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Abstract

We study the statistical-computational tradeoffs in a high dimensional single in-1

dex model Y = f(X>β∗) + ε, where f is unknown, X is a Gaussian vector2

and β∗ is s-sparse with unit norm. When Cov(Y,X>β) 6= 0, [43] shows that3

the direction and support of β∗ can be recovered using a generalized version of4

Lasso. In this paper, we investigate the case when this critical assumption fails5

to hold, where the problem becomes considerably harder. Using the statistical6

query model to characterize the computational cost of an algorithm, we show that7

when Cov(Y,X>β) = 0 and Cov(Y, (X>β)2) > 0, no computationally tractable8

algorithms can achieve the information-theoretic limit of the minimax risk. This9

implies that one must pay an extra computational cost for the nonlinearity involved10

in the model.11

1 Introduction12

A single index model (SIM) specifies that the response Y and the covariateX satisfy Y = f(X>β∗)+13

ε, where β∗ ∈ Rd is an unknown parameter, f : R→ R is an unknown link function, and ε ∈ R is14

a random noise. This model extends linear regression by incorporating the unknown link function,15

offers additional modeling flexibility and robustness to model misspecification. SIMs are extensively16

studied in the literature, with wide applications such as time-series [17], survival analysis [35], and17

quantile regression [55].18

Given n i.i.d. observations of this model, the primary focus is to estimate the parametric component19

β∗ without knowing the exact form of f . When β∗ is estimated accurately, f can be fitted via20

univariate nonparametric regression. Recently, there is growing research interest in recovering β∗ in21

the high-dimensional setting where the dimensionality d is much larger than the sample size n and22

β∗ is sparse. When Y and X>β∗ has nonzero correlation, [43, 44] propose to estimate β∗ by fitting23

an `1-regularized linear model, i.e., Lasso [49], directly using Y and X . More interestingly, they also24

establish similar theoretical guarantees as those for the linear model. Specifically, they show that the25

Lasso estimator is consistent as long as the sample size is of the order s log d, where s is the number26

of nonzero entries in β∗. Moreover, this sample complexity result is known to be optimal in the27

sense that it attains the information-theoretical lower bound [46, 52], and the proposed estimator can28

be obtained efficiently using convex optimization. However, the Lasso approach fails when Y and29

X>β∗ are uncorrelated, which is the case when the link function is symmetric. A prominent example30

is phase retrieval [10, 11], where f is known to be either the absolute value or quadratic function.31

For sparse phase retrieval, s log d sample complexity is only attained by the empirical risk minimizer32

[33], which searches over all
(
d
s

)
possible support sets of β, and is thus computationally intractable.33
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In addition, various efficient estimators are proposed based on convex relaxation or projected gradient34

descent [8, 13], whose consistency is only shown when the sample size is of the order s2 log d. Thus,35

there seems an interesting tradeoff between the statistical optimality and computational efficiency, i.e.,36

there is a gap between the optimal statistical performance achieved by the family of computationally37

efficient estimators and that attained by all possible estimators. In sparse phase retrieval, such a gap38

is conjectured to be fundamental [8] and is also observed in SIMs where f is symmetric [42, 47, 61].39

This intriguing phenomenon motivates the following two questions: (i) How does the unknown link40

function affect the statistical and computational aspects of learning SIMs in high dimensions? (ii)41

Are the gap observed in symmetric links intrinsic and cannot be eliminated by more sophisticated42

algorithm design and analysis?43

For the first question, we introduce the notions of first- and second-order Stein’s associations which44

characterize the dependence between Y and X>β∗ two different orders. We differentiate two types45

of link functions: (i) f with nonzero first-order Stein’s association and (ii) f with zero first-order46

and nonzero Stein’s associations. These two classes capture the functions considered in [43, 44] and47

[42, 47, 61] respectively. More importantly, we establish the statistical-computational barrier under48

an oracle computational model [16, 18, 19, 53], which is an abstraction of computations made by49

algorithms that interact with data. Specifically, we study the signal detection problem where the link50

function is defined as a continuous interpolation of two link functions of different types. We establish51

information-theoretical and computational lower bounds for the minimum signal strength required52

for successful detection and also propose algorithms that yield matching upper bounds. Moreover,53

we characterize the gap between signal strengths for learning SIMs under limited and unlimited54

computational budgets and display the evolution of this gap as the link function transits from one55

type to the other.56

Main Contribution. Our contribution is three-fold. First, we introduce the first- and second-order57

Stein’s associations, which bring a general characterization of the link functions considered in the58

literature. Second, for the detection problem, we establish nearly tight information-theoretical and59

computational lower bounds under the framework of oracle model, which exhibit the statistical price60

paid for achieving computational efficiency in learning SIMs. Third, we also construct algorithms61

which yield matching upper bounds. Our results also imply a similar computational barrier for62

parameter estimation, thus providing a positive answer to the open problem raised in [8].63

Related Work. There is a huge body of literature on single-index models in the low-dimensional64

setting. See, for example, [25, 27, 29, 39] and the references therein. For high-dimensional SIMs,65

when Y andX>β∗ has a nonzero correlation, [22, 23, 26, 40, 41, 43, 44, 57] study the statistical rates66

of Lasso-type estimators, which are shown to achieve both statistical accuracy and computational67

efficiency. In contrast, [42, 48, 60, 61] study SIMs which are generalizations of sparse phase retrieval68

[8].69

In addition, the statistical query model is proposed by [30] and further extended by [15, 18–20] for70

studying the computational complexity of planted clique, random satisfiability problems, stochastic71

convex optimization, and Gaussian mixture model. In addition, based on a slightly modified version,72

[16, 34, 53, 62] establish the statistical-computational tradeoffs in statistical problems including73

sparse PCA, high-dimensional mixture models, weakly supervised learning, and graph structure74

inference. Among them, our work is mostly related to [16], which validates the computational barrier75

in phase retrieval with absolute value link function by drawing the connection to mixture of regression76

models. In comparison, we tackle SIMs directly, which takes phase retrieval as a particular case.77

More importantly, by interpolating the two sub-classes of SIMs, we obtain the full spectrum of phase78

transitions, which shed new light on the open problem raised in [8].79

Furthermore, there is a massive body of literature on understanding the computational barriers80

of statistical models. Besides our oracle model approach, there are two other popular means of81

attacking such problems. The first one is based on polynomial-time reductions from the conjectured82

computationally challenging problems to statistical problems of interest. See, e.g., [3–7, 9, 12, 21, 24,83

37, 56] and the references therein. Second method constructs a sequence of sum-of-squares convex84

relaxations that are increasingly tighter based on semidefinite programming [1, 2, 14, 28, 31, 36, 38,85

45, 54]. Although this approach is free of hardness conjectures, their computational barriers only86

hold for the restricted family of convex relaxation algorithms.87
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2 Background88

In this section, we first introduce the single index model and the associated signal detection problem.89

We then introduce the statistical query model, which quantifies the computational cost of an algorithm90

that interacts with data and is later used to establish the main results.91

2.1 Statistical Model92

We consider the single index model93

Y = f(X>β∗) + ε, (2.1)
where X ∼ N(0, Id) is the covariate, Y is the response, β∗ ∈ Rd is the unknown parameter of94

interest, ε ∼ N(0, σ2) is the noise, and f : R→ R is the unknown link function. Given n independent95

realizations {zi = (yi, xi)}i∈[n] of this model, our goal is to estimate β∗ under the assumption that96

β∗ is s-sparse, s� n, and d� n.97

[43] estimate β∗ by exploiting the covariance structure Cov(Y,X>β∗). When such a structure98

is unavailable, that is, Cov(Y,X>β∗) = 0, [42, 61] estimate β∗ by exploiting Cov[Y, (X>β∗)2].99

However, the resulting estimators require a higher sample complexity than the estimators that are100

based on Cov(Y,X>β∗). To understand such a gap in sample complexity, we consider more general101

settings under a unified framework. The key of this framework is the following Stein’s identities102

[58, 59]. Let X ∼ N(0, Id) be the standard Gaussian distribution and Y = h(X). If the expectation103

E[∇h(X)] exists, the first-order Stein’s identity takes the form104

E
[
∇h(X)

]
= E[Y X]. (2.2)

Let Y = h(X), where h is twice differentiable. If the expectation E[∇2h(X)] exists, the second-order105

Stein’s identity takes the form106

E
[
∇2h(X)

]
= E

[
Y · (XX> − Id)

]
. (2.3)

The above identities show that the covariance structures Cov(Y,X>β∗) and Cov[Y, (X>β∗)2] are piv-107

otal in the estimation of the model defined in (2.1). Following from (2.2) with h(X) = f(X>β∗, ε),108

it holds that E[Y X] = E[f ′(X>β∗, ε)] · β∗, where we denote by f ′ the derivative of f with respect109

to the first coordinate. In other words, E[Y X] recovers β∗ up to a scaling under the assumption that110

Cov(Y,X>β∗) 6= 0. Meanwhile, following from (2.3) with h(X) = f(X>β∗, ε), it holds that111

E[Y ·XX>] = E
[
f ′′(X>β∗, ε)

]
· β∗β∗> + E[Y ] · Id.

In other words, β∗ is the leading eigenvector of E[Y · XX>] under the assumption that112

Cov[Y, (X>β∗)2] > 0. We define the following covariance structures, which play important roles in113

the estimation of β∗ in the model in (2.1) with unknown link function f .114

Definition 2.1 (First-order and second-order Stein’s associations). Let ψ be a twice differentiable115

transformation from R to R and Y be the response of X under the model in (2.1). We define the first-116

and second-order Stein’s association between Y and X>β∗ as117

S1(Y ) = Cov(Y,X>β∗), S2(Y, ψ) = Cov
[
ψ(Y ), (X>β∗)2

]
,

respectively, where ψ is called the marginal transformation.118

In the following, we introduce classes of link functions of interest. We consider the following two119

classes of link functions,120

C1 =
{
f : Cov

(
f(X>β∗), X>β∗

)/
‖β∗‖22 = 1

}
,

C2 =
{
f : Cov

(
f(X>β∗), X>β∗

)
= 0
}
. (2.4)

The function class C1 is a class of normalized link functions. Following from the first-order Stein’s121

identity in (2.2), it holds that122

Cov
(
f(X>β∗), X>β∗

)
= E

[
f ′(X>β∗)

]
· ‖β∗‖22.

In other words, the definition of C1 in (2.4) equivalently requires the link function f ∈ C1 to satisfy123

E[f ′(X>β∗)] = 1.124

For any twice differentiable marginal transformation ψ, we define C(ψ) as the class of link functions125

f such that126

C(ψ) =
{
f : Cov

[
ψ(Y ), (X>β∗)2

]/
‖β∗‖42 ≥ 1 for Y = f(X>β∗) + ε

}
. (2.5)
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The definition of C(ψ) is a generalization of the misspecified phase retrieval model studied by [42, 61]127

with additive noise. By allowing marginal transformations of Y , such a class also covers the linear128

regression model as a special case.129

Note that in (2.5), we require the covariance structure Cov[ψ(Y ), (X>β∗)2] to have a magnitude130

comparable to ‖β∗‖42. Without any loss of generality, such a requirement specifies the scaling of the131

marginal transformation ψ and the corresponding link function f ∈ C(ψ). To see this, note that it132

holds from the second-order Stein’s identity in (2.3) that133

Cov
[
ψ(Y ), (X>β∗)2

]
= E

[
D2ψ

(
f(X>β∗) + ε

)]
· ‖β∗‖42,

where D is the differentiation operator with respect to X>β∗. In other words, (2.5) equivalently134

requires the link function f ∈ C(ψ) to satisfy E[D2ψ(f(X>β∗) + ε)] ≥ 1.135

For ψ(y) = y, the function class C(ψ) defined in (2.5) reduces to the misspecified phase retrieval136

models considered by [42, 61] with additive noise. For ψ(y) = y2, C(ψ) characterizes the linear137

regression model, the mixed regression model, and various phase retrieval models, including Y =138

(X>β∗)2 + ε and Y = |X>β∗|+ ε, up to normalizations. In particular, C(ψ) also characterizes a139

class of one-hidden-layer neural networks with Rectified Linear Units (ReLU) activation function.140

For a neural network with two neurons in the hidden layer, where the parameters in the first layer are141

β∗ and −β∗, and the parameter in the second layer is (1, 1) ∈ R2, we have142

Y = max{X>β∗, 0}+ max{−X>β∗, 0}+ ε = |X>β∗|+ ε,

which is captured by C(ψ) with ψ(y) = y or ψ(y) = y2 up to normalizations.143

Throughout this paper, we focus on the marginal transformations ψ such that C(ψ) ∩ C1 6= ∅ and144

C(ψ) ∩ C2 6= ∅, where the function classes C1, C2, and C(ψ) are defined in (2.4) and (2.5). Such a145

class of marginal transformations ψ enables us to study the phase transition between f1 ∈ C(ψ) ∩ C1146

and f2 ∈ C(ψ) ∩ C2. As an example, we consider ψ(y) = y. It holds that f1 ∈ C(ψ) ∩ C1 for147

f1(X>β∗) = X>β + (X>β∗)2, and f2 ∈ C(ψ) ∩ C2 for f2(X>β) = (X>β)2. In other words, it148

holds that C(ψ) ∩ C1 6= ∅ and C(ψ) ∩ C2 6= ∅ for ψ(y) = y. With link functions f1 ∈ C(ψ) ∩ C1149

and f2 ∈ C(ψ) ∩ C2, we introduce the following statistical model of interest,150

Y =

{
f1(X>β∗) + ε, with probability α,
f2(X>β∗) + ε, with probability 1− α, (2.6)

where ε ∼ N(0, σ2), X ∼ N(0, Id), and β∗ is s-sparse. We assume that f1 and f2 are unknown,151

and ψ is known a priori. In (2.6), the mixture probability α controls the magnitude of the first-order152

Stein’s association S1(Y ) defined in Definition 2.1, which characterizes a notion of linearity between153

the response Y and the index X>β∗.154

Let zi = (yi, xi) be n independent observations of (2.6) with n � d, we aim at detecting the155

existence of a nonzero parameter β∗, that is, testing the following hypotheses,156

H0 : β∗ = 0 versus H1 : β∗ 6= 0. (2.7)
In what follows, we assume that s is a known integer and σ2 is an unknown constant.157

The difficulty of the testing problem in (2.7) is characterized by the signal-to-noise ratio (SNR),158

which is defined as κ(β∗, σ) = ‖β∗‖22/σ2. Moreover, to characterize the minimum required SNR,159

we consider the following parameter spaces corresponding to the null and alternative hypotheses,160

G0 =
{

(β∗, σ) ∈ Rd+1 : β∗ = 0
}
,

G1(s, γn) =
{

(β∗, σ) ∈ Rd+1 : ‖β∗‖0 = s, κ(β∗, σ) ≥ γn
}
, (2.8)

where {γn}∞n=1 is a nonnegative sequence. For notational simplicity, we denote by θ∗ = (β∗, σ) and161

Pnθ∗ the joint distribution of {zi}ni=1, which are generated by the model in (2.6) with the parameter of162

interest θ∗ and nuisance parameters f1, f2, and ψ. For any function φ that maps z = (z1, . . . , zn) ∈163

R(d+1)×n to {0, 1}, the worst-case risk for testing H0 : θ ∈ G0 versus H1 : θ∗ ∈ G1(s, γn) is defined164

as the sum of the maximum type-I and type-II errors,165

Rn(φ;G0,G1) = sup
θ∗∈G0

Pθ∗(φ = 1) + sup
θ∗∈G1

Pθ∗(φ = 0). (2.9)

Correspondingly, the minimax risk is defined as166

R∗n(G0,G1) = inf
φ

sup
f1,f2,ψ

Rn(φ;G0,G1), (2.10)
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where we take the supreme over the nuisance parameters f1, f2, and ψ of models in (2.6), and the167

infimum over the function φ. We further define the minimax separation rate in the following.168

Definition 2.2 (Minimax separation rate [32, 50]). A sequence {γ∗n}∞n=1 is called the minimax169

separation rate if170

(i) given any sequence {γn}∞n=1 with γn = o(γ∗n), it holds that171

lim infn→∞R∗n(G0,G1(s, γn)) = 1,172

(ii) given any sequence {γn}∞n=1 with γn = Ω(γ∗n), it holds that limn→∞R∗n(G0,G1(s, γn)) =173

0.174

The minimax separation rate characterizes the minimum SNR that guarantees the existence of an175

asymptotically powerful test. Therefore, it captures the difficulty of the hypothesis testing problem in176

(2.7).177

2.2 Oracle Computational Model178

In what follows, we introduce an oracle computational model that quantifies the computational cost179

of an algorithm. Our model follows from the one considered in [16, 53], which is slightly extends the180

statistical query model originally proposed in [18–20, 30].181

Definition 2.3 (Statistical query model). A statistical oracle r responds to a given query functions182

q with Zq, which is a random variable in R. We define Q ⊆ {q : Rd+1 → [−M,M ]} as the space183

consisting of all the query functions.184

We define an algorithm A as the iterative process that queries a given statistical oracle with query185

functions in QA ⊆ Q but does not access the data directly. We denote by A(T ) the set of algorithms186

that query the statistical oracle T rounds, where T is called the oracle complexity. We denote by187

R[ξ, n, T, η(QA )] the set of statistical oracles r such that188

P
( ⋂
q∈QA

{∣∣Zq − E[q(Z)]
∣∣ ≤ τq}) ≥ 1− 2ξ, (2.11)

where Zq is the response of the statistical oracle r, Z = (Y,X) is the random variable following the189

underlying statistical model, ξ ∈ [0, 1) is the tail probability, and τq is the tolerance parameter given190

by191

τq =

[
η(QA ) + log(1/ξ)

]
·M

n

∨√
2
[
η(QA ) + log(1/ξ)

]
·
(
M2 − {E[q(Y,X)]}2

)
n

. (2.12)

Here the parameter η(QA ) is the logarithmic measure of the capacity of QA . For a countable192

QA , we have η(QA ) = log(|QA |). For an uncountable QA , the magnitude η(QA ) can be the193

Vapnik-Chervonenkis dimension or the metric entropy.194

The intuition behind Definition 2.3 is to separate the algorithm from the dataset. Under this definition,195

the algorithms we consider are blackbox systems that access the necessary information from a196

statistical oracle. The definition of the statistical oracle r ∈ R[ξ, n, T, η(QA )] is a generalization of197

the sample average. Note that it holds that198

M2 − {E[q(Y,X)]}2 ≥ Var
[
q(Y,X)

]
. (2.13)

If the response zq of the statistical oracle is the sample mean of n independent realizations of q(Z),199

then (2.11) follows from Bernstein’s inequality coupled with a uniform concentration argument over200

QA , where the variance term is replaced by its upper bound in (2.13) [16].201

To capture the computational difficulty of the hypothesis testing problem in (2.7), we introduce the202

following definition of computational minimax separation risk, which is an analog of the minimax203

separation risk defined in (2.10) with an additional constraint on the oracle complexity. We consider204

the algorithms A ∈ A(T ) associated with the statistical oracle r ∈ R[ξ, n, T, η(QA )], and denote by205

H(A , r) the set of all the test functions based on A ∈ A(T ), which queries r ∈ R[ξ, n, T, η(QA )]206

T rounds. We define the risk for test function φ ∈ H(A , r) as207

R̄n(φ;G0,G1) = sup
θ∗∈G0

P̄θ∗(φ = 1) + sup
θ∗∈G1

P̄θ∗(φ = 0). (2.14)
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Correspondingly, we define the computational minimax risk as208

R̄∗n(G0,G1; A , r) = inf
φ∈H(A ,r)

sup
f1,f2,ψ

R̄n(φ;G0,G1) (2.15)

The probability P̄θ∗ in the above formulation is taken over the distribution of responses from the209

statistical oracle r under the model in (2.6) with the parameter of interest θ∗ and nuisance parameter210

f1, f2, and ψ. We introduce the following definition of computational minimax separation rate211

[18, 19, 53].212

Definition 2.4 (Computational minimax separation rate). A sequence {γ̄∗n}∞n=1 is called the compu-213

tational minimax separation rate if214

(i) given any sequence {γn}∞n=1 with γn = o(γ̄∗n), for any η and any A ∈ A(dη), there exists215

a statistical oracle r ∈ R[ξ, n, dµ, η(QA )] such that216

lim inf
n→∞

R̄∗n(G0,G1(s, γn); A , r) = 1,

(ii) given any sequence {γn}∞n=1 with γn = Ω(γ̄∗n), there exists an algorithm A ∈ A(dη) with217

some absolute constant η such that it holds for any statistical oracle r ∈ R[ξ, n, dµ, η(QA )]218

that219

lim
n→∞

R̄∗n(G0,G1(s, γn); A , r) = 0.

