A Random world models for balance cart-pole

Consider the classical control task of balance cart-pole, where the cart is initialized “close” to the
unstable, fully upright equilibrium, and the cart’s (not the pole’s) acceleration is the only directly
controllable parameter.

Following [2], the Lagrangian for cart-pole system takes the form:

L= i(M + m)i? + imLzﬁz — mLcos(0)0& — mgLcos(6) ()

In the presence of a control force, u(t), the solution to the Euler-Lagrange equation % —29L

ot 0q
for ¢ € {0, z} yields the full equations of motion:

(M +m)i +mLsin(0)0> — mLcos(0)0 = u(t) (2)
mL20 — mLcos(0)i — mgLsin(f) = 0 (3)

Taking the limits that m < M, 0 < 1,and § < 1—that the pole is light compared to the cart, that
the pole is not moving very fast, and that the pole is near the vertical, respectively—the x and 6
components of the differential equation decouple, and the pole dynamics can be rearranged into the

matrix equation:
0 1\ (0 0
L) = . t 4
(5)= (3 0) (&) ()0 ®

Finally, the linear feedback ansatz for wu(t) is imply:

Sl ©

ut) = (ur u2) (g) (5)

Combining Eq. 4 and Eq. 5 results in 6 as desired.

Linearizing around this equilibrium, taking the linear feedback ansatz for the form of the controller,
and considering only the angular degrees of freedom the equations of motion for this system are,

0\ _ 0 L\ (0 [a b 0 6
6) \$t+4% &) \0 c+uy d+uz /) \0 (

where 6 is the angle of the pole with the vertical, g is the gravitational constant, L is the length of the
pole, M is the mass of the cart (considered much larger than the mass of the pole), and u;, uo are the
free parameters of the controller. Reinterpreted as a model-based reinforcement learning problem,
u1, Uy are the free parameters of a policy 7, and the exact model of the dynamics of the “world” are
the solutions to this differential equation. Finding a policy which “solves” Eq. 6—i.e., that drives the
pole towards the 8 = 0 equilibrium state—is possible via random search. Almost any pair of negative
entries stabilizes the pole!.

We don’t often have access to the exact equations of motion for a problem of interest, thus one
possible analogous “world-model” version of this task is to find both a policy, u;, ue, and matrix
entries a, b, ¢, d: that when solved, also solve the original task (i.e., Eq. 6 RHS). This task is equivalent
to learning a world model for a problem, training a policy entirely within the learned model, and
then measuring the transfer of the policy to the real world. Surprisingly, this task is also efficiently

1“Stability”, here, is meant in the formal control theoretic sense—i.e. that the coefficient matrix has only
negative eigenvalues

solvable via random search with high probability. Specifically, starting with Gaussian distributed
a,b, c,d and then solving for a u], u3 that stabilizes Eq. 6, with probability p > 0 those same u7, u3
will also stabilize a balance cart-pole problem with L, g, M ~ O(1).

While this cartoon does rely on the simplicity of the solution space for balance cart-pole, it hints at
a more general property of learned models for RL tasks: models can be wrong so long as they are
wrong in the right way. “Solving” the balance cart-pole task fundamentally amounts to finding w1, uo
that cause the coefficient matrix to have negative eigenvalues. The class of matrices that is negative

definite both when added to 00 and when (g 0 w1 u12) is itself negative definite is
ur U2 rtur it

large. Thus, looking for u1, us that stabilize random matrices in the neighborhood of the coefficient
matrix is a sensible, albeit highly inductively biased, strategy. Of course, most problems do not afford
such a dramatic freedom in the dimensionality of the solution manifold.

B Experimental Details

Please visit the web version at https://learningtopredict.github.io/ of this paper for infor-
mation about the released code for reproducing experiments.

Experiments were performed used multi-core machines on Google Cloud Platform, for various
peek probability settings, and also for multiple independent runs with different initial random seeds.
Cart-pole swing up experiments were performed on multiple 96 core machine, while car racing and
grid world experiments were performed on 64 core machines.

Below we describe architecture setup and experimental details for each experiment.

B.1 Swing up cart-pole

In our experiments, we fine-tuned individual weight parameters for the champion networks found to
measure the performance impact of further training. For this, we used population-based REINFORCE,
as in Section 6 of [5]. Our specific approach is based on open source estool [3] implementation of
population-based REINFORCE with default parameter settings, where we use a population size of
384, and had each agent perform the task 16 times with different initial random seeds for swing up
cart-pole. The agent’s reward signal used by the policy gradient method is the average reward of the
16 rollouts.

In this task, our policy network is a feed forward network with 5 inputs, 1 hidden layer of 10 tanh
units, and 1 output for the action. The world model is another feed forward network with 5 inputs,
30 hidden tanh units, and 5 outputs. We experimented with a larger hidden size, and extra hidden
layers, but did not see meaningful differences in performance. All models were trained for 10,000
generations.

B.2 Grid Worlds

For our grid world experiments, we used the same open source population-based optimizer imple-
mentation with default parameters, a population size of 8, and a cumulative reward signal averaged
over 4 rollouts.

