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6 Appendix

6.1 Embedding trees in Euclidean space

Here we provide additional detail on the existence of various forms of tree embeddings.

Isometric embeddings of a tree (with its intrinsic tree metric) into Euclidean space are rare. Indeed,
such an embedding is impossible even a four-point tree T , consisting of a root node R with three
children C1, C2, C3. If f : T ! Rn is a tree isometry then ||f(R)�f(C1))|| = ||f(R)�f(C2))|| =
1, and ||f(C1)� f(C2))|| = 2. It follows that f(R), f(C1), f(C2) are collinear. The same can be
said of f(R), f(C1), and f(C3), meaning that ||f(C2)� f(C3)|| = 0 6= d(C2, C3).

Since this four-point tree cannot be embedded, it follows the only trees that can be embedded are
simply chains.

Not only are isometric embeddings generally impossible, but power-p embeddings may also be
unavailable when p < 2, as the following argument shows. See [13] for an independent alternative
version.

Proof of Theorem 2

Proof. We covered the case of p = 1 above. When p < 1, even a tree of three points is impossible
to embed without violating the triangle inequality. To handle the case when 1 < p < 2, consider a
“star-shaped” tree of one root node with k children; without loss of generality, assume the root node
is embedded at the origin. Then in any power-p embedding the other vertices will be sent to unit
vectors, and for each pair of these unit vectors we have ||vi � vj ||p = 2.
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Figure 6: Examples of simple Pythagorean embeddings

On the other hand, a well-known folk theorem (e.g., see [1]) says that given k unit vectors v1, ..., vk
at least one pair of distinct vectors has vi · vj � �1/(k � 1). By the law of cosines, it follows that
||vi � vj || 

q
2 + 2

k�1 . For any p < 2, there is a sufficiently large k such that ||vi � vj ||p 

(
q
2 + 2

k�1 )
p = (2 + 2

k�1 )
p/2 < 2. Thus for any p < 2 a large enough star-shaped tree cannot have

a power-p embedding.

Random branch embeddings are probably approximately Pythagorean
We can define a simple randomized tree embedding that turns out to be approximately Pythagorean.
Definition 2 (Random branch embedding in Rd). Let T be a tree with nodes t0, ..., tn�1, where t0 is
the root. Let {v1, ..., vn�1} be i.i.d Gaussian vectors in Rd, with vi ⇠ N (0, I/d). A random branch

embedding for T is a function f such that:

f(t0) = 0

f(ti) = vi + f(parent(ti))

Theorem 3. Consider a random branch embedding for a tree T in Rd
. If x, y are nodes in T , with

tree distance d(x, y) = m, then the distribution of ||f(x) � f(y)||2 has mean m and standard

deviation

p
m/2k.

Proof. We closely follow the proof of Theorem 1. Given two distinct tree nodes x and y, the
difference f(x)� f(y) may be viewed as the sum (or difference) of m i.i.d Gaussian vectors, each
with distribution N (0, I/d). By the standard theory of multivariate normal distributions, this sum
itself has distribution N (0, mI/d). Thus the distribution of ||f(x)� f(y)||2 will have mean m and
standard deviation

p
m/2k.

6.2 Ideal vs. actual parse tree embeddings

Figure 6 shows the canonical Pythagorean embeddings of two very simple trees. (More complicated
trees would require more than three dimensions.) The diagram makes clear how these embeddings
are inscribed in a unit cube.

Figure 7 shows (left) a visualization of a BERT parse tree embedding (as defined by the context
embeddings for individual words in a sentence). We compare with PCA projections of the canonical
Pythagorean embedding of the same tree structure, as well as a random branch embedding. Finally,
we display a completely randomly embedded tree as a control. The visualizations show a clear visual
similarity between the BERT embedding and the two mathematical idealizations.

6.3 Additional BERT parse tree visualizations

Figure 8 shows four additional examples of PCA projections of BERT parse tree embeddings.

6.4 Additional word sense visualizations

We provide two additional examples of word sense visualizations, hand-annotated to show key
clusters. See Figure 9 and Figure 10.
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Figure 7: PCA projection of the context embeddings for the sentence “The field has reserves of
21 million barrels.” transformed by Hewitt and Manning’s “structural probe” matrix, compared
to the canonical Pythagorean embedding, a random branch embedding, and a completely random
embedding.
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Figure 8: Additional examples of BERT parse trees. In each pair, at left is a drawing of the abstract
tree; at right is a PCA view of the embeddings. Colors are the same as in Figure 7.
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Figure 9: Context embeddings for “lie” as used in different sentences.

Figure 10: Context embeddings for “lie” as used in different sentences.
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6.5 Dependency relation performance

Dependency precision recall n

advcl 0.34 0.08 1381
advmod 0.32 0.32 6653
amod 0.68 0.48 10830
aux 0.64 0.08 6914
auxpass 0.68 0.50 1501
cc 0.84 0.77 5041
ccomp 0.67 0.78 2792
conj 0.64 0.85 5146
cop 0.49 0.16 2053
det 0.81 0.95 15322
dobj 0.74 0.66 7957
mark 0.58 0.67 2160
neg 0.83 0.17 1265
nn 0.67 0.82 11650
npadvmod 0.53 0.23 580
nsubj 0.72 0.83 14084
nsubjpass 0.30 0.14 1255
num 0.82 0.55 3464
number 0.77 0.74 1182
pcomp 0.14 0.01 957
pobj 0.78 0.97 17146
poss 0.74 0.54 3567
possessive 0.83 0.86 1449
prep 0.79 0.92 17797
prt 0.67 0.33 593
rcmod 0.55 0.30 1516
tmod 0.55 0.15 672
vmod 0.84 0.07 1705
xcomp 0.72 0.40 2203

all 0.72 0.72 150000
Table 2: Per-dependency results of multiclass linear classifier trained on attention vectors, with
300,000 training examples and 150,000 test examples.
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6.6 Semantic probe performance across layers

Figure 11: Change in classification accuracy by layer for different probe dimensionalities.

6.7 Semantic vs. syntactic probes

We compared our word sense disambiguation probe (A) to Hewitt and Manning’s syntax probe (B).
We find that the singular values of AT ⇤B fall to zero more quickly than those for A or B alone:

The same is true for the singular values of A ⇤BT :

This suggests that A and B are orthogonal to each other.
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