In the following section, we give the explicit forms of γ∗n and γ̄∗n. In particular, when the link function220

f deviates from class C1(ψ), a gap between γ̄∗n and γ∗n arises, which characterizes the computational221

cost to pay for the lack of first-order Stein’s association defined in Definition 2.1.222

3 Main Results223

In this section, we lay out the theoretical results. For the hypothesis testing problem in (2.7), we224

establish the information-theoretic and computational lower bounds by constructing a worst-case225

hypothesis testing problem. We further establish upper bounds that attain these lower bounds up to226

logarithmic factors, which is deferred to §A. These lower and upper bounds together characterize the227

statistical-computational tradeoff. Finally, we show that such a tradeoff in hypothesis testing implies228

similar computational barriers in parameter estimation.229

3.1 Lower Bounds230

In what follows, we present lower bounds of the minimax and computational minimax separation231

rates defined in Definitions 2.2 and 2.4, respectively. For the hypothesis testing problem in (2.7)232

with parameter spaces defined in (2.8), we have the following proposition that characterizes its233

information-theoretic difficulty.234

Proposition 3.1. We assume that β∗ in (2.6) is sparse such that s = o(d1/2−δ) for some positive235

absolute constant δ. For236

γn = o

(√
s log d

n

∧ 1

α2
· s log d

n

)
, (3.1)

it holds that lim infn→∞R∗n
[
G0,G1(s, γn)] ≥ 1. In other words, any test for the hypothesis testing237

problem in (2.7) and (2.8) is asymptotically powerless.238

Proof. See §B.1 for a detailed proof.239

It follows from Proposition 3.1 that any sequence satisfying (ii) of Definition 2.2 is asymptotically240

lower bounded by any sequence that satisfies (3.1). As a result, it holds that241

γ∗n = Ω

(√
s log d

n

∧ 1

α2
· s log d

n

)
, (3.2)

where γ∗n is the minimax separation rate defined in Definition 2.2. Based on (3.2) and the Theorem242

A.2, which is deferred to §A, up to logarithmic factors, the minimax separation rate defined in243
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Definition 2.2 takes the form244

γ∗n =

√
s log d

n

∧ 1

α2
· s log d

n
. (3.3)

The following theorem establishes a lower bound of the computational minimax separation rate245

defined in Definition 2.4.246

Theorem 3.2. We assume that β∗ in (2.6) is sparse such that s = o(d1/2−δ) for some positive247

absolute constant δ. For any positive absolute constant µ and A ∈ A(dµ) with248

γn = o

({√
s2

n

∧ 1

α2
· s
n

}∨
γ∗n

)
, (3.4)

there exists a statistical oracle r ∈ R[ξ, n, T, η(Q)] such that lim infn→∞ R̄∗n(G0,G1; A , r) ≥ 1. In249

other words, any computational tractable test for the hypothesis testing problem in (2.7) and (2.8) is250

asymptotically powerless.251

Proof. See §B.2 for a detailed proof.252

It follows from Theorem 3.2 that any sequence satisfying (ii) of Definition 2.4 is asymptotically lower253

bounded by any sequence that satisfies (3.4). As a result, it holds that254

γ̄∗n = Ω

({√
s2

n

∧ 1

α2
· s
n

}∨
γ∗n

)
, (3.5)

where γ∗n and γ̄∗n are the minimax and computational minimax separation rates defined in Definitions255

2.2 and 2.4, respectively. Based on (3.5) and Theorem A.3, which is deferred to §A, up to logarithmic256

factors, the computational minimax separation rate defined in Definition 2.4 takes the form257

γ̄∗n =

√
s2

n

∧ 1

α2
· s log d

n
. (3.6)

3.2 Phase Transition258

In what follows, we characterize the phase transition in the minimax and computational minimax259

separation rates when the mixture probability α transits from zero to one. We categorize the phase260

transition into the following regimes in terms of α.261

1. For 0 < α ≤ ((log d)2/n)1/4, our results show that γ∗n =
√
s log d/n and γ̄∗n =

√
s2/n.262

For γn = o(
√
s log d/n) , any test for the hypothesis testing problem in (2.7) is asymp-263

totically powerless. For γn = Ω(
√
s log d/n) and γn = o(

√
s2/n), any asymptotically264

powerful test for (2.7) is computationally intractable with superpolynomial oracle complex-265

ity defined in Definition 2.3. For γn = Ω(
√
s2/n), there exists an asymptotically powerful266

test that is computationally tractable with polynomial oracle complexity. In this regime, the267

gap between the computational minimax separation rate γ̄∗n and the minimax separation rate268

γ∗n is invariant to α.269

2. For (log2 d/n)1/4 ≤ α ≤ (s log d/n)1/4, our results show that γ∗n =
√
s log d/n and270

γ̄∗n = 1/α2 · s log d/n. For γn = o(
√
s log d/n), any test is asymptotically powerless.271

For γn = Ω(
√
s log d/n) and γn = o(1/α2 · s log d/n), any asymptotically powerful test272

for (2.7) is computationally intractable. For γn = Ω(1/α2 · s log d/n), there exists an273

asymptotically powerful test that is computationally tractable. In this regime, a larger α274

implies a smaller gap between γ̄∗n and γ∗n.275

3. For (s log d/n)1/4 < α ≤ 1, our results show that γ∗n = γ̄∗n = 1/α2 · s log d/n. For γn =276

o(1/α2 · s log d/n), any test for the hypothesis testing problem in (2.7) is asymptotically277

powerless, whereas for γn = Ω(1/α2 · s log d/n), there exists an asymptotically powerful278

test that is computationally tractable. In this regime, the gap between γ∗n and γ̄∗n vanishes.279

By the normalization specified following (2.7), the mixture probability α characterizes the first-order280

Stein’s association of the model under the alternative hypothesis. Therefore, the phase transition281

implies that when the first-order Stein’s association attains its maximum, which corresponds to α = 1,282
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the gap between the computational minimax separation rate γ̄∗n and the minimax separation rate γ∗n283

vanishes, whereas when the first-order Stein’s association vanishes, which corresponds to α = 0,284

the gap between the computational minimax separation rate γ̄∗n and the minimax separation rate γ∗n285

attains its maximum. In other words, the lack of the first-order Stein’s association leads to an extra286

price of computational cost.287

3.3 Implication for Parameter Estimation288

For the model in (2.6), our result on the computational minimax separation rate in §A implies289

computational barriers in the estimation of β∗, which is established in the following theorem.290

Theorem 3.3. For the estimation of β∗ in (2.6) with291

n = o

(
s2

γ2
n

∧ s log d

γn · α2

)
, (3.7)

where γn = ‖β∗‖2/σ2, it holds that, for any positive absolute constant µ and algorithm A ∈ A(T )292

that gives β̂ within oracle complexity T = O(dµ), there exists a statistical oracle r ∈ R[ξ, n, T, η(Q)]293

such that294

P̄
(
‖β̂ − β∗‖2 ≥ σ‖β∗‖−1

2 · γn/4
)
≥ C, (3.8)

where C is a positive absolute constant.295

Proof. See §B.5 for a detailed proof.296

Figure 1: Phase transition in the gap between
minimax separation rate and computational
minimax seperation rate: (i) for 0 < α ≤
((log d)2/n)1/4, the gap is invariant to α. (ii)
for (log2 d/n)1/4 ≤ α ≤ (s log d/n)1/4,
a larger α implies a smaller gap. (iii) for
(s log d/n)1/4 < α ≤ 1, the gap vanishes.

For α = 0, the estimation of β∗ in (2.6) reduces to297

the sparse phase retrieval problem. For simplicity298

of discussion, let γn = ‖β∗‖22/σ2 be a constant in299

the following discussions. Theorem 3.3 implies that300

for n = o(s2), any computationally tractable esti-301

mator is statistically inconsistent in the sense that302

‖β̂ − β∗‖2 ≥ C holds with at least constant prob-303

ability. [8] construct a computational tractable esti-304

mator for sparse phase retrieval with the quadratic305

link function Y = |X>β∗|2 + ε. The estimator by306

[8] is statistically consistent under the assumption307

that n ≥ C(1 + σ2/‖β∗‖42) · s2 log d. Similar phe-308

nomenon arises in misspecified sparse phase retrieval309

studied by [42], although their work is slightly more310

general, in the sense that they consider f(X>β∗, ε)311

as the link function. The estimator by [42] requires312

n ≥ Cs2 log d to be statistically consistent. Both313

[8] and [42] conjecture that their requirements on the314

sample size cannot be relaxed for computationally315

tractable estimators. Theorem 3.3 confirms this con-316

jecture under the statistical query model defined in317

Definition 2.3.318

For α = 1, the requirement for a computationally319

tractable estimator to be statistically consistent be-320

comes n ≥ Cs log d. Such a sample size requirement321

agrees with the information-theoretic lower bound. [43] construct a computationally tractable estima-322

tor of β∗, which requires the sample size n ≥ Cs log(d/s) to be statistically consistent. It follows323

from Theorem 3.3 that such a requirement is necessary.324

For 0 < α < 1, we observe a phase transition in the required sample size in terms of α, which325

is similar to the phase transition of the computational minimax separation rates. For 0 < α ≤326 √
γn log d/s, the requirement becomes n ≥ Cs2. For

√
γn log d/s ≤ α ≤ 1, the requirement327

becomes n ≥ Cs log d/α2. In this regime, a larger α implies a smaller sample size required for a328

computationally tractable estimator to be statistically consistent.329
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A Upper bounds472

In this section, we establish upper bounds that attain the lower bounds obtained in Proposition 3.1 and473

Theorem A.2 up to logarithmic factors. Based on the lower bounds and upper bounds, we obtain the474

minimax and computational minimax separation rates defined in Definitions 2.2 and 2.4, respectively.475

Recall that the hypothesis testing problem in (2.7) takes the form476

H0 : Y = ε0 versus H1 : Y =

{
f1(X>β∗) + ε, with probability α,
f2(X>β∗) + ε, with probability 1− α. . (A.1)

Here ε is a Gaussian noise with variance σ2 and ε0 is a noise such that the variances of Y under the477

null and alternative hypotheses are the same. Besides, f1 ∈ C1 ∩ C(ψ) and f2 ∈ C2 ∩ C(ψ) are two478

unknown link functions, where C1(ψ), C2(ψ), and C(ψ) are defined in (2.4) and (2.5). Meanwhile,479

we set X ∼ N(0, Id) and β∗ to be s-sparse. For the simplicity of the following discussions, we480

restrict to the set of β∗ such that β∗ = ρ · v∗, where v∗ ∈ Ḡ(s) = {v ∈ {−1, 0, 1}d : ‖v‖0 = s}.481

We further define482

Ḡ1(s, γn) =
{

(β∗, σ) ∈ Rd+1 : β∗ = ρ · v∗, v∗ ∈ Ḡ(s), κ(β∗, σ) ≥ γn
}
.

We highlight the fact that such a restricted parameter set is sufficient to characterize the difficulty of483

the hypothesis testing problem in (2.7), and defer the proof of the general case to §D.484

Let Z = (Y,X) and P0, Pv∗ be the distributions of Z under the null and alternative hypotheses,485

respectively. We introduce the following assumption on Y and ψ(Y ) under the alternative hypothesis,486

which regulates the tail and moment of Y and ψ(Y ).487

Assumption A.1. We assume that Y and ψ(Y ) have bounded fourth moments. We further assume488

that under the alternative hypothesis, Y and ψ(Y ) have desired tail bounds in the form of489

Pv∗(|Y | ≥ R) ≤ C exp(−Rν), Pv∗(|ψ(Y )| ≥ R) ≤ C ′ exp(−Rν), (A.2)
which holds for a sufficiently large R and positive absolute constants C, C ′, and ν.490

Assumption A.1 is required only for the upper bounds. It is needed to construct bounded query491

functions defined in Definition 2.3. Such an assumption is a mild regularity condition in the sense492

that it holds for the linear regression model and most of the phase retrieval models. For instance, let493

(Y,X) be generated by the mixed regression model and ψ(Y ) = Y 2. Then Y follows the mixture of494

Gaussian distributions. Therefore, Y has bounded fourth moment and Gaussian tail, and ψ(Y ) = Y 2495

is sub-exponential under the alternative hypothesis with bounded fourth moment. Hence, the tail496

bound stated in (A.2) holds for Y and ψ(Y ) with ν = 1. Similar arguments hold for the linear497

regression model and the phase retrieval models Y = |X>β∗|+ ε and Y = (X>β∗)2 + ε.498

In what follows, we design the test function φ based on the first-order and second-order Stein’s499

identities in (2.2) and (2.3). Following from (2.5), it holds that S2(Y, ψ) ≥ ‖β∗‖42 under the500

alternative hypothesis. It then follows from the second-order Stein’s identity in (2.3) that EPv∗ [ψ(Y ) ·501

(XX>− I)] � β∗β∗> under the alternative hypothesis. Meanwhile, under the null hypothesis, ψ(Y )502

is independent of X . Therefore, it holds that503

EPv∗

[
v>ψ(Y ) · (XX> − I)v

]
≥ (v>β∗)2, EP0

[
ψ(Y ) · (XX> − I)

]
= 0. (A.3)

Meanwhile, following from (2.4), it holds that E[Y1X] = β∗ with Y1 = f1(X>β∗, ε). Therefore, it504

follows from the first-order Stein’s identity in (2.2) that505

EPv∗ [v>Y X] = α · v>β∗, EP0 [Y X] = 0. (A.4)
We introduce the following query functions,506

q1,v(Y,X) = ψ(Y ) ·
[
s−1(v>X)2 − 1

]
· 1
{
|ψ(Y )| ≤ (R log n)1/ν

}
· 1
{
|v>X| ≤ R ·

√
s log n

}
,

q2,v(Y,X) = Y · (s−1/2v>X) · 1
{
|Y | ≤ (R log n)1/ν

}
· 1
{
|v>X| ≤ R ·

√
s log n

}
. (A.5)

We denote by Z̄1,v and Z̄2,v the responses of the statistical oracle to query functions q1,v and q2,v, as507

defined in Definition 2.3. We define the test functions φ1 and φ2 as508

φ1 = 1
{

sup
v∈Ḡ(s)

Z̄1,v ≥ τ1
}
, φ2 = 1

{
sup

v∈Ḡ(s)

Z̄2,v ≥ τ2
}
, (A.6)

where we set the thresholds τ1 and τ2 to be509

τ1 = CR2+1/ν · (log n)1+1/ν ·
√
s log d

n
, τ2 = C ′R1+1/ν · (log n)1/2+1/ν ·

√
s log d

n
. (A.7)
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Here C and C ′ are absolute constants (which are specified in §B.3). We define the test function as510

φ = φ1 ∨ φ2. The following theorem characterizes an upper bound for the minimax separation rate511

by quantifying the SNR for φ to be asymptotically powerful, which attains the information-theoretic512

lower bound in Proposition 3.1 up to logarithmic factors.513

Theorem A.2. We consider the hypothesis testing problem in (A.1) under Assumption A.1. For514

γn = Ω

(
(log n)1+1/ν ·

√
s log d

n

∧ (log n)1+2/ν

α2
· s log d

n

)
, (A.8)

it holds that Rn(φ;G0, Ḡ1) = O(1/d). In other words, φ is asymptotically powerful.515

Proof. See §B.3 for a detailed proof.516

It follows from Theorem A.2 that any sequence satisfying (i) of Definition 2.2 is asymptotically upper517

bounded by any sequence that satisfies (A.8). As a result, it holds that518

γ∗n = o

(
(log n)1+1/ν ·

√
s log d

n

∧ (log n)1+2/ν

α2
· s log d

n

)
. (A.9)

Based on (3.2) and (A.9), up to logarithmic factors, the minimax separation rate defined in Definition519

2.2 takes the form520

γ∗n =

√
s log d

n

∧ 1

α2
· s log d

n
. (A.10)