For the fully connected network experiments, the input to the world model was a flattened list of the
5 X b x 2 observation binary variables concatenated with the length 5 one-hot action vector. This was
passed into a one layer network with 100 hidden units in the hidden layer, and 50 units in the output
layer. Predictions were calculated via thresholding: if an output was greater than .5, it was rounded to
1, otherwise it was rounded to 0. All apple and fire locations were predicted simultaneously.

For the convolutional network experiments, we used a convolutional architecture with shared weights,
a 3 x 3 kernel where the corner entries were forced to be zero (i.e., only the center pixel, and the
pixels in the 4 cardinal directions around it were inputs for each receptive field—that is, 5 of the 9
pixels in the 3 x 3 receptive field were active), and 100 channels. For each 3 x 3 receptive field, the
one hot action vector was concatenated to the flattened field, and then processed by the network. The
output of each 3 x 3 receptive field was 1-dimensional, and we used the same thresholding scheme as
for the fully connected networks—i.e., more than .5 was rounded to 1, and less than .5 was rounded
to 0. Apple and Fire observations were predicted with the same network.

https://learningtopredict.github.io/

For both world model architecture experiments, the same policy architecture was used: a simple
two-layer fully connected network with a tanh activation after the first layer, 100 units in the first
hidden layer, and 32 units in the second hidden layer, and 5 units in the output layer.

All models were trained for 4000 generations, and all models took between 10 and 100 random steps
in a 12 x 12 environment with 30 apples and 30 fires.

B.3 Car Racing

As in the swing up cart-pole experiment, we used the same open source population-based optimizer
implementation with default parameters, but due to the extra computation time required, we instead
use a population size of 64 and the average cumulative reward of 4 rollouts to calculate as the reward
signal.

The code and setup of the VAE for the Car Racing task is taken from [4]. We used the pre-trained
VAE made available in [1] with a latent size of 16 which trained following the same procedure as [4].
For simplicity, we do not use the RNN world model described in [4] for achieving state-of-the-art
results, but instead, we found that removing the VAE noise from the latent vector for the observation
improves results, hence in our experiment, from the point of view of the policy, the observed latent
vector z is set to the predicted mean of the encoder, y, from the pre-trained VAE.

In this task, our policy network is a feed forward network with 16 inputs (the latent vector), 1 hidden
layer of 10 tanh units, and 3 outputs for the action space. The world model is another feed forward
network with 16 inputs, 10 hidden tanh units, and 16 outputs. The 10 hidden units of this world
model was used as the input for a simple linear policy in the experiments. All models were trained
for 1,000 generations.

C The Grid World Environment

The environments are all square grids with impassable walls on the boundary. Apples and Fires are placed
randomly, but so that no tile has more than at most 1 Apple or Fire.

When the agent encounters an apple, it does not consume it until it takes an additional step—i.e., the agent sees
the apple on the turn that agent encounters it. Consumed apples are removed from the environment. The agent
receives 1 point of reward for every step in the environment, 6 reward for every apple it encounters, and -8
reward for every fire it encounters.

Apples and Fires are represented as binary variables in a d X d x 2 matrix, for grid width d. The agent can
perform one of 5 actions—movement in the 4 cardinal directions, or a no-op.

D Correlations of predictions

— 0.6

— 0.4

— 0.2

no-op

Figure 1: Correlation matrices for several sampled convolutional architectures. The dark pixel
immediately adjacent to the agent in many of the correlation plots is a result of the agent failing to
predict its own consumption of an apple, because the model used was translationally invariant.

- 04

- 0.3

no-op

Figure 2: Correlation matrices for several sampled fully connected architectures. Note the lack
of interpretability of the learned models, even though the policies learned jointly with these world
models were fairly performant.

References

(1]
(2]

(3]

(4]

(5]

Adam Gaier and David Ha. Weight agnostic neural networks. arXiv preprint arXiv:1906.04358, 2019.

Roderic A. Grupen. Cmpsci embedded systems 503. Online, 2018. URL http://www-robotics.cs.
umass . edu/~grupen/503/SLIDES/cart-pole.pdf.

D. Ha. Evolving stable strategies. http.//blog.otoro.net/, 2017. URL http://blog.otoro.net/2017/
11/12/evolving-stable-strategies/.

David Ha and Jiirgen Schmidhuber. Recurrent World Models Facilitate Policy Evolution. In Advances in
Neural Information Processing Systems 31, pages 2451-2463. Curran Associates, Inc., 2018.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine learning, 8(3-4):229-256, 1992.

http://www-robotics.cs.umass.edu/~grupen/503/SLIDES/cart-pole.pdf
http://www-robotics.cs.umass.edu/~grupen/503/SLIDES/cart-pole.pdf
http://blog.otoro.net/2017/11/12/evolving-stable-strategies/
http://blog.otoro.net/2017/11/12/evolving-stable-strategies/

	Random world models for balance cart-pole
	Experimental Details
	Swing up cart-pole
	Grid Worlds
	Car Racing

	The Grid World Environment
	Correlations of predictions

