @ (Sr40-1,0r10-1)) | St—l,at—ll
7=0

= E; |Rrs1 — G (se—1,a6-1) | St—laat—l}

T
E R‘r+1 \ St—1,0t—1 \ St—1,0t—1

T=t—1

Er

= Ex |Rpy1 | 5t717at71:| - Ex

= E; |Rpr41 | St—lvat—l} S [RT+1 | St—lyat—l}

25

If we substitute ¢ — 1 by ¢ (¢ one step further and m one step smaller) it follows
k(T —t,t) =0. (S145)

Next, we consider the case t = T" + 1, that is (0, T"), which is the expected correction. We will use
following equality for the expected delayed reward at sequence end:

q"(sr.ar) = B, {RTH | ST,GT} = Fri1(st,ar) , (S146)
since ¢" (s741,ar+1) = 0. Fort =T 4 1 we obtain

[Z‘:L)T_;,_l — (j“(sT,aT) ‘ ST, arT (8147)

= Fryi(sr,ar) — Frea(sr,ar) = 0.

ERT+2 [RT+2 | STvaT] = ERT+1

O

In the experiments we also use a uniform compensation where each reward has the same contribution
to the compensation:

T
1 ~
Ri = ho + 7= (Rm —Zh(A(sT_l,aT_l,sT,aT») (S148)
7=0
1 ~ T
Ryt = i + 7= (Rm —Zh(A(sT_l,aT_l,sT,aT») : (S149)
=0

Consequently all variance of sampling the return is uniformly distributed across the sequence. Also
the error of g is uniformly distributed across the sequence.
An optimal reward redistribution implies

t

9(D0:) = D W(A(5r-1,0r-1,87,07)) = §"(st,a1) (S150)
=0

since the expected reward is
E[Riy1 | se-1,ai-1,5¢,a¢] = h(A(st-1, a1, 5¢,01)) (S151)
= q"(st;a1) — G (St-1,0¢-1)
according to Eq. (S73) in Theorem S4 and
h() = h(A(s,l,a,l,smao)) (5152)
= g(Ao0) = G (s0,a0) -
S2.9 Remarks on Return Decomposition

S2.9.1 Return Decomposition for Binary Reward

A special case is a reward that indicates success or failure by giving a reward of 1 or 0, respectively.
The return is equal to the final reward R, which is a Bernoulli variable. For each state s or each
state-action pair (s, a) the expected return can be considered as a Bernoulli variable with success
probability pr(s) or pr(s, a). The value function is v™(s) = E(G | s) = pr(s) and the action-
value is ¢"(s) = E.(G | s,a) = pr(s, a) which is in both cases the expectation of success. In this
case, the optimal reward redistribution tracks the success probability

Ry = ho = h(A(s—1,a-1,80,00)) = ¢"(s0,a0) = pr(so,ap) (S153)

Ripr = hy = MA(s¢—1,a¢-1,5t,a¢)) = §"(5t,a¢) — §" (5¢-1,04-1) (S154)
= pr(si,ar) — pr(si—1,a1-1) for0 <t < T

Rris = Rry1 — ry1 = R — prisr,ar) . (S155)

The redistributed reward is the change in the success probability. A good action increases the success
probability and obtains a positive reward while a bad action reduces the success probability and
obtains a negative reward.

26

S2.9.2 Optimal Reward Redistribution reduces the MDP to a Stochastic Contextual Bandit
Problem

The new SDP P has a redistributed reward with random variable R; at time ¢ distributed according to
p(r | s¢,ar). Theorem S5 states

q"(s¢,ar) = r(se,ae) . (S156)

This equation looks like a contextual bandit problem, where r(s;, a;) is an estimate of the mean
reward for action a; for state or context s;. Contextual bandits [36, p. 208] are characterized by a
conditionally o-subgaussian noise (Def. 5.1 [306, p. 68]). We define the zero mean noise variable 1 by

e = n(se,ar) = Ry — 7(se,a4) (S157)

where we assume that 7, is a conditionally o-subgaussian noise variable. Therefore, 7 is distributed
according to p(r — 7(s¢, az) | st, a;) and fulfills

Eln(s;,ar)] = 0, (S158)
E [exp(M(ss,a0)] < exp(A\20?/2) . (5159)

Subgaussian random variables have tails that decay almost as fast as a Gaussian. If the reward r is
bounded by |r| < B, then 7 is bounded by |n| < B and, therefore, a B-subgaussian. For binary
rewards it is of interest that a Bernoulli variable is 0.5-subgaussian [36, p. 71]. In summary, an
optimal reward redistribution reduces the MDP to a stochastic contextual bandit problem.