Note that the query functions in (A.5) have exponential oracle complexity, since searching over521

the parameter set Ḡ(s) requires querying the statistical oracle T =
(
d
s

)
· 2s rounds. To construct a522

computationally tractable test, we design query functions that access each entry Xj of X ,523

q1,j(Y,X) = ψ(Y ) · (X2
j − 1) · 1

{
|ψ(Y )| ≤ (R log n)1/ν

}
· 1
{
|Xj | ≤ R

√
log n

}
, j ∈ [d]

q2,j(Y,X) = Y ·Xj · 1
{
|Y | ≤ (R log n)1/ν

}
· 1
{
|Xj | ≤ R

√
log n

}
, j ∈ [d]. (A.11)

We denote by Z̄1,j and Z̄2,j the responses of the statistical oracle to the query functions q1,j and q2,j ,524

as defined in Definition 2.3 . We define the test functions φ̃1 and φ̃2 as525

φ̃1 = 1
{

sup
j∈[d]

Z̄1,j ≥ τ̃1
}
, φ̃2 = 1

{
sup
j∈[d]

Z̄2,j ≥ τ̃2
}∨

1
{

inf
j∈[d]

Z̄2,j ≤ −τ̃2
}
, (A.12)

where we set the thresholds τ̃1 and τ̃2 to be526

τ̃1 = CR2+1/ν(log n)1+1/ν ·
√

log d

n
, τ̃2 = C ′R1+1/ν(log n)1/2+1/ν ·

√
log d

n
. (A.13)

Finally, we define the test function to be φ̃ = φ̃1 ∨ φ̃2. By the definition of φ1 and φ2 in (A.12),527

the test function φ̃ is computationally tractable with query complexity T = 2d. The following528

theorem characterizes an upper bound for the computational minimax separation rate, which attains529

the computational lower bound in Theorem 3.2 up to logarithmic factors.530

Theorem A.3. We consider the hypothesis testing problem in (A.1) under Assumption A.1. For531

γn = Ω

(
(log n)1+1/ν ·

√
s2 log d

n

∧ (log n)1+2/ν

α2
· s log d

n

)
, (A.14)

it holds that R̄n(φ̃;G0, Ḡ1) = O(1/d). In other words, φ̃ is asymptotically powerful.532

Proof. See §B.4 for a detailed proof.533

It follows from Theorem A.3 that any sequence satisfying (i) of Definition 2.4 is asymptotically upper534

bounded by any sequence that satisfies (A.14). As a result, it holds that535

γ̄∗n = o

(
(log n)1+1/ν ·

√
s2 log d

n

∧ (log n)1+2/ν

α2
· s log d

n

)
. (A.15)

Based on (3.5) and (A.15), up to logarithmic factors, the computational minimax separation rate536

defined in Definition 2.4 takes the form537

γ̄∗n =

√
s2

n

∧ 1

α2
· s log d

n
. (A.16)
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B Proof of Main Results538

In this section, we lay out the proofs of the main results in §3 and §A.539

B.1 Proof of Proposition 3.1540

Proof. We have the following lower bound of minimax risk,541

R∗n(G0,G1) = inf
φ

sup
f1,f2,ψ

Rn(φ;G0,G1) ≥ inf
φ
Rn(φ;G0,G1)

= inf
φ

{
sup
θ∗∈G0

Pθ∗(φ = 1) + sup
θ∗∈G1

Pθ∗(φ = 0)
}
.

where the first inequality is obtained by restricting f1, f2, and ψ in the testing problem in (2.7)542

as follows. We set ψ(y) = y2 and the sample {zi}i∈[n] to be generated from a mixture of the543

linear regression model Y1 = f1(X>β∗) + ε = X>β∗ + ε and the mixed regression model544

Y2 = f2(X>β∗) + ε = η · X>β∗ + ε. Here we set ε ∼ N(0, σ2) and η to be a Rademacher545

random variable, which is independent of both X and ε. Since S1(Y1) = ‖β∗‖22, S1(Y2) = 0, and546

S2(Y1, ψ) = S2(Y2, ψ) = 2‖β∗‖42, we have f1 ∈ C1 ∩ C(ψ) and f2 ∈ C2 ∩ C(ψ), where C1, C2, and547

C(ψ) are defined in (2.4) and (2.5).548

We further restrict the parameter space of θ∗ = (β∗, σ) as follows. Let β∗ ∈ {β = ρ · v : v ∈ G(s)},549

where ρ is a positive constant and G(s) =
{

v ∈ {0, 1}d : ‖v‖0 = s
}

. Therefore, the original550

hypothesis testing problem is reduced to551

H0 : Y = ε0 versus H1 : Y =

{
X>β∗ + ε, with probability α,
η ·X>β∗ + ε, with probability 1− α, (B.1)

where under H0 we have ε0 ∼ N(0, σ2 + sρ2) and under H1 we have ε ∼ N(0, σ2). We denote by552

P0 and Pv∗ the probability distributions of Z = (Y,X) under the null and alternative hypotheses553

with β∗ = ρ · v∗, respectively. In addition, we define P = |G(s)|−1
∑

v∈G(s) Pnv , where we use the554

superscript n to denote the n-fold product probability measure. By Neyman-Pearson lemma, we have555

R∗n(G0,G1) ≥ inf
φ

[
Pn0 (φ = 1) + P(φ = 0)

]
= 1− 1/2 · EPn0

[
|dP/dPn0 − 1|

]
≥ 1− 1/2 ·

((
EPn0

[
dP/dPn0

])2 − 1
)1/2

, (B.2)

where the second inequality follows from the Cauchy-Schwarz inequality. In what follows, we show556

that EPn0 [dP/dPn0 ]2 = 1+o(1) under the condition in (3.1), which implies lim infn→∞R∗n(G0,G1) ≥557

1− o(1) by (B.2). Note that on the right-hand side of (B.2), we have558 (
EPn0

[
dP/dPn0

])2
=

1

|G(s)|2
∑

v,v′∈G(s)

EPn0

[
dPnv
dPn0

dPnv′
dPn0

(Z1, . . . , Zn)

]
, (B.3)

where Zi are independent copies of Z = (Y,X). The following lemma establishes an upper bound559

of the right-hand side of (B.3).560

Lemma B.1. For any v1, v2 ∈ G(s), if sρ2 = o(1), it holds that561

EP0

[
dPv1

dP0

dPv2

dP0
(Z)

]
≤ cosh

(
2ρ2〈v1, v2〉
σ2 + sβ2

)
+ α2 sinh

(
2ρ2〈v1, v2〉
σ2 + sρ2

)
. (B.4)

Proof. See §C.1 for a detailed proof.562

Following from Lemma B.1, it holds that563

EP0

[
dPnv1

dPn0

dPnv2

dPn0
(Z1, . . . , Zn)

]
=

(
EP0

[
dPv1

dP0

dPv2

dP0
(Z)

])n
≤
[
cosh

(
2ρ2〈v1, v2〉
σ2 + sρ2

)
+ α2 sinh

(
2ρ2〈v1, v2〉
σ2 + sρ2

)]n
, (B.5)

where Zi are independent copies of Z = (Y,X). The following lemma by [62] establishes an upper564

bound of the right-hand side in (B.5).565
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Lemma B.2 ([62]). For any x ≥ 0 and 0 ≤ k ≤ 1, we have,566

cosh(x) + k sinh(x) ≤ exp(2kx) ∨ cosh(2x).

Proof. See the appendix of [62] for a detailed proof.567

Following from (B.3), (B.5), and Lemma B.2, we conclude568 (
EPn0

[
dP/dPn0

])2 ≤ 1

|G(s)|2
∑

v1,v2∈G(s)

[
exp

(
4α2ρ2〈v1, v2〉
σ2 + sρ2

)
∨ cosh

(
4ρ2〈v1, v2〉
σ2 + sρ2

)]n
. (B.6)

The following lemma shows that the right-hand side of (B.6) is of order 1 + o(1).569

Lemma B.3 ([62]). For570

γn = o

(√
s log d

n

∧ 1

α2
· s log d

n

)
,

if s = o(d1/2−δ) for some absolute constant δ > 0, it then holds that571

1

|G(s)|2
∑

v1,v2∈G(s)

[
exp

(
4α2ρ2〈v1, v2〉
σ2 + sρ2

)∨
cosh

(
4ρ2〈v1, v2〉
σ2 + sρ2

)]n
= 1 + o(1). (B.7)

Proof. See §C.2 for a detailed proof.572

Combining Lemma B.3 and (B.6), we conclude that for γn = o(
√
s log d/n ∧ 1/α2 ·573

s log d/n), it holds that (EPn0 [dP/dPn0 ])2 − 1 = o(1). Then following from (B.2), we have574

lim infn→∞R∗n(G0,G1) ≥ 1, which concludes the proof of Proposition 3.1.575

B.2 Proof of Theorem 3.2576

Proof. It follows from Definition 2.2 that for γn = o(γ∗n), any hypothesis testing problem in577

(2.7) is asymptotically powerless. It remains to show that for γn = o(
√
s2/n ∧ 1/α2 · s/n), any578

computationally tractable test is asymptotically powerless. First, we restrict the original estimation579

problem to the following hypothesis testing problem,580

H0 : Y = ε versus H1 : Y =

{
X>β∗ + ε, with probability α
η ·X>β∗ + ε, with probability 1− α . (B.8)

In (B.8), we restrict β∗ to the set β∗ ∈ {ρ · v : v ∈ G(s)} with G(s) = {v ∈ {0, 1}d : ‖v‖0 = s}.581

We set ε ∼ N(0, σ2 + sρ2) under H0 and ε ∼ N(0, σ2) under H1 so that straightforward tests based582

on mean and variance are not able to detect the existence of a nonzero parameter β∗.583

By restricting the parameter space, we obtain a lower bound for the minimax risk. Recall that we584

denote by P̄0 and P̄v the distributions of Zq , which denotes the response of the oracle to the query q585

when the true distributions of the data are P0 and Pv, correspondingly. We have586

R̄∗n[G0,G1; A , r] ≥ inf
φ∈H(A ,r)

{
P̄0(φ = 1) + sup

v∈G(s)

P̄v(φ = 0)

}
. (B.9)

To show that any computationally tractable test is asymptotically powerless, it suffices to show that587

the right-hand side of (B.9) is asymptotically lower bounded by one. By Theorem 4.2 of [53], we588

know that this holds true if589

T · sup
q∈Q
|C(q)|/|G(s)| = o(1),

where C(q) is defined as590

C(q) =
{

v ∈ G(s) :
∣∣EPv

[
q(Z)

]
− EP0

[
q(Z)

]∣∣ > τq
}
.

Here τq is the tolerance parameter defined in Definition 2.3, with (Y,X) following Pv. The following591

lemma shows that T · supq∈Q |C(q)|/|G(s)| = o(1) if γn is sufficiently small.592

Lemma B.4 ([53]). For s = o(d1/2−δ), T = O(dµ), and593

γn = o

(
s2

n

∧ 1

α2
· s
n

)
,
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it holds that594

T · sup
q∈Q
|C(q)|/|G(s)| = o(1). (B.10)

Proof. See §C.3 for a detailed proof.595

By combining Theorem 4.2 of [53] and Lemma B.4, we conclude that the right-hand side of (B.9)596

is asymptotically lower bounded by one. Therefore, it holds that lim infn→∞ R̄∗n[G0,G1; A , r] ≥ 1,597

which concludes the proof of Theorem 3.2.598

B.3 Proof of Theorem A.2599

Proof. Recall that we denote by Z = (Y,X) and P0, Pv∗ the distributions of Z under the null and600

alternative hypotheses with β∗ = ρ · v∗, respectively. For the hypothesis testing problem in (A.1),601

the following lemma characterizes the expectations of the query functions defined in (A.5).602

Lemma B.5. For any v, v∗ ∈ Ḡ(s) and603

γn = Ω

(
(log n)1+1/ν ·

√
s log d

n

∧ (log n)1+2/ν

α2
· s log d

n

)
,

it holds that604

EP0

[
q1,v(Y,X)

]
≤ 1/n, EP0

[
q2,v(Y,X)

]
≤ 1/n. (B.11)

In addition, it holds that605

EPv∗

[
q1,v∗(Y,X)

]
≥ sρ2/2 if γn = Ω

(
(log n)1+1/ν ·

√
s log d

n

)
,

EPv∗

[
q2,v∗(Y,X)

]
≥
√
α2sρ2/2 if γn = Ω

(
(log n)1+2/ν

α2
· s log d

n

)
. (B.12)

Proof. See §C.4 for a detailed proof.606

In what follows, we establish an upper bound of the risk of φ = φ1 ∨ φ2. Recall that we define the607

test functions φ1 and φ2 in (A.6) with parameters608

τ1 = CR2+1/ν · (log n)1+1/ν ·
√
s log d

n
, τ2 = C ′R1+1/ν · (log n)1/2+1/ν ·

√
s log d

n
. (B.13)

where C and C ′ are absolute constants. Note that the total number of query functions {q1,v}v∈G(s)609

and {q2,v}v∈G(s) is |Qφ| = 2·
(
d
s

)
·2s. Therefore, following from (2.12) with ξ = 1/d, for sufficiently610

large d and n, it holds that611

τq1,v ≤ C0R
2+1/ν(log n)1/2+1/ν ·

√
s log d

n
, τq2,v ≤ C1R

1+1/ν(log n)1/2+1/ν ·
√
s log d

n
,

(B.14)
where τq1,v and τq2,v are the tolerance parameters of q1,v and q2,v defined in Definition 2.3, and612

C0, C1 are positive absolute constants. We fix C and C ′ in (B.13) such that τ1 ≥ τq1,v + 1/n and613

τ2 ≥ τq2,v + 1/n. Recall that we denote by Z̄1,v and Z̄2,v the responses of the statistical oracle to614

the query functions q1,v and q2,v. Further recall that we denote by P̄0 and P̄v∗ the distributions of615

response of the statistical oracle to the query functions when the true distribution of the data is P0616

and Pv∗ . Following from Lemma B.5, it holds for any v ∈ G(s) and i ∈ {1, 2} that617

P̄0

(
Z̄i,v ≥ τi

)
≤ P̄0

(∣∣Z̄i,v − EP0

[
qi,v(Y,X)

]∣∣ ≥ τqi,v).
Based on (2.11) with ξ = 1/d, it holds for i ∈ {1, 2} that618

P̄0(φi = 1) = P̄0

(
sup

v∈G(s)

Z̄i,v > τi

)

≤ P̄0

( ⋃
v∈G(s)

{∣∣Z̄i,v − EP0

[
qi,v(Y,X)

]∣∣ > τqi,v

})
≤ 2/d. (B.15)
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Recall that we define φ = φ1 ∨ φ2. Therefore, we obtain from (B.15) that619

P̄0(φ = 1) ≤ P̄0(φ1 = 1) + P̄0(φ2 = 1) = 4/d. (B.16)
In other words, the type-I error of φ is upper bounded by 4/d. It remains to upper bound the type-II620

error of φ. Following from the lower bound of SNR in (A.8), it holds that either sρ2/4 ≥ τ1 or621 √
α2sρ2/4 ≥ τ2 for a sufficiently large n. Following from Lemma B.5, if sρ2/4 ≥ τ1, it holds that622

P̄v∗
(
Z̄1,v∗ ≤ τ1

)
≤ P̄v∗

(
Z̄1,v∗ ≤ EPv∗

[
q1,v∗(Y,X)

]
− τ1

)
≤ P̄v∗

(∣∣Z̄1,v∗ − EPv∗

[
q1,v∗(Y,X)

]∣∣ ≥ τq1,v∗), (B.17)

where the last inequality holds since τ1 > τq1,v∗ . Therefore, it follows from (2.11) with ξ = 1/d that623

P̄v∗(φ1 = 0) = P̄v∗

(
sup

v∈G(s)

Z̄1,v < τ1

)
≤ P̄v∗(Z̄1,v∗ < τ1)

≤ P̄v∗

(∣∣Z̄1,v∗ − EPv∗

[
q1,v∗(Y,X)

]∣∣ > τq1,v∗

)
≤ 2/d. (B.18)

Similarly, following from Lemma B.5, if
√
α2sρ2/4 ≥ τ2, it holds that,624

P̄v∗(φ2 = 0) = P̄v∗

(
sup

v∈G(s)

Z̄2,v < τ2

)
≤ P̄v∗(Z̄2,v∗ < τ2)

≤ P̄v∗

(∣∣Z̄2,v∗ − EPv∗

[
q2,v∗(Y,X)

]∣∣ > τq2,v∗

)
≤ 2/d, (B.19)

where the last inequality holds since τ2 > τq2,v∗ . Note that (B.18) and (B.19) holds for any (β∗, σ) ∈625

Ḡ1(s, γn) if (A.8) holds. Therefore, by combining (B.18) and (B.19), we have626

sup
(β∗,σ)∈Ḡ1(s,γn)

P̄v∗(φ = 0) ≤ sup
(β∗,σ)∈Ḡ1(s,γn)

{
P̄v∗(φ1 = 0) ∧ P̄v∗(φ2 = 0)

}
≤ 2/d. (B.20)

In other words, the type-II error of φ is upper bounded by 2/d. By combining (B.16) and (B.20), we627

conclude that if (A.8) holds, the risk for φ is of order O(1/d), which completes the proof of Theorem628

A.2.629

B.4 Proof of Theorem A.3630

Proof. The proof is similar to that of Theorem A.2 in §B.3. Recall that we denote by Z = (Y,X) and631

P0, Pv∗ the distributions of Z under the null and alternative hypotheses with β∗ = ρ ·v∗, respectively.632

The following lemma characterizes the expectations of the query functions defined in (A.11).633

Lemma B.6. For any v∗ ∈ Ḡ(s) and634

γn = Ω

(
(log n)1+1/ν ·

√
s2 log d

n

∧ (log n)1+2/ν

α2
· s log d

n

)
,

it holds that635

sup
j∈[d]

EP0

[
q1,j(Y,X)

]
≤ 1/n, sup

j∈[d]

EP0

[
q2,j(Y,X)

]
≤ 1/n. (B.21)

In addition, it holds that636

sup
j∈[d]

EPv∗

[
q1,j(Y,X)

]
≥ ρ2/2 if γn = Ω

(
(log n)1+1/ν ·

√
s2 log d

n

)
,

sup
j∈[d]

∣∣EPv∗

[
q2,j(Y,X)

]∣∣ ≥ αρ/2 if γn = Ω

(
(log n)1+2/ν

α2
· s log d

n

)
. (B.22)

Proof. See §C.5 for a detailed proof.637

In what follows, we upper bound the risk of the test function φ̃ = φ̃1 ∨ φ̃2. Recall that we define the638

test functions φ̃1 and φ̃2 in (A.11) with parameters639

τ̃1 = CR2+1/ν · (log n)1+1/ν ·
√

log d

n
, τ̃2 = C ′R1+1/ν · (log n)1/2+1/ν ·

√
log d

n
, (B.23)

where C, C ′ are absolute constants. Note that the total number of query functions {q1,j}j∈[d] and640

{q2,j}j∈[d] is |Qφ̃| = 2d. Therefore, following from Definition 2.3 with ξ = 1/d, for sufficiently641
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large d and n, the tolerance parameters of q1,j and q2,j are upper bounded as follows,642

τq1,j ≤ C ′0R2+1/ν(log n)1/2+1/ν ·
√

log d

n
, τq2,j ≤ C ′1R1+1/ν(log n)1/2+1/ν ·

√
log d

n
,

(B.24)
whereC ′0 andC ′1 are positive absolute constants. We fixC andC ′ in (B.13) such that τ̃1 ≥ τq1,j+1/n643

and τ̃2 ≥ τq2,j + 1/n. Recall that we denote by Z̄1,j and Z̄2,j the responses of the statistical oracle644

to the query functions q1,j and q2,j , respectively. Further recall that we denote by P̄0 and P̄v∗ the645

distributions of response of the statistical oracle to the query functions when the true distribution of646

the data is P0 and Pv∗ . Following from Lemma B.6, for any j ∈ [d] and i ∈ {1, 2}, it holds that647

P̄0

(
Z̄i,j ≥ τ̃1

)
≤ P̄0

(∣∣Z̄i,j − EP0 [qi,j(Y,X)]
∣∣ ≥ τqi,j).

Based on (2.11) with ξ = 1/d, it holds for i ∈ {1, 2} that648

P̄0(φ̃i = 1) = P̄0

(
sup
j∈[d]

Z̄i,j > τ̃i

)

≤ P̄0

( ⋃
j∈[d]

{∣∣Z̄i,j − EP0
[qi,j(Y,X)]

∣∣ > τqi,j

})
≤ 2/d, (B.25)

Recall that we define φ̃ = φ̃1 ∨ φ̃2. Therefore, we obtain from (B.25) that649

P̄0(φ̃ = 1) ≤ P̄0(φ̃1 = 1) + P̄0(φ̃2 = 1) = 4/d. (B.26)

In other words, the type-I error of φ̃ is upper bounded by 4/d. It remains to upper bound the type-II650

error of φ. Following from the lower bound on SNR in (A.14), it holds that either ρ2/4 ≥ τ̃1 or651

αρ/4 ≥ τ̃2 with a sufficiently large n. For any v∗ ∈ Ḡ(s), let j∗ = argmaxj∈[d] EPv∗ [q1,j(Y,X)].652

Following from Lemma B.5, if ρ2/4 ≥ τ̃1, it holds that653

P̄v∗
(
Z̄1,j∗ ≤ τ̃1

)
≤ P̄v∗

(
Z̄1,j∗ ≤ EPv∗ [q1,j∗(Y,X)]− τ̃1

)
≤ P̄v∗

(∣∣Z̄1,j∗ − EPv∗ [q1,j∗(Y,X)]
∣∣ ≥ τq1,j∗), (B.27)

where the last inequality holds since τ̃1 > τq1,j∗ . Therefore, we conclude from (2.11) with ξ = 1/d654

that655

P̄v∗(φ̃1 = 0) = P̄v∗

(
sup
j∈[d]

Z̄1,j < τ̃1

)
≤ P̄v∗(Z̄1,j∗ < τ̃1)

≤ P̄v∗

(∣∣Z̄1,j∗ − EPv∗ [q1,j∗(Y,X)]
∣∣ > τq1,j∗

)
≤ 2/d. (B.28)

Similarly, for any v∗ ∈ Ḡ(s), let k∗ = argmaxj∈[d] EPv∗ [q2,j(Y,X)] and `∗ =656

argminj∈[d] EPv∗ [q2,j(Y,X)]. Following from Lemma B.5, if αρ/4 ≥ τ̃2, it holds that either657

E[q2,k∗(Y,X)] ≥ αρ/2 or E[q2,`∗(Y,X)] ≤ −αρ/2. If it holds that EP∗v [q2,k∗(Y,X)] ≥ αρ/2 ≥658

2τ̃2, we have659

P̄v∗(φ̃2 = 0) ≤ P̄v∗

(
sup
j∈[d]

Z̄2,j < τ̃2

)
≤ P̄v∗(Z̄2,k∗ < τ̃2)

≤ P̄v∗

(∣∣Z̄2,k∗ − EPv
[q2,k∗(Y,X)]

∣∣ > τq2,k∗

)
≤ 2/d, (B.29)

where the last inequality holds since τ̃2 > τq2,k∗ . If it holds that EP∗v [q2,`∗(Y,X)] ≤ −αρ/2 ≤ −2τ̃2,660

we have661

P̄v∗(φ̃2 = 0) ≤ P̄v∗

(
inf
j∈[d]

Z̄2,j > −τ̃2
)
≤ P̄v∗(Z̄2,`∗ > −τ̃2)

≤ P̄v∗

(∣∣Z̄2,`∗ − EPv
[q2,`∗(Y,X)]

∣∣ > τq2,`∗

)
≤ 2/d, (B.30)

where the last inequality holds since τ̃2 > τq2,`∗ . Note that (B.28), (B.29), and (B.30) holds for any662

(β∗, σ) ∈ Ḡ1(s, γn) if (A.14) holds. Therefore, by combining (B.28), (B.29), and (B.30), we have663

sup
(β∗,σ)∈Ḡ1(s,γn)

P̄v∗(φ̃ = 0) ≤ sup
(β∗,σ)∈Ḡ1(s,γn)

{
P̄v∗(φ̃1 = 0) ∧ P̄v∗(φ̃2 = 0)

}
≤ 2/d. (B.31)
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In other words, the type-II error of φ is upper bounded by 2/d. By combining (B.26) and (B.31),664

we conclude that if (A.14) holds, the risk for φ̃ is of order O(1/d), which completes the proof of665

Theorem A.3.666

B.5 Proof of Theorem 3.3667

Proof. We prove by contradiction in the following. We assume that there exist an absolute constant668

η and an algorithm A ∈ A(T ) with T = O(dη) that estimates β∗ in (2.6), such that for any given669

oracle r ∈ R[ξ, n, T, η(Q)], it holds that670

P̄
(
‖β̂ − β∗‖22/σ2 ≥ γn/16

)
= o(1), (B.32)

where β̂ is the estimator of β∗. In other words, it holds that ‖β̂ − β∗‖22/σ2 ≤ γn/16 with probability671

1− o(1). Recall that we set ‖β∗‖2/σ2 = γn. Based on (B.32), it holds with probability 1− o(1) that672

‖β̂ + β∗‖22 ≤ (‖β̂ − β∗‖2 + 2‖β∗‖2)2 ≤ 2‖β̂ − β∗‖22 + 8‖β∗‖22 ≤ (1/8 + 8) · σ2γn. (B.33)
Combining (B.32) and (B.33), it follows from the Cauchy-Schwartz inequality that673 ∣∣‖β̂‖22 − ‖β∗‖22∣∣2 =

∣∣(β̂ − β∗)>(β̂ + β∗)
∣∣2 ≤ ‖β̂ − β∗‖22 · ‖β̂ + β∗‖22 ≤ 5/8 · σ4γ2

n, (B.34)
which holds with probability 1 − o(1). In what follows, we construct an asymptotically powerful674

test with T = O(dη) query complexity for the hyppthesis testing problem in (2.7). We set φ =675

1{‖β̂‖22 ≥ γn/5}, where β̂ is the estimator of β∗ given the algorithm A . Following from (B.32),676

it holds with probability 1 − o(1) that ‖β̂‖22/σ2 ≤ γn/16 under the null hypothesis with β∗ = 0.677

Meanwhile, following from (B.34), it holds with probability 1− o(1) that ‖β̂‖22/σ2 ≥ γn/5 under678

the alternative hypothesis with β∗ 6= 0 and ‖β∗‖2/σ2 = γn. In other words, φ is asymptotically679

powerful and computationally tractable with γn = o(
√
s2/n ∧ 1/α2 · s log d/n), which contradicts680

the computational minimax separation rate in (A.16).681

C Proof of Lemmas682

In this section, we lay out the proof of the lemmas in §B.683

C.1 Proof of Lemma B.1684

Proof. It follows from the model in (B.1) that under the alternative hypothesis,685

Z = (Y,X) ∼ α ·N
(
0,Σ(v)

)
+

1− α
2
·N
(
0,Σ(v)

)
+

1− α
2
·N
(
0,Σ(−v)

)
,

∼ 1 + α

2
·N
(
0,Σ(v)

)
+

1− α
2
·N
(
0,Σ(−v)

)
,

where Σ(v) is the covariance matrix686

Σ(v) =

[
σ2 + sρ2 ρv>

ρv Id

]
∈ R(d+1)×(d+1). (C.1)

Meanwhile, we have Z = (Y,X) ∼ N(0,Σ0) under the null hypothesis, where we denote by687

Σ0 = Σ(0). Recall that we denote by Pv and P0 the distributions of Z under the alternative and null688

hypotheses, respectively. Therefore, it holds that689

dPv

dP0
(Z) =

1 + α

2
·

√
det(Σ0)

det
(
Σ(v)

) · exp

(
−
Z
(
Σ−1(v)− Σ−1

0

)
Z>

2

)

+
1− α

2
·

√
det(Σ0)

det
(
Σ(−v)

) · exp

(
−
Z
(
Σ−1(−v)− Σ−1

0

)
Z>

2

)
, (C.2)

where we denote by Σ−1(v) the inverse matrix of Σ(v). We denote by ξ the Bernoulli random690

variable with distribution691

P(ξ = 1) =
1 + α

2
, P(ξ = −1) =

1− α
2

. (C.3)
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Therefore, it follows from (C.2) that692

dPv

dP0
(Z) = Eξ

[√
det(Σ0)

det(Σ(ξv))
· exp

(
−
Z
(
Σ−1(ξv)− Σ−1

0

)
Z>

2

)]
. (C.4)

Following from (C.4), for v1 and v2 in G(s), we have693

EP0

[
dPv1

dP0

dPv2

dP0
(Z)

]
= EP0

Eξ1,ξ2

[
det(Σ0)√

det
(
Σ(ξ1v1)

)
· det

(
Σ(ξ2v2)

) (C.5)

· exp
(
−1/2 · Z>

(
Σ−1(ξ1v1) + Σ−1(ξ1v2)− 2Σ−1

0

)
Z
)]
,

where ξ1 and ξ2 are independent copies of ξ defined in (C.3). In what follows, we calculate the694

right-hand side of (C.5) by invoking Fubini’s theorem. We first calculate the right-hand side of (C.5)695

by integrating under P0 and obtain that696

EP0

[
exp
(
−1/2 · Z>

(
Σ−1(ξ1v1) + Σ−1(ξ1v2)− 2Σ−1

0

)
Z
)]

=
1√

(2π)d+1 · det(Σ0)
·
∫
z∈Rd+1

exp
(
−1/2 · z>

(
Σ−1(ξ1v1) + Σ−1(ξ1v2)− Σ−1

0

)
z
)

dP0(z)

=
(

det
(
Σ−1(ξ1v1) + Σ−1(ξ1v2)− Σ−1

0

)
· det(Σ0)

)−1/2

. (C.6)

By plugging (C.6) into (C.5), we obtain697

Eξ1,ξ2EP0

[
det(Σ0)√

det
(
Σ(ξ1v1)

)
· det

(
Σ(ξ2v2)

) · exp
(
−1/2 · Z>

(
Σ−1(ξ1v1) + Σ−1(ξ1v2)− 2Σ−1

0

)
Z
)]

= Eξ1,ξ2

[
det(Σ0)√

det
(
Σ(ξ1v1)

)
· det

(
Σ(ξ2v2)

) · (det
(
Σ−1(ξ1v1) + Σ−1(ξ1v2)− Σ−1

0

)
det(Σ0)

)−1/2
]

=
√

det(Σ0) · Eξ1,ξ2
[
det
(
Σ(ξ1v1) + Σ(ξ2v2)− Σ(ξ1v1)Σ−1

0 Σ(ξ2v2)
)−1/2

]
. (C.7)

Meanwhile, by (C.1) it holds that det(Σ0) = σ2 + sρ2 and698

Σ(ξ1v1) + Σ(ξ2v2)− Σ(ξ1v1) · Σ−1
0 · Σ(ξ2v2)

=

[
σ2 + sρ2(1− ξ1ξ2 · v>1 v2) 0

0 Id − (ρ2ξ1ξ2)/(σ2 + sρ2) · v1v>2

]
. (C.8)

Therefore, we are able to calculate the right-hand side of (C.7) explicitly. Combining (C.5) and (C.7)699

and apply Fubini’s theorem, we obtain that700

EP0

[
dPv1

dP0

dPv2

dP0
(Z)

]
= Eξ1,ξ2

[
1− ρ2ξ1ξ2

σ2 + sρ2
· 〈v1, v2〉

]
. (C.9)

Recall that ξ1 and ξ2 are independent copies of ξ defined in (C.3), it then holds that701

EP0

[
dPv1

dP0

dPv2

dP0
(Z)

]
=

1 + α2(σ2 + sρ2)−1ρ2 · 〈v1, v2〉
1− (σ2 + sρ2)−2ρ4 · 〈v1, v2〉2

. (C.10)

Meanwhile, for 0 ≤ x < 1/2 and 0 ≤ k ≤ 1, we have702

1 + kx

1− x2
≤ cosh(2x) + k · sinh(2x).

Therefore, following from (C.10) with sρ2 = o(1), we obtain that703

EP0

[
dPv1

dP0

dPv2

dP0
(Z)

]
≤ cosh

(
2ρ2 · 〈v1, v2〉
σ2 + sρ2

)
+ α2 · sinh

(
2ρ2 · 〈v1, v2〉
σ2 + sρ2

)
, (C.11)

which concludes the proof of Lemma B.1.704
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C.2 Proof of Lemma B.3705

Proof. In what follows, we establish the upper bound of the following sum,706

S =
1

|G(s)|2
∑

v1,v2∈G(s)

[
exp

(
4α2ρ2 · 〈v1, v2〉

σ2 + sρ2

)∨
cosh

(
4ρ2 · 〈v1, v2〉
σ2 + sρ2

)]n
. (C.12)

In specific, we show that S = 1 + o(1) if it holds that707

γn = o

(√
s log d

n

∧ 1

α2
· s log d

n

)
.

The proof strategy is similar to that of Theorem 3.1 by [62]. We define V(s) the class of index set as708

follows,709

V(s) = {S ⊆ [d] : |S| = s}.
We further denote by S1 and S2 two independent random variables, which are uniformly distributed710

over V(s) and711

T = |S1 ∩ S2|.
We obtain from (C.12) the following upper bound of S,712

S ≤ ET

[{
exp

(
4α2ρ2T

σ2 + sρ2

)∨
cosh

(
4ρ2T

σ2 + sρ2

)}n]
. (C.13)

Let {ηi}i∈[n] be n independent Rademacher random variables and U be their sum. Following from713

(C.13) and the fact that cosh(x) = Eηi [exp(ηix)], we obtain714

S ≤ ET

[
exp

(
4nα2ρ2T

σ2 + sρ2

)∨
EU
[
exp

(
4ρ2UT

σ2 + sρ2

)]]

= ETEU

[
exp

(
4nα2ρ2T

σ2 + sρ2

)∨
exp

(
4ρ2UT

σ2 + sρ2

)]
. (C.14)

We apply Fubini’s theorem to calculate the right-hand side of (C.14). We first calculate the expectation715

with respect to T . Recall that we denote by T = |S1 ∩ S2|. Therefore, it holds that716

ET

[
exp

(
4nα2ρ2T

σ2 + sρ2

)∨
exp

(
4ρ2UT

σ2 + sρ2

)]

= ET

[{
exp

(
4nα2ρ2

σ2 + sρ2

)∨
exp

(
4ρ2U

σ2 + sρ2

)}T]

≤ sup
S∈V(s)

ES2

[{
exp

(
4nα2ρ2

σ2 + sρ2

)∨
exp

(
4ρ2U

σ2 + sρ2

)}|S∩S2|]
, (C.15)

where the last inequality holds since S1 is uniformly distributed over V(s). We fix an arbitrary717

S ∈ V(s) and denote by |S ∩ S2| =
∑
i∈V vi, where {vi}i∈V are random variables that takes value718

one if i ∈ S ∩ S2 and zero otherwise. Recall that S2 is uniformly distributed over C(s). Therefore,719

vi takes value one with probability s/d and zero otherwise. Meanwhile, for i 6= j, vi and vj are720

negatively associated with each other. Thus, it holds that721

ES2

[{
exp

(
4nα2ρ2

σ2 + sρ2

)∨
exp

(
4ρ2U

σ2 + sρ2

)}|S∩S2|]

≤
∏
i∈V

Evi

[{
exp

(
4nα2ρ2

σ2 + sρ2

)∨
exp

(
4ρ2U

σ2 + sρ2

)}vi]

=

(
s/d ·

[
exp

(
4nα2ρ2

σ2 + sρ2

)∨
exp

(
4ρ2U

σ2 + sρ2

)]
+ 1− s/d

)s
. (C.16)
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Since the inequality in (C.16) holds for any S ∈ V(s), it holds for the supreme over V(s). By722

plugging (C.16) into (C.15), we obtain that723

ET

[
exp

(
4nα2ρ2T

σ2 + sρ2

)∨
exp

(
4ρ2UT

σ2 + sρ2

)]

≤ 1 +

s∑
k=1

(
s

k

)( s
d

)k
·

[
exp

(
4nα2ρ2

σ2 + sρ2

)∨
exp

(
4ρ2U

σ2 + sρ2

)
− 1

]k
. (C.17)

Finally, by combining (C.14) and (C.17), we obtain from Fubini’s theorem that724

S − 1 ≤
s∑

k=1

(
s

k

)( s
d

)k
· EU

[{
exp

(
4nα2ρ2

σ2 + sρ2

)∨
exp

(
4ρ2U

σ2 + sρ2

)
− 1

}k]