S2.9.3 Relation to ”Backpropagation through a Model

The relation of reward redistribution if applied to policy gradients and “Backpropagation through a
Model”” is discussed here. For a delayed reward that is only received at the end of an episode, we
decompose the return 77 into

T
9(Dor) = Frir = 3 WA(si-1,a1-1,50,ar)) - (S160)
t=0

The policy gradient for an optimal reward redistribution is
E, [Vologm(as | s¢;0) h(A(St—1,a¢—1, St,a¢))] - (S161)

Summing up the gradient for one episode, the gradient becomes

T
E, ZV@ logm(ay | s¢;0) h(A(si—1,at—1, St, at)) (S162)
0

= E; Jo(logm(a | s;0)) h(A(s',d’,s,a))] ,

where @' = (a_1,a9,a1,...,ar-1) and a = (ag,a1,...,ar) are the sequences of actions,
s’ = (s_1,5%0,81,-.-,87—1) and s = (s, $1,-..,S7) are the sequences of states, Jy(log) is
the Jacobian of the log-probability of the state sequence with respect to the parameter vector 6, and
h(A(s',a’, s,a)) is the vector with entries h(A(s¢—1, at—1, S¢, at))-

An alternative approach via sensitivity analysis is “Backpropagation through a Model”*, where
g(Ag.r) is maximized, that is, the return is maximized. Continuous actions are directly fed into g
while probabilistic actions are sampled before entering g. Analog to gradients used for Restricted
Boltzmann Machines, for probabilistic actions the log-likelihood of the actions is used to construct a
gradient. The likelihood can also be formulated as the cross-entropy between the sampled actions
and the action probability. The gradient for "Backpropagation through a Model " is

Ex [Jy(logm(a | s;0)) Vag(Ao.r)] , (S163)

where V,g(Ag.7) is the gradient of g with respect to the action sequence a.

If for ”Backpropagation through a Model”” the model gradient with respect to actions is replaced by
the vector of contributions of actions in the model, then we obtain redistribution applied to policy
gradients.

27

S3 Bias-Variance Analysis of MDP Q-Value Estimators

Bias-variance investigations have been done for (-learning. Griinewilder & Obermayer [20] investi-
gated the bias of temporal difference learning (TD), Monte Carlo estimators (MC), and least-squares
temporal difference learning (LSTD). Mannor et al. [40] and O’Donoghue et al. [50] derived bias and
variance expressions for updating ()-values.

The true, but unknown, action-value function ¢™ is the expected future return. We assume to have
the data D, which is a set of state-action sequences with return, that is a set of episodes with return.
Using data D, ¢™ is estimated by §™ = ¢™ (D), which is an estimate with bias and variance. For bias
and variance we have to compute the expectation Ep, [.] over the data D. The mean squared error
(MSE) of an estimator §™ (s, a) is

mse " (s,0) = Ep | ("(s,0) — ¢"(5,a))"] . (3164)
The bias of an estimator 7 (s, a) is
bias qﬂ-(saa) = Ep [dw(&a’)} - qﬂ—(saa’) . (5165)
The variance of an estimator §™ (s, a) is
AT AT AT 2
var{”(s,a) = Ep [(q (s,a) — Ep|d (s,a)])]) (S166)
The bias-variance decomposition of the MSE of an estimator §™ (s, a) is
mse (" (s,a) = var{”(s,a) + (biasé”(s,a))2. (S167)
The bias-variance decomposition of the MSE of an estimator ¢™ as a vector is
ATT AT ™ 2 AT ™
mse (™ = Ep [>