≤
s∑

k=1

(
s

k

)( s
d

)k
·
[
exp

(
4nα2ρ2

σ2 + sρ2

)
− 1

]k
+

(
s

k

)( s
d

)k
· EU

[{
exp

(
4ρ2U

σ2 + sρ2

)
− 1

}k ∣∣∣∣∣U ≥ nα2

]
. (C.18)

It now suffices to show that the right-hand side of (C.18) is of order o(1). The following lemma upper725

bounds the first term on the right-hand side of (C.18).726

Lemma C.1 ([62]). For γn = sρ2/σ2 = o(1/α2 · s log d/n), it holds that727

s∑
k=1

(
s

k

)( s
d

)k
·
[
exp

(
4nα2ρ2

σ2 + sρ2

)
− 1

]k
= o(1). (C.19)

Proof. See §C.6 for a detailed proof.728

We denote by Q = 4ρ2U/(σ2 + sρ2). Note that exp(x) − 1 ≤ 2x for 0 < x < 1. Therefore, the729

following upper bound of the second term on the right-hand side of (C.18) holds,730

s∑
k=1

(
s

k

)( s
d

)k
· EU

[{
exp

(
4ρ2U

σ2 + sρ2

)
− 1

}k ∣∣∣∣∣U ≥ 0

]

≤
s∑

k=1

(
s2e

kd

)k
· EU

[
(2|Q|)k + exp(k|Q|) · 1{|Q| ≥ 1}

]
≤

s∑
k=1

EU
[

2s2e|Q|
kd

]k
︸ ︷︷ ︸

(i)

+

s∑
k=1

(
s2e

kd

)k
· EU

[
exp(k|Q|) · 1{|Q| ≥ 1}

]
︸ ︷︷ ︸

(ii)

. (C.20)

The following Lemma establishes the upper bounds of terms (i) and (ii) in (C.20).731

Lemma C.2 ([62]). For γn = sρ2/σ2 = o(
√
s log d/n), it holds that732

T1 =

s∑
k=1

EU
[

2s2e|Q|
kd

]k
= o(1),

T2 =

s∑
k=1

(s2e

kd

)k
· EU

[
exp(k|Q|) · 1(|Q| ≥ 1)

]
= o(1). (C.21)

Proof. See §C.7 for a detailed proof.733

By combining (C.18) and (C.20), we obtain from Lemmas C.1 and C.2 that S − 1 = o(1) for734

γn = o

(√
s log d

n

∧ 1

α2
· s log d

n

)
,

which concludes the proof of Lemma B.3.735
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C.3 Proof of Lemma B.4736

Proof. In what follows, we prove that T · supq∈Q |C(q)|/|G(s)| = o(1) under the assumptions of737

Lemma B.4. Our proof strategy is similar to that of Theorem 5.3 by [53]. As |G(s)| is given, we focus738

on upper bounding |C(q)|. We first partition C(q) into two parts, namely, C1(q) and C2(q), where739

C1(q) =
{

v ∈ G(s) : EP0

[
q(Z)

]
− EPv

[
q(Z)

]
> τq

}
,

and C2(q) = C(q)\C1(q). It holds that740

sup
q∈Q
|C(q)| ≤ sup

q∈Q
|C1(q)|+ sup

q∈Q
|C2(q)|. (C.22)

We introduce the following distributions,741

PC1(q) =
1

|C1(q)|
∑

v∈C1(q)

Pv, PC2(q) =
1

|C2(q)|
∑

v∈C2(q)

Pv.

We further denote by742

C̄`(q, v) = argmax
C

{
1

|C|
∑
v′∈C

EP0

[
dPv

dP0

dPv′

dP0
(X)

]
− 1

∣∣∣∣ |C| = |C`(q)|} ⊆ G(s) (C.23)

for ` ∈ {1, 2}. It then holds that743

Dχ2(PC`(q),P0) = EP0

[(
dPC`(q)

dP0
(Z)− 1

)2
]

=
1

C`(q)
∑

v,v′∈C`(q)

EP0

[
dPv

dP0

dPv′

dP0
(Z)

]
− 1

≤ sup
v∈C`(q)

1

|C`(q)|
∑

v′∈C`(q)

EP0

[
dPv

dP0

dPv′

dP0
(Z)

]
− 1

≤ sup
v∈C`(q)

1

|C`(q)|
∑

v′∈C̄`(q,v)

EP0

[
dPv

dP0

dPv′

dP0
(Z)

]
− 1, (C.24)

where the last inequality follows from the definition of C̄`(q, v) in (C.23). By Lemma B.1, it holds744

that745

EP0

[
dPv

dP0

dPv′

dP0
(Z)

]
≤ cosh

(
2ρ2 · 〈v, v′〉
σ2 + sρ2

)
+ α2 · sinh

(
2ρ2 · 〈v, v′〉
σ2 + sρ2

)
. (C.25)

Combining (C.24) and (C.25), we conclude that746

1 +Dχ2(PC`(q),P0)

≤ sup
v∈C`(q)

{
1

|C`(q)|
∑

v′∈C̄`(q,v)

cosh

(
2ρ2 · 〈v, v′〉
σ2 + sρ2

)
+ α2 · sinh

(
2ρ2 · 〈v, v′〉
σ2 + sρ2

)}
. (C.26)

In what follows, we calculate the sum on the right-hand side of (C.26). To achieve this, we calculate747

the sum based on the value of 〈v, v′〉. We denote by748

Cj(v) =
{

v′ ∈ G(s) : 〈v, v′〉 = s− j
}
.

Then for any choice of `, q, and v ∈ C`(q), there exists an integer k`(q, v) such that749

C̄`(q, v) = C0(v) ∪ · · · ∪ Ck`(q,v)−1 ∪ C′`(q, v),

where C′`(q, v) = C̄`(q, v)\
⋃k`(q,v)−1
j=0 Cj(v). Note that we have750

|C′`(q, v)| = |C`(q)| −
k`(q,v)−1∑
j=0

|Cj(v)| < |Ck`(q,v)(v)|.

Hence, the cardinality of C̄`(q, v) is between
∑k`(q,v)−1
j=0 |Cj(v)| and

∑k`(q,v)
j=0 |Cj(v)|. Following751

form (C.26), we have752

1 +Dχ2(PC`(q),P0) ≤
∑k`(q,v)−1
j=0 hα(j) · |Cj(v)|+ hα

(
k`(q, v)

)
· |C′`(q, v)|∑k`(q,v)−1

j=0 |Cj(v)|+ |C′`(q, v)|
, (C.27)
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where we denote by hα(j) the right-hand side of (C.25) when v′ ∈ Cj(v). In other words, it holds753

that754

hα(j) = cosh

(
2ρ2(s− j)
σ2 + sρ2

)
+ α2 · sinh

(
2ρ2(s− j)
σ2 + sρ2

)
. (C.28)

Note that hα(j) is monotonically decreasing as j increases. Therefore, it follows from (C.27) that755

1 +Dχ2(PC`(q),P0) ≤
∑k`(q,v)−1
j=0 hα(j) · |Cj(v)|∑k`(q,v)−1

j=0 |Cj(v)|
. (C.29)

Further note that |Cj(v)| =
(
s
s−j
)(
d−s
j

)
. Therefore, it holds that756

|Cj+1(v)|/|Cj(v)| = (s− j)(d− s− j)/(j + 1)2 ≥ d/2s2,

where j ∈ {0, . . . , s− 1}, v ∈ G(s), and s = o(d1/2−δ). We denote by ζ = d/2s2, which satisfies757

ζ−1 = o(1) by the assumption that s = o(d1/2−δ). It then holds that758

|C`(q)| ≤
k`(q,v)∑
j=0

|Cj(v)| ≤ |Cs(v)| ·
k`(q,v)∑
j=0

ζj−s

≤ ζ−(s−k`(q,v)) · |G(s)|
1− ζ−1

≤ 2ζ−(s−k`(q,v)) · |G(s)|. (C.30)

For any integer k ≥ 1 and two positive sequences {wi}∞i=0 and {ui}∞i=0 such that wi/wi−1 ≥759

ui/ui−1 > 1, it holds that760 ∑k
j=0 wj · hα(j)∑k

i=0 wj
≤
∑k
j=0 uj · hα(j)∑k

j=0 uj
. (C.31)

Therefore, by setting wj = |Cj(v)| and uj = ζj , we conclude from (C.29) and (C.31) that761

1 +Dχ2(PC`(q),P0) ≤
∑k`(q,v)−1
j=0 ζj · hα(j)∑k`(q,v)−1

j=0 ζj
(C.32)

=

[
k`(q,v)−1∑
j=0

ζj · cosh

(
2ρ2(s− j)
σ2 + sρ2

)
+ α2 · sinh

(
2ρ2(s− j)
σ2 + sρ2

)]/ k`(q,v)−1∑
j=0

ζj

≤
k`(q,v)−1∑
j=0

ζj ·
{

cosh

(
4ρ2(s− j)
σ2 + sρ2

)∨
exp

(
4α2ρ2(s− j)
σ2 + sρ2

)}/ k`(q,v)−1∑
j=0

ζj ,

where the last inequality follows from Lemma B.1. In what follows, we denote by762

f(j) = cosh

(
4ρ2(s− j)
σ2 + sρ2

)
, g(j) = exp

(
4α2ρ2(s− j)
σ2 + sρ2

)
(C.33)

for notational simplicity. Note that763

f(j − 1)/f(j) ≥ cosh

(
4ρ2

σ2 + sρ2

)
.

Therefore, it holds for j ∈ {0, 1, . . . , k`(q, v)− 1} that764

f(j) ≤ f
(
k`(q, v)− 1

)
·
{

cosh

(
4ρ2

σ2 + sρ2

)}k`(q,v)−j−1

. (C.34)

Meanwhile, we have765

g(j) = exp
(
4α2ρ2(s− j)σ2 + sρ2

)
= g
(
k`(q, v)− 1

)
·
{

exp

(
4α2ρ2

σ2 + sρ2

)}k`(q,v)−j−1

.

(C.35)
We denote by766

Γ(s, ρ) = exp

(
4α2ρ2

σ2 + sρ2

)∨
cosh

(
4ρ2

σ2 + sρ2

)
. (C.36)

Combining (C.34) and (C.35), we conclude that767

f(j) ∨ g(j) ≤
{
f
(
k`(q, v)− 1

)
∨ g
(
k`(q, v)− 1

)}
·
(
Γ(s, ρ)

)k`(q,v)−j−1
. (C.37)
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Following from (C.32) and (C.37), it holds that768

1 +Dχ2(PC`(q),P0)

≤
{
f
(
k`(q, v)− 1

)
∨ g
(
k`(q, v)− 1

)}
·
∑k`(q,v)−1
j=0 ζj ·

(
Γ(s, ρ)

)k`(q,v)−j−1∑k`(q,v)−1
j=0 ζj

. (C.38)

By direct calculation, we obtain769 ∑k`(q,v)−1
j=0 ζj ·

(
Γ(s, ρ)

)k`(q,v)−j−1∑k`(q,v)−1
j=0 ζj

=
ζk`(q,v)−1 ·

∑k`(q,v)−1
j=0

(
Γ(s, ρ)/ζ

)k`(q,v)−j−1

ζk`(q,v)−1 ·
∑k`(q,v)−1
j=0 ζ−(k`(q,v)−j−1)

=
1−

(
Γ(s, ρ)/ζ

)k`(q,v)

1− ζ−k`(q,v)
· 1− ζ−1

1− Γ(s, ρ)/ζ
. (C.39)

Note that Γ(s, ρ) ≥ 1. Therefore, the following upper bound of the right-hand side of (C.39) holds,770

1−
(
Γ(s, ρ)/ζ

)k`(q,v)

1− ζ−k`(q,v)
· 1− ζ−1

1− Γ(s, ρ)/ζ
≤ 1− ζ−1

1− Γ(s, ρ)/ζ
. (C.40)

Combining (C.38), (C.39), and (C.40), we conclude that771

1 +Dχ2(PC`(q),P0) ≤
{
f
(
k`(q, v)− 1

)
∨ g
(
k`(q, v)− 1

)}
· 1− ζ−1

1− Γ(s, ρ)/ζ
, (C.41)

where f(j) and g(j) are defined in (C.33). Meanwhile, by Lemma 4.5 of [53], it holds that772

Dχ2(PC`(q),P0) ≥ log(T/ξ)/n. (C.42)
We denote by τ2 the right-hand side of (C.42). Combining (C.41) and (C.42), we have773

τ2 + 1 ≤
{
f
(
k`(q, v)− 1

)
∨ g
(
k`(q, v)− 1

)}
· 1− ζ−1

1− Γ(s, ρ)/ζ
.

Therefore, one of the following inequalities holds,774

(1 + τ2) · 1− Γ(s, ρ)/ζ

1− ζ−1
≤ g
(
k`(q, v)− 1

)
= exp

(
4α2ρ2 ·

(
s− k`(q, v) + 1

)
σ2 + sρ2

)
,

(1 + τ2) · 1− Γ(s, ρ)/ζ

1− ζ−1
≤ f

(
k`(q, v)− 1

)
≤ exp

(
2ρ4 ·

(
s− k`(q, v) + 1

)2
(σ2 + sρ2)2

)
, (C.43)

where the second inequality holds because of the fact that cosh(x) ≤ exp(x2/2). We take the775

logarithm of (C.43) and obtain that one of the following inequalities holds,776

log(1 + τ2) + log

(
1− ζ−1

1− Γ(s, ρ)/ζ

)
≤

4α2ρ2 ·
(
s− k`(q, v) + 1

)
σ2 + sρ2

,

log(1 + τ2) + log

(
1− ζ−1

1− Γ(s, ρ)/ζ

)
≤

2ρ4 ·
(
s− k`(q, v) + 1

)2
(σ2 + sρ2)2

. (C.44)

Following from the definition of Γ(s, ρ) in (C.36), we have Γ(s, ρ)/ζ = o(1). By Taylor’s expansion,777

it holds that778

log

(
1− ζ−1

1− Γ(s, ρ)/ζ

)
= log

(
1− ζ−1 · 1− Γ(s, ρ)

1− Γ(s, ρ)/ζ

)
= O(ζ−1ρ4 ∨ ζ−1α2ρ2). (C.45)

For γn = sρ2/δ2 = o(
√
s2/n∧1/α2 ·s/n), where σ2 is a constant, it holds that α2ρ2∨ρ4 = o(1/n).779

Hence, the right-hand side of (C.45) is negligible compared with log(1 + τ2). Then following form780

(C.44), it holds that781

s− k`(q, v) + 1 ≥

√
(σ2 + sρ2)2 · log(1 + τ2)

2ρ4

∧√
(σ2 + sρ2) · log(1 + τ2)

4α2ρ2
. (C.46)
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Note that log(1 + τ2) ≥ τ2/2 = log(T/ξ)/(2n) for τ < 1. Therefore, by combining (C.30) and782

(C.46), we conclude that783

T ·
supq∈Q |C(q)|
|G(s)|

(C.47)

≤ 4T · exp

(
− log ζ ·

{√
(σ2 + sρ2)2 · log(T/ξ)

4nρ4
− 1

∨√
(σ2 + sρ2) · log(T/ξ)

8nα2ρ2
− 1

})
.

Note that ρ4 · n ∨ α2ρ2 · n = o(1) for sρ2/σ2 = o(
√
s2/n ∧ 1/α2 · s/n). We choose an absolute784

constant C > 0 satisfying δ(C − 1) > µ, where µ and δ are absolute constants such that T = O(dµ)785

and s = o(d1/2−δ). Then it holds for a sufficiently large n that786 √
(σ2 + sρ2)2 · log(T/ξ)

4nρ4

∨√
(σ2 + sρ2) · log(T/ξ)

8nα2ρ2

≥

√
(σ2 + sρ2)2 · log(1/ξ)

4nρ4

∨√
(σ2 + sρ2) · log(1/ξ)

8nα2ρ2
≥ C. (C.48)

Note that ζ = d/(2s2) = Ω(dδ) for s = o(d1/2−δ), where δ > 0 is an absolute constant. Finally,787

combining (C.47) and (C.48), we obtain that for T = O(dµ),788

T · sup
q∈Q
|C(q)|/|G(s)| ≤ O(dµ · ζ−(C−1)) = O(dµ−δ(C−1)) = o(1), (C.49)

which concludes the proof of Lemma B.4.789

C.4 Proof of Lemma B.5790

Proof. In the following proof, we denote by C and C ′ absolute constants, the value of which may791

vary from lines to lines. We define the following unbounded query functions,792

q̃1,v(Y,X) = ψ(Y ) ·
[
s−1(v>X)2 − 1

]
· 1
{
|ψ(Y )| ≤ (R · log n)1/ν

}
, v ∈ Ḡ(s),

q̃2,v(Y,X) = Y · (s−1/2v>X) · 1
{
|Y | ≤ (R · log n)1/ν

}
, v ∈ Ḡ(s). (C.50)

In the sequel, we first upper bound the difference between the query functions in (A.5) and the query793

functions in (C.50). We then characterize the two expectations EPv
[qi,v(Y,X)] and EP0

[qi,v(Y,X)]794

using the corresponding expectations of q̃i,v(Y,X). Following from (A.5) and (C.50), it holds that795

q̃1,v − q1,v = ψ(Y ) ·
[
s−1(v>X)2 − 1

]
· 1
{
|ψ(Y )| ≤ (R · log n)1/ν

}
· 1
{
|v>X| > R ·

√
s log n

}
,

q̃2,v − q2,v = Y · (s−1/2v>X) · 1
{
|Y | ≤ (R · log n)1/ν

}
· 1
{
|v>X| > R ·

√
s log n

}
. (C.51)

Then following from the Cauchy-Schwartz inequality, it holds for q1,v and q̃1,v that796 ∣∣EP0

[
q1,v(Y,X)− q̃1,v(Y,X)

]∣∣2
≤
∣∣∣EP0

[
ψ(Y ) ·

(
s−1(v>X)2 − 1

)]∣∣∣2 · P0

(
|v>X| > R ·

√
s log n

)
. (C.52)

Note that under H0, X ∼ N(0, Id) is the standard Gaussian distribution, which is independent of Y .797

Therefore, it holds that EP0
[(s−1(X>v)2 − 1)2] = 2. Then following from the Cauchy-Schwartz798

inequality, we obtain that799 ∣∣∣EP0

[
ψ(Y ) ·

(
s−1(v>X)2 − 1

)]∣∣∣2 · P0

(
|v>X| > R ·

√
s log n

)
≤ EP0

[
ψ2(Y )

]
· EP0

[(
s−1(X>v)2 − 1

)2] · P0

(
|v>X| > R ·

√
s log n

)
= C · P0

(
|v>X| > R ·

√
s log n

)
(C.53)

for a positive absolute constant C. Note that X>v/
√
s ∼ N(0, 1) under the null hypothesis.800

Following from the tail bound of standard Gaussian distribution, it holds for any t ≥ 1 that801

P0

(
|X>v/

√
s| ≥ t

)
≤ 2 exp(−t2/2). (C.54)

Combining (C.52), (C.53), and (C.54), we obtain that802 ∣∣EP0

[
q1,v(Y,X)− q̃1,v(Y,X)

]∣∣2 ≤ C · P(|v>X| > R · s
√

log n)

≤ C · exp(−R2 · log n/2). (C.55)
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In the following, we upper bound the distance between q1,v(Y,X) and q̃1,v(Y,X) under Pv. Follow-803

ing from the Cauchy-Schwartz inequality, it holds that804 ∣∣EPv∗

[
q1,v(Y,X)− q̃1,v(Y,X)

]∣∣2
≤ EPv∗

[
ψ2(Y ) ·

(
s−1(v>X)2 − 1

)2] · Pv∗
(
|v>X| > R ·

√
s log n

)
≤
√
EPv∗

[
ψ4(Y )

]
· EPv∗

[(
s−1(v>X)2 − 1

)4] · Pv∗
(
|v>X| > R ·

√
s log n

)
. (C.56)

Note that under Assumption A.1, EPv∗ [ψ4(Y )] is upper bounded. Meanwhile, we have that805

X>v/
√
s ∼ N(0, 1). Therefore, it holds for an absolute constant C that806 ∣∣EPv∗

[
q1,v(Y,X)− q̃1,v(Y,X)

]∣∣2 ≤ C · exp(−R2 · log n/2). (C.57)
Similar arguments apply to q2,v(Y,X) and q̃2,v(Y,X). Under the null hypothesis, it holds for an807

absolute constant C ′ that808 ∣∣EP0

[
q2,v(Y,X)− q̃2,v(Y,X)

]∣∣2 ≤ EP0
[Y 2] · EP0

[
s−1(X>v)2

]
· P
(
|v>X| > R ·

√
s log n

)
≤ C ′ · exp(−R2 · log n/2), (C.58)

which also holds under the alternative hypothesis with distribution Pv∗ . Therefore, following from809

(C.55), (C.57), and (C.58), it holds for a sufficiently large constant R that810 ∣∣EPv∗

[
q1,v(Y,X)− q̃1,v(Y,X)

]∣∣ ∨ ∣∣EP0

[
q1,v(Y,X)− q̃1,v(Y,X)

]∣∣ ≤ 1/n,∣∣EPv∗

[
q2,v(Y,X)− q̃2,v(Y,X)

]∣∣ ∨ ∣∣EP0

[
q2,v(Y,X)− q̃2,v(Y,X)

]∣∣ ≤ 1/n, (C.59)
which holds for any v ∈ Ḡ(s). In what follows, we characterize the expectations of q̃i,v(Y,X) under811

the null and alternative hypotheses for i ∈ {1, 2}. We then obtain the desired bounds of qi,v(Y,X)812

based on q̃i,v(Y,X). Note that under the null hypothesis, Y is independent of X . Then, following813

from (C.50) and the fact that X ∼ N(0, Id), it holds that814

EP0

[
q̃1,v(Y,X)

]
= EP0

[
q̃2,v(Y,X)

]
= 0. (C.60)

Following from (A.3), we have815

sρ2 − EPv∗

[
q̃1,v∗(Y,X)

]
≤ EPv∗

[
ψ(Y ) ·

(
s−1(v∗>X)2 − 1

)
− q̃1,v(Y,X)

]
(C.61)

= EPv∗

[
ψ(Y ) ·

(
s−1(v∗>X)2 − 1

)
· 1
{
|ψ(Y )| > (R · log n)1/ν

}]
≤
√

EPv∗

[
ψ2(Y ) ·

(
s−1(v∗>X)2 − 1

)2] ·√Pv∗
(
|ψ(Y )| > (R · log n)1/ν

)
,

where the last inequality follows from the Cauchy-Schwartz inequality. It then follows from Assump-816

tion A.1 that817

Pv∗
(
|ψ(Y )| > (R · log n)1/ν

)
≤ C · exp(−R · log n). (C.62)

Meanwhile, following from the Cauchy-Schwartz inequality, it holds that818

EPv∗

[
ψ2(Y ) ·

(
s−1(v∗>X)2 − 1

)2] ≤√EPv∗

[
ψ4(Y )

]
· EPv∗

[(
s−1(v∗>X)2 − 1

)4]
, (C.63)

which is upper bounded by an absolute constant. Combining (C.61), (C.62), and (C.63), if it holds that819

sρ2/σ2 = Ω(
√
s log d/n), then for sufficiently large n and constant R, we obtain that 1/n ≤ sρ2/4820

and821

sρ2 − EPv∗

[
q̃1,v(Y,X)

]
≤ sρ2/4. (C.64)

In other words, it holds that EPv∗

[
q̃1,v(Y,X)

]
≥ 3sρ2/4. Similar arguments hold for the query822

function q̃2,v(Y,X). If it holds that sρ2/σ2 = Ω(1/α2 · s log d/n), then for sufficiently large n and823

constant R, we obtain that 1/n ≤
√
α2sρ2/4 and824

EPv∗

[
q̃2,v(Y,X)

]
≥ 3
√
α2sρ2/4. (C.65)

Combining (C.59), (C.60), (C.64), and (C.65), it holds for sufficiently large n and constant R that825

EP0

[
q1,v(Y,X)

]
≤ 1/n, EP0

[
q2,v(Y,X)

]
≤ 1/n.

Furthermore, it holds for sufficiently large n and constant R that826

EPv∗

[
q1,v∗(Y,X)

]
≥ sρ2/2, if sρ2/σ2 = Ω(

√
s log d/n),

EPv∗

[
q2,v∗(Y,X)

]
≥
√
α2sρ2/2, if sρ2/σ2 = Ω(1/α2 · s log d/n),

which concludes the proof of Lemma B.5.827
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C.5 Proof of Lemma B.6828

Proof. In the following proof, we denote by C and C ′ absolute constants, the value of which may829

vary from lines to lines. We define the following unbounded query functions,830

q̃1,j(Y,X) = ψ(Y ) · (X2
j − 1) · 1

{
|ψ(Y )| ≤ (R · log n)1/ν

}
, j ∈ [d],

q̃2,j(Y,X) = Y Xj · 1
{

(|Y | ≤ (R · log n)1/ν
}
, j ∈ [d]. (C.66)

The proof is similar to the proof of Lemma B.5 in §C.4. Following from (C.66) and (A.11), it holds831

that832 ∣∣EP0

[
q̃1,j(Y,X)− q1,j(Y,X)

]∣∣2 ≤ EP0

[
ψ2(Y ) · (X2

j − 1)2
]
· P0

(
|Xj | ≥ R ·

√
log n

)
, (C.67)

where the inequality follows from the Cauchy-Schwartz inequality. Under the null hypothesis, Y is833

independent of X . Meanwhile, it holds that X ∼ N(0, Id). Thus, we have Xj ∼ N(0, 1). Following834

from the Gaussian tail bound in (C.54), we have835 ∣∣EP0

[
q̃1,j(Y,X)− q1,j(Y,X)

]∣∣2 ≤ C · exp(−R2 · log n/2). (C.68)
Therefore, for a sufficiently large constant R, the right-hand side of (C.68) is upper bounded by 1/n2.836

Under the alternative hypothesis, it follows from the Cauchy-Schwartz inequality that837 ∣∣EPv∗

[
q̃1,j(Y,X)− q1,j(Y,X)

]∣∣2 ≤ EPv∗

[
ψ2(Y ) · (X2

j − 1)2
]
· Pv∗

(
|Xj | ≥ R ·

√
log n

)
(C.69)

≤
√
EPv∗

[
ψ4(Y )

]
· EPv∗

[
(X2

j − 1)4
]
· Pv∗

(
|Xj | ≥ R ·

√
log n

)
.

Following from Assumption A.1, it holds that EPv
[ψ4(Y )] is upper bounded under the alternative838

hypothesis. Meanwhile, it holds that Xj ∼ N(0, 1) under the alternative hypothesis. Therefore, for a839

sufficiently large constant R, the right-hand side of (C.69) is upper bounded by 1/n2.840

For q2,j(X,Y ), we follow similar arguments. By the Cauchy-Schwartz inequality, it holds under the841

null hypothesis that842 ∣∣EP0

[
q̃2,j(Y,X)− q2,j(Y,X)

]∣∣2 ≤ EP0 [Y 2X2
j ] · P0

(
|Xj | ≥ R ·

√
log n

)
. (C.70)

Note that Y is independent of X and Xj ∼ N(0, 1) under the null hypothesis. Thus, following from843

the Gaussian tail bound, it holds for a sufficiently large constant R that844 ∣∣EP0

[
q̃2,j(Y,X)− q2,j(Y,X)

]∣∣2 ≤ 1/n2. (C.71)
Meanwhile, it holds under the alternative hypothesis that845 ∣∣EPv∗

[
q̃1,j(Y,X)− q1,j(Y,X)

]∣∣2 ≤ EPv∗ [Y 2X2
j ] · Pv∗

(
|Xj | ≥ R ·

√
log n

)
≤
√
EPv∗ [Y 2] · EPv∗ [X4

j ] · Pv∗
(
|Xj | ≥ R ·

√
log n

)
, (C.72)

where the above inequalities follow from the Cauchy-Schwartz inequality. Also, by Assumption A.1,846

it holds that EPv∗ [Y 4] is upper bounded under the alternative hypothesis. Therefore, the right-hand847

side of (C.72) is upper bounded by 1/n2 with a sufficiently large constant R. In conclusion, it holds848

for a sufficiently large constant R that849 ∣∣EP0

[
q1,j(Y,X)− q̃1,j(Y,X)

]∣∣ ∨ ∣∣EPv

[
q1,j(Y,X)− q̃1,j(Y,X)

]∣∣ ≤ 1/n,∣∣EP0

[
q2,j(Y,X)− q̃2,j(Y,X)

]∣∣ ∨ ∣∣EPv

[
q2,j(Y,X)− q̃2,j(Y,X)

]∣∣ ≤ 1/n. (C.73)

It remains to characterize the expectations of q̃1,j(Y,X) and q̃2,j(Y,X) under the null and alternative850

hypotheses. Note that under the null hypothesis, it holds that Y is independent of X and Xj ∼851

N(0, 1). Therefore, we have EP0 [X2
j − 1] = 0 and EP0 [Xj ] = 0, which imply852

EP0

[
q̃1,j(Y,X)

]
= EP0

[
ψ(Y ) · (X2

j − 1) · 1
{
|ψ(Y )| ≤ (R · log n)1/ν

}]
= 0,

EP0

[
q̃2,j(Y,X)

]
= EP0

[
Y Xj · 1

{
|Y | ≤ (R · log n)1/ν

}]
= 0. (C.74)

Under the alternative hypothesis, it follows from (A.3) and (A.4) that853

EPv∗

[
ψ(Y ) · (X2

j − 1)
]
≥ ρ2v∗j

2, EPv
[Y Xj ] = αρv∗j , (C.75)
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where v∗j ∈ {−1, 0, 1} is the j-th entry of v∗ ∈ Ḡ(s). For the query function q1,j(Y,X), it holds that854

ρ2v∗j
2 − EPv∗

[
q̃1,j(Y,X)

]
≤ EPv∗

[
Y 2(X2

j − 1) · 1
{
|Y | > (R · log n)1/ν

}]
≤
√

EPv∗

[
Y 4(X2

j − 1)2
]
·
√
Pv∗
(
|Y | > (R · log n)1/ν

)
≤ C · exp(−R · log n), (C.76)

where C is a positive absolute constant and the last inequality follows from Assumption A.1. We fix855

an index k such that v∗k 6= 0. Therefore, if sρ2/σ2 = Ω(
√
s log d/n), it holds for a sufficiently large856

constant R that857

ρ2 − EPv

[
q̃1,k(Y,X)

]
≤ ρ2/4. (C.77)

In other words, it holds that supj∈[d] EPv
[q̃1,j(Y,X)] ≥ 3ρ2/4. Similarly, we have858

ρv∗j − EPv∗

[
q̃1,j(Y,X)

]
= EPv∗

[
Y Xj · 1

{
|Y | > (R · log n)1/ν

}]
. (C.78)

Meanwhile, if sρ2/σ2 = Ω(1/α2 · s log d/n), it holds for a sufficiently large constant R that859 ∣∣∣EPv∗

[
Y Xj · 1

{
|Y | > (R · log n)1/ν

}]∣∣∣
≤
√

EPv∗ [Y 2X2
j ] ·
√

Pv∗
(
|Y | > (R · log n)1/ν

)
≤ αρ/4. (C.79)

Recall that v∗j ∈ {−1, 0, 1} is the j-th entry of v∗ ∈ Ḡ(s). Following from (C.78) and (C.79), we860

obtain that861

sup
j∈[d]

∣∣EPv∗

[
q̃1,j(Y,X)

]∣∣ ≥ 3αρ/4. (C.80)

Combining (C.73), (C.74), (C.77), and (C.80), we conclude that for sufficiently large n and constant862

R, it holds that863

sup
j∈[d]

EP0

[
q1,j(Y,X)

]
≤ 1/n, sup

j∈[d]

EP0

[
q1,j(Y,X)

]
≤ 1/n. (C.81)

Moreover, for sufficiently large n and constant R, it holds that864

sup
j∈[d]

EP∗v
[
q1,j(Y,X)

]
≥ ρ2/2 if sρ2/σ2 = Ω(

√
s log d/n),

sup
j∈[d]

EP∗v
[
q2,j(Y,X)

]
≥ αρ/2 if sρ2/σ2 = Ω(1/α2 · s log d/n), (C.82)

which concludes the proof of Lemma B.6.865

C.6 Proof of Lemma C.1866

Proof. In what follows, we show that for γn = sρ2/σ2 = o(1/α2 · s log d/n), we have867

T =

s∑
k=1

(
s

k

)( s
d

)k
· exp

(
4nkα2ρ2

σ2 + sρ2

)
= o(1).

Note that if γn = sρ2/σ2 = o(1/α2 · s log d/n), it holds that ρ2/(σ2 + sρ2) = o(1/α2 · log d/n),868

where σ2 is a constant. Therefore, we have869 ( s
d

)k
· exp

(
4nkα2ρ2

σ2 + sρ2

)
≤
( s
d

)k
· exp(C · k log d) = (s · dC−1)k, (C.83)

which holds for an arbitrary positive absolute constant C and a sufficiently large n, respectively.870

Meanwhile, note that s = o(d1/2−δ) for an absolute constant δ > 0 and
(
s
k

)
≤ (es/k)k. By (C.83),871

it holds that872 (
s

k

)( s
d

)k
≤ (s2e/k · dC−1)k ≤ (e/k · dC−2δ)k. (C.84)

Since C is arbitrary, we fix C ≤ δ. Following from (C.84), we obtain that873

T =

s∑
k=1

(
s

k

)( s
d

)k
· exp

(
4nkα2ρ2

σ2 + sρ2

)
≤

s∑
k=1

(e/k · dC−2δ)k = o(1),

which concludes the proof of Lemma C.1.874
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C.7 Proof of Lemma C.2875

Proof. In the following proof, we denote by C, C ′, and C ′′ absolute constants, the value of which876

may vary from lines to lines. We first show that for γn = sρ2/σ2 = o(
√
s log d/n), it holds that877

T1 =

s∑
k=1

EU

[(
2s2eQ

kd

)k]
= o(1),

where Q = 4ρ2U/(σ2 + sρ2). Recall that U is the sum of n independent Rademacher random878

variables with Orlicz ψ2-norm equal to one. Therefore, it holds that ‖U‖ψ2 ≤ C
√
n for an absolute879

constant C. It then follows from the definition of Orlicz ψ2-norm [51] that880

EU
[
|Q|k

]
≤
(√

k · 4ρ2 · ‖U‖ψ2

σ2 + sρ2

)k
≤
(
Cρ2
√
nk

σ2 + sρ2

)k
. (C.85)

Following from (C.85), it holds that881

T1 ≤
s∑

k=1

EU
[

2s2e|Q|
kd

]k
≤

s∑
k=1

(
Ce · s

2ρ2
√
n

σ2d
√
k

)k
. (C.86)

For sρ2/σ2 = o(
√
s log d/n) and s = o(d1/2−δ), it holds that882

s
√
n/d · sρ2/σ2 = o(s/d ·

√
s log d) = o(1). (C.87)

Combining (C.86) and (C.87), we obtain that T1 = o(1). It remains to show that883

T2 =

s∑
k=1

(
s2e

kd

)k
· EU

[
exp(k|Q|) · 1{|Q| ≥ 1}

]
= o(1).

By integration by parts, we have884

E
[
exp(k|Q|) · 1{|Q| ≥ 1}

]
= exp(k) · P(|Q| ≥ 1) +

∫ ∞
1

k · exp(tk) · F̄|Q|(t)dt. (C.88)

Note that Q = 4ρ2U/(σ2 +sρ2) is symmetric and sub-Gaussian with Orlicz ψ2-norm upper bounded885

by ‖Q‖ψ2
≤ Cρ2

√
n/(σ2 + sρ2) for an absolute constant C. Thus, it holds that886

P(Q ≥ t) ≤ C1 · exp

(
−C2 · t2(σ2 + sρ2)2

ρ4n

)
, (C.89)

where C1 and C2 are positive absolute constants. Then for the right-hand side of (C.88), it holds that887 ∫ ∞
1

k · exp(tk) · F̄|Q|(t)dt

≤ C1k · exp

(
k2ρ4n

4C2(σ2 + sρ2)2

)
·
∫ ∞

1

exp

(
−C2(σ2 + sρ2)2

ρ4n
·
(
t− kρ4n

2C2(σ2 + sρ2)

)2
)

dt

≤ Ck · exp

(
k2ρ4n

4C2(σ2 + sρ2)2

)
· ρ2

√
n

σ2 + sρ2
, (C.90)

where C is a positive absolute constant. Meanwhile, for sρ2/σ2 = o(
√
s log d/n), it holds for the888

right-hand side of (C.90) that889

exp

(
k2ρ4n

4C2(σ2 + sρ2)2

)
· ρ2

√
n

σ2 + sρ2
≤ C ′

√
log d/s · exp(C0k

2 log d/s), (C.91)

which holds for an arbitrary positive absolute constant C0 and a sufficiently large n, respectively.890

Here C ′ is a positive absolute constant. Combining (C.88), (C.90), and (C.91), we conclude that891

T2 =

s∑
k=1

(
s2e

kd

)k
· EU

[
exp(k|Q|) · 1{|Q| ≥ 1}

]
≤ C1

s∑
k=1

(
s2e2

kd

)k
+ C ′′

√
log d/s ·

s∑
k=1

k ·
(
s2e2

kd
· exp(C0k log d/s)

)k
. (C.92)
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Note that s = o(d1/2−δ) for a positive absolute constant δ. Thus, it holds that s2e2/(kd) = o(1) for892

0 ≤ k ≤ s, which implies that893

s∑
k=1

(
s2e2

kd

)k
= o(1). (C.93)

Meanwhile, it holds for any 1 ≤ k ≤ s that894

s2e2

kd
· exp(C0k log d/s) ≤ s2e2

kd
· exp(C0 log d) ≤ e2/d2δ−C0 . (C.94)

Since C0 is arbitrary, we fix C0 > 2δ. It then holds for a positive absolute constant C that895 √
log d/s ·

s∑
k=1

k ·
(
s2e2

kd
· exp(C0k log d/s)

)k
≤ C ·

√
log d/s · e2/d2δ−C0 = o(1). (C.95)

Combining (C.92), (C.93), and (C.95), we obtain that T2 = o(1), which concludes the proof of896

Lemma C.2.897

D Upper Bounds for General Cases898

In this section, we characterize the upper bounds for the hypothesis testing problem in (A.1) under899

the general setting. In specific, we consider the hypothesis testing problem that takes the form900

H0 : Y = ε0 versus H1 : Y =

{
f1(X>β∗) + ε, with probability α,
f2(X>β∗) + ε, with probability 1− α. . (D.1)

Here ε is a Gaussian noise with variance σ2, ε0 is a noise such that the variances of Y under the901

null and alternative hypotheses are the same. Besides, f1 ∈ C1 ∩ C(ψ) and f2 ∈ C2 ∩ C(ψ) are two902

unknown link functions, where C1(ψ), C2(ψ), and C(ψ) are defined in (2.4) and (2.5). Meanwhile,903

we set X ∼ N(0, Id) and904

(β∗, σ) ∈ G1(s, γn) =
{

(β∗, σ) ∈ Rd+1 : ‖β∗‖0 = s, κ(β∗, σ) ≥ γn
}

(D.2)
under the alternative hypothesis, where κ(β∗, σ) = ‖β∗‖22/σ2 is the SNR. We further denote by905

H(s, γn) =
{
β∗ ∈ Rd : ‖β∗‖22/σ2 = sρ2/σ2 ≥ γn, ‖β∗‖0 = s

}
. (D.3)

We denote by Z = (Y,X) and P0, Pβ∗ be the distributions of Z under the null and alternative906

hypotheses, respectively. We assume that the Assumption A.1 holds. We denote by907

V(s) =
{
S ∈ [d] : |S| = s

}
the class of index sets. For each index set S ∈ V(s), we denote by B(S) the s-sparse unit sphere that908

is supported on the index set S. We further denote by N (ε,S) ⊆ B(S) the minimum ε-covering of909

the s-sparse unit sphere B(S). In other words, it holds for any u ∈ B(S) that ‖u− v‖2 ≤ ε for some910

v ∈ N (ε,S). Meanwhile, N (ε,S) attains the smallest cardinality among the sets that have such a911

property. It then holds that912

|N (ε,S)| ≤ C0 · (1 + 2/ε)s, (D.4)
where C0 is a positive absolute constant. We define913

N (ε) =
⋃
S∈V(s)

N (ε,S). (D.5)

Therefore, it holds that914

|N (ε)| ≤ C0 · (1 + 2/ε)s ·
(
d

s

)
. (D.6)

In what follows, we construct test functions based on v ∈ N (1/2). We introduce the following query915

functions for v ∈ N (1/2),916

q1,v(Y,X) = ψ(Y ) ·
[
(v>X)2 − 1

]
· 1
{
|ψ(Y )| ≤ (R log n)1/ν

}
· 1
{
|v>X| ≤ R ·

√
log n

}
,

q2,v(Y,X) = Y · (v>X) · 1
{
|Y | ≤ (R log n)1/ν

}
· 1
{
|v>X| ≤ R ·

√
log n

}
. (D.7)

We denote by Z̄1,v and Z̄2,v the responses of the statistical oracle to query functions q1,v and q2,v, as917

defined in Definition 2.3. We define the test functions φ1 and φ2 as918

φ1 = 1
{

sup
v∈Ḡ(s)

Z̄1,v ≥ τ1
}
, φ2 = 1

{
sup

v∈Ḡ(s)

Z̄2,v ≥ τ2
}
, (D.8)
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where we set the thresholds τ1 and τ2 to be919

τ1 = CR2+1/ν · (log n)1+1/ν ·
√
s log d

n
, τ2 = C ′R1+1/ν · (log n)1/2+1/ν ·

√
s log d

n
, (D.9)

where C and C ′ are positive absolute constants that will be specified in §D.1. We define the test920

function as φ = φ1 ∨ φ2. Following from (D.6), the capacity of Qφ is upper bounded as follows,921

|Qφ| ≤ 2C0 · 5s ·
(
d

s

)
. (D.10)

The following theorem characterizes an upper bound for the minimax separation rate by quantifying922

the SNR for φ to be asymptotically powerful.923

Theorem D.1. We consider the hypothesis testing problem in (D.1) under Assumption A.1. For924

γn = Ω

(
(log n)1+1/ν ·

√
s log d

n

∧ (log n)1+2/ν

α2
· s log d

n

)
, (D.11)

it holds that Rn(φ;G0,G1) = O(1/d). In other words, φ is asymptotically powerful.925

Proof. See §D.1 for a detailed proof.926

To construct a computationally tractable test, we define query functions as follows,927

q1,j(Y,X) = ψ(Y ) · (X2
j − 1) · 1

{
|ψ(Y )| ≤ (R log n)1/ν

}
· 1
{
|Xj | ≤ R

√
log n

}
, j ∈ [d]

q2,j(Y,X) = Y ·Xj · 1
{
|Y | ≤ (R log n)1/ν

}
· 1
{
|Xj | ≤ R

√
log n

}
, j ∈ [d]. (D.12)

We denote by Z̄1,j and Z̄2,j the responses of the statistical oracle to the query functions q1,j and q2,j ,928

as defined in Definition 2.3 . We define the test functions φ̃1 and φ̃2 as929

φ̃1 = 1
{

sup
j∈[d]

Z̄1,j ≥ τ̃1
}
, φ̃2 = 1

{
sup
j∈[d]

Z̄2,j ≥ τ̃2
}∨

1
{

inf
j∈[d]

Z̄2,j ≤ −τ̃2
}
, (D.13)

where we set the thresholds τ̃1 and τ̃2 to be930

τ̃1 = CR2+1/ν(log n)1+1/ν ·
√

log d

n
, τ̃2 = C ′R1+1/ν(log n)1/2+1/ν ·

√
log d

n
. (D.14)

We define the test function φ̃ = φ̃1 ∨ φ̃2. Therefore, the test function φ̃ is with capacity of query931

functions |Qφ̃| = 2d. The following theorem holds, which characterizes the minimum SNR required932

for the test function φ̃ to be asymptotically powerful.933

Theorem D.2. We consider the hypothesis testing problem in (D.1) under Assumption A.1. For934

γn = Ω

(
(log n)1+1/ν ·

√
s2 log d

n

∧ (log n)1+2/ν

α2
· s log d

n

)
, (D.15)

it holds that R̄n(φ̃;G0,G1) = O(1/d). In other words, φ̃ is asymptotically powerful.935

Proof. See §D.2 for a detailed proof.936

D.1 Proof of Theorem D.1937

Proof. The proof is similar to that of Theorem A.2 in §B.3. Recall that we denote by P0 and Pβ∗ the938

distributions of Z = (Y,X) under the null and alternative hypotheses, respectively. The following939

lemma holds, which characterizes the expection of q1,v and q2,v under the null and alternative940

hypotheses, respectively.941

Lemma D.3. For any v ∈ N (1/2), β∗ ∈ H(s, γn), and942

γn = Ω

(
(log n)1+1/ν ·

√
s log d

n

∧ (log n)1+2/ν

α2
· s log d

n

)
,

it holds that943

EP0

[
q1,v(Y,X)

]
≤ 1/n, EP0

[
q2,v(Y,X)

]
≤ 1/n. (D.16)
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In addition, it holds that944

sup
v∈N (1/2)

EPβ∗
[
q1,v(Y,X)

]
≥ sρ2/2 if γn = Ω

(
(log n)1+1/ν ·

√
s log d

n

)
,

sup
v∈N (1/2)

EPβ∗
[
q2,v(Y,X)

]
≥
√
α2sρ2/2 if γn = Ω

(
(log n)1+2/ν

α2
· s log d

n

)
. (D.17)

Proof. See §D.3 for a detailed proof.945

It now suffices to upper bound the risk of φ = φ1 ∨ φ2, where φ1 and φ2 are defined in (D.8). Recall946

that we define the threshold τ1 and τ2 as947

τ1 = CR2+1/ν · (log n)1+1/ν ·
√
s log d

n
, τ2 = C ′R1+1/ν · (log n)1/2+1/ν ·

√
s log d

n
, (D.18)

where C and C ′ are positive absolute constants. Note that for the test function φ, the capacity of948

query functions is upper bounded in (D.10). Therefore, following from (2.12) with ξ = 1/d, it holds949

for a sufficiently large n that950

τq1,v ≤ C1R
2+1/ν(log n)1/2+1/ν ·

√
s log d

n
,

τq2,v ≤ C2R
1+1/ν(log n)1/2+1/ν ·

√
s log d

n
, (D.19)

where τq1,v and τq2,v are the tolerance parameters of q1,v and q2,v defined in Definition 2.3, and951

C1, C2 are positive absolute constants. We fix C and C ′ in (D.18) such that τ1 ≥ τq1,v + 1/n and952

τ2 ≥ τq2,v + 1/n. The rest of the proof then follows a similar argument in §B.3. Recall that we953

denote by Z̄1,v and Z̄2,v the responses of the statistical oracle to the query functions q1,v and q2,v.954

We denote by P̄0 and P̄β∗ the distributions of response of the statistical oracle to the query functions955

when the true distribution of the data is P0 and Pβ∗ . Following from Lemma D.3, it holds for any956

v ∈ N (1/2) that957

P̄0

(
Z̄i,v ≥ τi

)
≤ P̄0

(∣∣Z̄i,v − EP0

[
qi,v(Y,X)

]∣∣ ≥ τqi,v), i ∈ {1, 2}.
Therefore, following from (2.11) with ξ = 1/d, we obtain958

P̄0(φi = 1) = P̄0

(
sup

v∈N (1/2)

Z̄i,v > τi

)

≤ P̄0

( ⋃
v∈N (1/2)

{∣∣Z̄i,v − EP0

[
qi,v(Y,X)

]∣∣ > τqi,v

})
≤ 2/d. (D.20)

Recall that we define φ = φ1 ∨ φ2. Then it holds that959

P̄0(φ = 1) ≤ P̄0(φ1 = 1) + P̄0(φ2 = 1) = 4/d, (D.21)
which is an upper bound of the type-I error of φ. It now suffices to upper bound the type-II error of φ.960

If (D.11) holds, we obtain that either sρ2/4 ≥ τ1 or
√
α2sρ2/4 ≥ τ2 for a sufficiently large n. We961

denote by962

v∗ ∈ argmax
v∈N (1/2)

EPβ∗
[
q1,v(Y,X)

]
, u∗ ∈ argmax

v∈N (1/2)

EPβ∗
[
q2,v(Y,X)

]
.

If it holds that sρ2/4 ≥ τ1, then following from Lemma D.3, we obtain that963

P̄β∗(φ1 = 0) = P̄β∗
(

sup
v∈N (1/2)

Z̄1,v < τ1

)
≤ P̄β∗(Z̄1,v∗ < τ1)

≤ P̄β∗
(
Z̄1,v∗ < EPβ∗

[
q1,v∗(Y,X)

]
− τ1

)
(D.22)

≤ P̄β∗
(∣∣Z̄1,v∗ − EPβ∗

[
q1,v∗(Y,X)

]∣∣ > τq1,v∗

)
, (D.23)

where the last inequality follows from the fact that τ1 > τq1,v∗ . Therefore, following from (2.11)964

with ξ = 1/d, we obtain that the right-hand side of (D.22) is upper bounded by 2/d. Similarly, if it965
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holds that
√
α2sρ2/4 ≥ τ2, we obtain966

P̄β∗(φ2 = 0) = P̄β∗
(

sup
v∈N (1/2)

Z̄1,v < τ1

)
≤ P̄β∗(Z̄2,u∗ < τ2)

≤ P̄β∗
(∣∣Z̄2,u∗ − EPβ∗

[
q2,u∗(Y,X)

]∣∣ > τq2,u∗

)
, (D.24)

where the last inequality follows from the fact that τ1 > τq1,u∗ . Therefore, following from (2.11)967

with ξ = 1/d, we obtain that the right-hand side of (D.24) is upper bounded by 2/d. Note that (D.22)968

and (D.24) holds for all (β∗, σ) ∈ G1(s, γn) if (D.11) holds. Therefore, we conclude that969

sup
(β∗,σ)∈G1

P̄β∗(φ = 0) ≤ sup
(β∗,σ)∈G1

{
P̄β∗(φ1 = 0) ∧ P̄β∗(φ2 = 0)

}
≤ 2/d. (D.25)

Combining (D.21) and (D.25), we obtain that if (D.11) holds, the risk of φ isO(1/d), which concludes970

the proof.971

D.2 Proof of Theorem D.2972

Proof. The proof is similar to that of Theorem A.3 in §B.4. Recall that we denote by P0 and Pβ∗ the973

distributions of Z = (Y,X) under the null and alternative hypotheses, respectively. The following974

lemma holds, which characterizes the expection of q1,j(Y,X) and q2,j(Y,X) under the null and975

alternative hypotheses, respectively.976

Lemma D.4. For any β∗ ∈ H(s, γn) and977

γn = Ω

(
(log n)1+1/ν ·

√
s2 log d

n

∧ (log n)1+2/ν

α2
· s log d

n

)
,

it holds that978

sup
j∈[d]

EP0

[
q1,j(Y,X)

]
≤ 1/n, sup

j∈[d]

EP0

[
q2,j(Y,X)

]
≤ 1/n. (D.26)

In addition, it holds that979

sup
j∈[d]

EPβ∗
[
q1,j(Y,X)

]
≥ ρ2/2 if γn = Ω

(
(log n)1+1/ν ·

√
s2 log d

n

)
,

sup
j∈[d]

∣∣EPβ∗
[
q2,j(Y,X)

]∣∣ ≥ αρ/2 if γn = Ω

(
(log n)1+2/ν

α2
· s log d

n

)
. (D.27)

Proof. See §D.4 for a detailed proof.980

In what follows, we upper bound the risk of φ̃ = φ̃1 ∨ φ̃2 where φ̃1 and φ̃2 are defined in (D.13).981

Recall that we define the threshold τ̃1 and τ̃2 as982

τ̃1 = CR2+1/ν(log n)1+1/ν ·
√

log d

n
, τ̃2 = C ′R1+1/ν(log n)1/2+1/ν ·

√
log d

n
, (D.28)

where C and C ′ are absolute constants. Note that for φ̃, the capacity of query functions is 2d.983

Therefore, following from (2.12) with ξ = 1/d, it holds for a sufficiently large n that984

τq1,j ≤ C1R
2+1/ν(log n)1/2+1/ν ·

√
log d

n
, τq2,j ≤ C2R

1+1/ν(log n)1/2+1/ν ·
√

log d

n
,

(D.29)
whereC1 andC2 are positive absolute constants. We fixC andC ′ in (D.28) such that τ̃1 > τq1,j+1/n985

and τ2 > τ12,j
+ 1/n for a sufficiently large n. Recall that we denote by Z̄1,j and Z̄2,j the responses986

of the statistical oracle to the query functions q1,j and q2,j . We denote by P̄0 and P̄β∗ the distributions987

of response of the statistical oracle to the query functions when the true distribution of the data is P0988

and Pβ∗ . Following from Lemma D.3, it holds for j ∈ [d] and i ∈ {1, 2} that989

P̄0(Z̄i,j ≥ τ̃1) ≤ P̄0

(∣∣Z̄i,j − EP0

[
qi,j(Y,X)

]∣∣ ≥ τqi,j). (D.30)
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Therefore, following from (2.11) with ξ = 1/d, it holds for i ∈ {1, 2} that990

P̄0(φ̃i = 1) = P̄0

(
sup
j∈[d]

Z̄i,j > τ̃i

)

≤ P̄0

( ⋃
j∈[d]

{∣∣Z̄i,j − EP0

[
qi,j(Y,X)

]∣∣ > τqi,j

})
≤ 2/d, (D.31)

which further shows that991

P̄0(φ̃ = 1) ≤ P̄0(φ̃1 = 1) + P̄0(φ̃2 = 1) ≤ 4/d. (D.32)

In other words, it holds that the type-I error of φ̃ is asymptotically upper bounded by 4/d. It remains992

to upper bound the type-II error of φ̃. Note that if (D.15) holds, it holds that either ρ2/4 ≥ τ̃1 or993

αρ/4 ≥ τ̃2 for a sufficiently large n. We denote by994

j∗ ∈ argmax
j∈[d]

EPβ∗
[
q1,j(Y,X)

]
, k∗ ∈ argmax

j∈[d]

∣∣EPβ∗
[
q2,j(Y,X)

]∣∣.
If it holds that ρ2/4 ≥ τ̃1, following from Lemma D.4, we obtain that995

P̄β∗(φ̃1 = 0) ≤ P̄β∗
(

sup
j∈[d]

Z̄1,j < τ̃2

)
≤ P̄β∗(Z̄1,j∗ < τ̃1)

≤ P̄β∗
(
Z̄1,j∗ < EPβ∗

[
q1,j∗(Y,X)

]
− τ̃1

)
≤ P̄β∗

(∣∣Z̄2,j∗ − EPv

[
q2,j∗(Y,X)

]∣∣ > τq2,j∗

)
≤ 2/d, (D.33)

where the fourth inequality follows from the fact that τ̃1 > τq1,j∗ , and the last inequality following996

from (2.11) with ξ = 1/d. If it holds that αρ/4 ≥ τ̃2, following from Lemma D.4, we obtain that997

either EPβ∗ [q2,k∗(Y,X)] ≥ αρ/2 or EPβ∗ [q2,k∗(Y,X)] ≤ −αρ/2. If EPβ∗ [q2,k∗(Y,X)] ≥ αρ/2,998

we obtain that999

P̄β∗(φ̃2 = 0) ≤ P̄β∗
(

sup
j∈[d]

Z̄2,j < τ̃2

)
≤ P̄β∗(Z̄2,k∗ < τ̃2)

≤ P̄β∗
(
Z̄2,k∗ < EPβ∗

[
q2,k∗(Y,X)

]
− τ̃2

)
≤ P̄β∗

(∣∣Z̄2,k∗ − EPv

[
q2,k∗(Y,X)

]∣∣ > τq2,k∗

)
≤ 2/d, (D.34)

where the fourth inequality follows from the fact that τ̃2 > τq2,k∗ , and the last inequality follows1000

from (2.11) with ξ = 1/d. If it holds that EPβ∗ [q2,k∗(Y,X)] ≤ −αρ/2, we obtain that1001

P̄β∗(φ̃2 = 0) ≤ P̄β∗
(

inf
j∈[d]

Z̄2,j > −τ̃2
)
≤ P̄β∗(Z̄2,k∗ > −τ̃2)

≤ P̄β∗
(
Z̄2,k∗ > EPβ∗

[
q2,k∗(Y,X)

]
+ τ̃2

)
≤ P̄β∗

(∣∣Z̄2,k∗ − EP∗β
[
q2,k∗(Y,X)

]∣∣ > τq2,k∗

)
≤ 2/d, (D.35)

where the fourth inequality follows from the fact that τ̃2 > τq2,k∗ , and the last inequality follows1002

from (2.11) with ξ = 1/d. Note that (D.33), (D.34), and (D.35) holds for all (β∗, σ) ∈ G1(s, γn) if1003

(D.15) holds. Therefore, we obtain that1004

sup
(β∗,σ)∈G1

P̄β∗(φ̃ = 0) ≤ sup
(β∗,σ)∈G1

{
P̄β∗(φ̃1 = 0) ∧ P̄β∗(φ̃2 = 0)

}
≤ 2/d. (D.36)

Combining (D.32) and (D.36), we obtain that if (D.15) holds, the risk of φ̃ isO(1/d), which concludes1005

the proof of Theorem D.2.1006

D.3 Proof of Lemma D.31007

Proof. In the following proof, we denote by C and C ′ absolute constants, the value of which may1008

vary from lines to lines. We define the following query functions,1009

q̃1,v(Y,X) = ψ(Y ) ·
[
(v>X)2 − 1

]
· 1
{
|ψ(Y )| ≤ (R · log n)1/ν

}
, v ∈ Ḡ(s),

q̃2,v(Y,X) = Y · (v>X) · 1
{
|Y | ≤ (R · log n)1/ν

}
, v ∈ Ḡ(s). (D.37)
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Following from (D.7) and (D.37), we conclude that1010

q̃1,v − q1,v = ψ(Y ) ·
[
(v>X)2 − 1

]
· 1
{
|ψ(Y )| ≤ (R · log n)1/ν

}
· 1
{
|v>X| > R ·

√
log n

}
,

q̃2,v − q2,v = Y · (v>X) · 1
{
|Y | ≤ (R · log n)1/ν

}
· 1
{
|v>X| > R ·

√
log n

}
. (D.38)

Therefore, following from the Cauchy-Schwartz inequality, we obtain from (D.38) that1011 ∣∣EP0

[
q̃1,v(Y,X)− q1,v(Y,X)

]∣∣2
≤ EP0

[
ψ2(Y ) ·

[
(v>X)2 − 1

]2] · P0

(
|v>X| ≥ R ·

√
log n

)
. (D.39)

Further note that under the null hypothesis, Y is independent of X and X ∼ N(0, Id). Therefore,1012

for v ∈ N (1/2), it holds that v>X ∼ N(0, 1). Meanwhile, following from Assumption A.1, Y has1013

bounded fourth moment. Therefore, we obtain from (D.39) and the tail bound of standard Gaussian1014

distribution in (C.54) that1015 ∣∣EP0

[
q̃1,v(Y,X)− q1,v(Y,X)

]∣∣2 ≤ C · exp(−R2 log n), (D.40)
where C is a positive absolute constant. Similarly, it holds under the alternative hypothesis that1016 ∣∣EP∗β

[
q̃1,v(Y,X)− q1,v(Y,X)

]∣∣2
≤ EP∗β

[
ψ2(Y ) ·

[
(v>X)2 − 1

]2] · P0

(
|v>X| ≥ R ·

√
log n

)
≤
(
EP∗β

[
ψ4(Y )

]
· EP∗β

[[
(v>X)2 − 1

]4])1/2

· P0

(
|v>X| ≥ R ·

√
log n

)
, (D.41)

where the above inequalities follow from the Cauchy-Schwartz inequality. Then following from1017

Assumption A.1 and the fact that X ∼ N(0, Id) under the alternative hypothesis, we conclude that1018 ∣∣EP∗β
[
q̃1,v(Y,X)− q1,v(Y,X)

]∣∣2 ≤ C ′ · Pβ∗(|v>X| ≥ R ·√log n
)

≤ C ′ · exp(−R2 log n), (D.42)
whereC ′ is a positive absolute constant, and the last inequality follows from the tail bound of standard1019

Gaussian distribution in (C.54). Similar argument holds for the query functions q2,v(Y,X) and1020

q̃2,v(Y,X). We conclude from (D.40), (D.42) and a similar argument on q2,v(Y,X) and q̃2,v(Y,X)1021

that1022 ∣∣EPβ∗
[
q1,v(Y,X)− q̃1,v(Y,X)

]∣∣ ∨ ∣∣EP0

[
q1,v(Y,X)− q̃1,v(Y,X)

]∣∣ ≤ 1/n,∣∣EPβ∗
[
q2,v(Y,X)− q̃2,v(Y,X)

]∣∣ ∨ ∣∣EP0

[
q2,v(Y,X)− q̃2,v(Y,X)

]∣∣ ≤ 1/n, (D.43)
which holds for v ∈ N (1/2), β∗ ∈ H(s, γn), and sufficiently large n and constant R. Note that1023

under the null hypothesis, it holds that X ∼ N(0, Id) and Y is independent of X . Therefore, it1024

follows from (D.37) that1025

E0

[
q̃1,v(Y,X)

]
= E0

[
q̃2,v(Y,X)

]
= 0, (D.44)

which holds for all v ∈ N (1/2). Meanwhile, following from the definition of N (1/2) in (D.5), it1026

holds that for any β∗ ∈ H(s, γn), there exist a v∗ ∈ N (1/2) such that1027

‖β∗/
√
sρ2 − v∗‖22 ≤ 1/4,

which is equivalent to1028

v∗>β∗ ≥ 7/8 ·
√
sρ2. (D.45)

Therefore, following from (A.3) and (D.45), it holds that1029

49/64 · sρ2 − EPβ∗
[
q̃1,v∗(Y,X)

]
≤ (v∗>β∗)2 − EPβ∗

[
q̃1,v∗(Y,X)

]
≤ EPβ∗

[
ψ(Y ) ·

(
(v∗>X)2 − 1

)
− q̃1,v(Y,X)

]
= EPβ∗

[
ψ(Y ) ·

(
(v∗>X)2 − 1

)
· 1
{
|ψ(Y )| > (R · log n)1/ν

}]
≤
√
EPβ∗

[
ψ2(Y ) ·

(
(v∗>X)2 − 1

)2] ·√Pβ∗
(
|ψ(Y )| > (R · log n)1/ν

)
, (D.46)

where the last inequality follows from the Cauchy-Schwartz inequality. It then follows from the1030

Cauchy-Schwartz inequality and Assumption A.1 that1031

49/64 · sρ2 − EPβ∗
[
q̃1,v∗(Y,X)

]
≤ C · exp(−R/2 · log n), (D.47)
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where C is a positive absolute constant. If it holds that sρ2/σ2 = Ω(
√
s log d/n), we obtain that for1032

sufficiently large n and constant R, it holds that sρ2/64 > 1/n and1033

49/64 · sρ2 − EPβ∗
[
q̃1,v∗(Y,X)

]
≤ 1/64 · sρ2. (D.48)

In other words, it holds that EPβ∗ [q̃1,v∗(Y,X)] ≥ 3/4 · sρ2. Similarly, following from (A.4) and1034

(D.45), we obtain1035

7/8 ·
√
α2sρ2 − EPβ∗

[
q̃2,v∗(Y,X)

]
≤ α · v∗>β∗ − EPβ∗

[
q̃2,v∗(Y,X)

]
≤ EPβ∗

[
Y · (v∗>X)− q̃1,v(Y,X)

]
= EPβ∗

[
Y · (v∗>X) · 1

{
|Y | > (R · log n)1/ν

}]
≤
√
EPβ∗

[
Y 2 · (v∗>X)2

]
·
√

Pβ∗
(
|Y | > (R · log n)1/ν

)
. (D.49)

Then following from the Cauchy-Schwartz inequality and Assumption A.1, we obtain that1036

7/8 ·
√
α2sρ2 − EPβ∗

[
q̃2,v∗(Y,X)

]
≤ C ′ · exp(−R/2 · log n), (D.50)

where C ′ is a positive absolute constant. If it holds that sρ2/σ2 = Ω(1/α · s log d/n), we obtain that1037

for sufficiently large n and constant R, it holds that
√
α2sρ2/8 > 1/n and1038

7/8 ·
√
α2sρ2 − EPβ∗

[
q̃2,v∗(Y,X)

]
≤ 1/8 ·

√
α2sρ2. (D.51)

In other words, it holds that EPβ∗ [q̃2,v∗(Y,X)] ≥ 3/4 ·
√
α2sρ2. Combining (D.43), (D.48), and1039

(D.51), we conclude that for sufficiently large n and constant R, it holds that1040

EP0

[
q1,v(Y,X)

]
≤ 1/n, EP0

[
q2,v(Y,X)

]
≤ 1/n.

Furthermore, it holds for sufficiently large n and constant R that1041

sup
v∈N (1/2)

EPβ∗
[
q1,v(Y,X)

]
≥ EPβ∗

[
q1,v∗(Y,X)

]
≥ sρ2/2, if sρ2/σ2 = Ω(

√
s log d/n),

sup
v∈N (1/2)

EPβ∗
[
q2,v(Y,X)

]
≥ EPβ∗

[
q2,v∗(Y,X)

]
≥
√
α2sρ2/2, if sρ2/σ2 = Ω(1/α2 · s log d/n),

which concludes the proof of Lemma D.3.1042

D.4 Proof of Lemma D.41043

Proof. In the following proof, we denote by C and C ′ absolute constants, the value of which may1044

vary from lines to lines. We define the following query functions,1045

q̃1,j(Y,X) = ψ(Y ) · (X2
j − 1) · 1

{
|ψ(Y )| ≤ (R · log n)1/ν

}
, j ∈ [d],

q̃2,j(Y,X) = Y Xj · 1
{
|Y | ≤ (R · log n)1/ν

}
, j ∈ [d]. (D.52)

Following from (D.13) and the Cauchy-Schwartz inequality, it holds that1046 ∣∣EP0

[
q̃1,j(Y,X)− q1,j(Y,X)

]∣∣2 ≤ EP0

[
ψ2(Y ) · (X2

j − 1)2
]
· P0

(
|Xj | ≥ R ·

√
log n

)
. (D.53)

Note that under the null hypothesis, Y is independent of X and X ∼ N(0, Id). Then following from1047

Assumption A.1 and the tail bound of standard Gaussian distribution in (C.54), it holds that1048 ∣∣EP0

[
q̃1,j(Y,X)− q1,j(Y,X)

]∣∣2 ≤ C · exp(−R2 · log n), (D.54)
where C is a positive absolute constant. Under the alternative hypothesis, it holds that1049 ∣∣EPβ∗

[
q̃1,j(Y,X)− q1,j(Y,X)

]∣∣2 ≤ EPβ∗
[
ψ2(Y ) · (X2

j − 1)2
]
· Pβ∗

(
|Xj | ≥ R ·

√
log n

)
(D.55)

≤
√
EPβ∗

[
ψ4(Y )

]
· EPβ∗

[
(X2

j − 1)4
]
· Pβ∗

(
|Xj | ≥ R ·

√
log n

)
,

where the above inequalities follows from the Cauchy-Schwartz inequality. Note that under the1050

alternative hypothesis, we have X ∼ N(0, Id). Then following from Assumption A.1 and the tail1051

bound of standard Gaussian distribution in (C.54), it holds that1052 ∣∣EPβ∗
[
q̃1,j(Y,X)− q1,j(Y,X)

]∣∣2 ≤ C ′ · exp(−R2 · log n), (D.56)
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where C ′ is a positive absolute constant. Similar argument holds for q2,j(Y,X). Combining (D.54),1053

(D.56), and a similar argument on q2,j(Y,X), we obtain that1054 ∣∣EP0

[
q1,j(Y,X)− q̃1,j(Y,X)

]∣∣ ∨ ∣∣EP∗β
[
q1,j(Y,X)− q̃1,j(Y,X)

]∣∣ ≤ 1/n,∣∣EP0

[
q2,j(Y,X)− q̃2,j(Y,X)

]∣∣ ∨ ∣∣EP∗β
[
q2,j(Y,X)− q̃2,j(Y,X)

]∣∣ ≤ 1/n, (D.57)

which holds for j ∈ [d], β∗ ∈ H(s, γn), and sufficiently large n and constant R. Note that under the1055

null hypothesis, it holds that X ∼ N(0, Id) and Y is independent of X . Therefore, following from1056

(D.52), we obtain1057

EP0

[
q̃1,j(Y,X)

]
= EP0

[
q̃2,j(Y,X)

]
= 0. (D.58)

Meanwhile, under the alternative hypothesis, it follows from (A.3) that1058

β∗j
2 − EPβ∗

[
q̃1,j(Y,X)

]
≤ EPβ∗

[
ψ(Y ) · (X2

j − 1) · 1
{
|ψ(Y )| > (R · log n)1/ν

}]
≤
√

EPβ∗
[
ψ2(Y ) · (X2

j − 1)2
]
·
√

Pβ∗
(
|ψ(Y )| > (R · log n)1/ν

)
≤
(
EPβ∗

[
ψ4(Y )

]
· EPβ∗

[
(X2

j − 1)4
])1/4

·
√

Pβ∗
(
|ψ(Y )| > (R · log n)1/ν

)
, (D.59)

where we denote by β∗j the j-th entry of β∗, and the above inequalities follow from the Cauchy-1059

Schwartz inequality. Then following from Assumption A.1 and the fact that X ∼ N(0, Id) under the1060

alternative hypothesis, we obtain that1061

β∗2j − EPβ∗
[
q̃1,j(Y,X)

]
≤ C · exp(−R/2 · log n), (D.60)

where C is a positive absolute constant. Note that ‖β∗‖22 = sρ2 and ‖β∗‖0 = s. Therefore, we1062

obtain that1063

sup
j∈[d]

|β∗j | ≥ ρ. (D.61)

Following from (D.60) and (D.61), if it holds that sρ2/σ2 = Ω(
√
s2 log d/n), then for sufficiently1064

large n and constant R, we obtain that ρ2/4 > 1/n and1065

sup
j∈[d]

EPβ∗
[
q̃1,j(Y,X)

]
≥ 3ρ2/4. (D.62)

Similar argument holds for q̃2,j(Y,X). Following from (A.4), we obtain that under the alternative1066

hypothesis, it holds that1067

αβ∗j − EPβ∗
[
q̃2,j(Y,X)

]
= EPβ∗

[
ψ(Y ) ·Xj · 1

{
|ψ(Y )| > (R · log n)1/ν

}]
. (D.63)

Meanwhile, it follows from the Cauchy-Schwartz inequality that1068 ∣∣∣EPβ∗

[
Y ·Xj · 1

{
|Y | > (R · log n)1/ν

}]∣∣∣2 ≤ EPβ∗ [Y 2 ·X2
j ] · Pβ∗

(
|Y | > (R · log n)1/ν

)
≤
√

EPβ∗ [Y 4] · EPβ∗ [X4
j ] · Pβ∗

(
|Y | > (R · log n)1/ν

)
≤ C ′ · exp(−R log n), (D.64)

where the last inequality follows from Assumption A.1 and the fact that X ∼ N(0, Id) under1069

the alternative hypothesis. Combining (D.61), (D.63), and (D.64), we obtain that for sρ2/σ2 =1070

Ω(1/α2 · s log d/n), it holds for sufficiently large n and constant R that αρ/4 > 1/n and1071

sup
j∈[d]

∣∣EPβ∗
[
q̃2,j(Y,X)

]∣∣ ≥ 3αρ/4. (D.65)

Combining (D.57), (D.62), and (D.65), we obtain that for sufficiently large n and constant R, it holds1072

that1073

sup
j∈[d]

EP0

[
q1,j(Y,X)

]
≤ 1/n, sup

j∈[d]

EP0

[
q1,j(Y,X)

]
≤ 1/n. (D.66)

Moreover, for sufficiently large n and constant R, it holds that1074

sup
j∈[d]

EPβ∗
[
q1,j(Y,X)

]
≥ ρ2/2 if sρ2/σ2 = Ω(

√
s log d/n),

sup
j∈[d]

EPβ∗
[
q2,j(Y,X)

]
≥ αρ/2 if sρ2/σ2 = Ω(1/α2 · s log d/n), (D.67)

which concludes the proof of Lemma D.4.1075
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