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A Upper bounds

In this section, we establish upper bounds that attain the lower bounds obtained in Proposition[3.1)and
Theorem[A.2]up to logarithmic factors. Based on the lower bounds and upper bounds, we obtain the
minimax and computational minimax separation rates defined in Definitions [2.2]and [2.4] respectively.

Recall that the hypothesis testing problem in (2.7) takes the form
fi(XTB*)+e€  with probability «,
fo(XTB*) +e€,  with probability 1 — av.
Here ¢ is a Gaussian noise with variance o2 and ¢, is a noise such that the variances of Y under the
null and alternative hypotheses are the same. Besides, f; € C; NC(¢) and fy € C2 N C(v)) are two
unknown link functions, where C; (), C2(1)), and C(v)) are defined in (2.4) and (2.5). Meanwhile,
we set X ~ N(0, ;) and 3" to be s-sparse. For the simplicity of the following discussions, we
restrict to the set of 3* such that 3* = p - v*, where v* € G(s) = {v € {-1,0,1}% : ||v]jo = s}.
We further define

Gi(s,mm) = {(8%,0) ERM': % = p-v* v* € G(s),w(B%,0) = 7 }-
We highlight the fact that such a restricted parameter set is sufficient to characterize the difficulty of
the hypothesis testing problem in (2.7), and defer the proof of the general case to §D}

Hy:Y =¢€g versus Hi: Y = { (A.1)

Let Z = (Y, X) and Py, Py~ be the distributions of Z under the null and alternative hypotheses,
respectively. We introduce the following assumption on Y and ¢(Y") under the alternative hypothesis,
which regulates the tail and moment of Y and ¢(Y).
Assumption A.1. We assume that Y and ¢/(Y") have bounded fourth moments. We further assume
that under the alternative hypothesis, Y and 1 (Y") have desired tail bounds in the form of

Py-(|Y]| 2 R) < Cexp(=R”), Py ([¢(Y)] = R) < C"exp(—R"), (A2)
which holds for a sufficiently large R and positive absolute constants C', C’, and v.

Assumption is required only for the upper bounds. It is needed to construct bounded query
functions defined in Definition[2.3] Such an assumption is a mild regularity condition in the sense
that it holds for the linear regression model and most of the phase retrieval models. For instance, let
(Y, X) be generated by the mixed regression model and 1)(Y') = Y2. Then Y follows the mixture of
Gaussian distributions. Therefore, Y has bounded fourth moment and Gaussian tail, and ¢)(Y") = Y2
is sub-exponential under the alternative hypothesis with bounded fourth moment. Hence, the tail
bound stated in (A.2)) holds for Y and ¢ (Y) with v = 1. Similar arguments hold for the linear
regression model and the phase retrieval models Y = | X T8*| + eand Y = (X T3*)2 + ¢

In what follows, we design the test function ¢ based on the first-order and second-order Stein’s

identities in (Z.2) and (2.3). Following from (2.3), it holds that So(Y, %) > |3*||3 under the
alternative hypothesis. It then follows from the second-order Stein’s identity in (2.3)) that Ep_. [¢)(Y) -

(XXT —1I)] = #*8*" under the alternative hypothesis. Meanwhile, under the null hypothesis, )(Y")
is independent of X . Therefore, it holds that

Ep,. [vT(Y) - (XXT —I)v] > (v1 B2 Es [(Y) (XX —1I)] =0. (A3)
Meanwhile, following from ([2.4), it holds that E[Y; X| = 8* with Y; = f1(X T 3%, €). Therefore, it
follows from the first-order Stem s identity in (2.2) that

Ep.[v'YX]=a -v'B*, Ep[VYX]=0. (A4)
We introduce the following query functions,
G (Y, X) = (V) - [T (vTX)? = 1] - 1{[(YV)| < (Rlogn)"/} - 1{|[v" X| < R-\/slogn},
ey, X)=Y - (s TX) - 1{|Y] < (Rlogn)'/"} - 1{|vT X| < R- \/slogn}. (A.5)

We denote by Zl,v and Z27V the responses of the statistical oracle to query functions ¢;  and g2y, as
defined in Definition[2.3] We define the test functions ¢; and ¢s as

or=1{sw Zi =7} é=1{sw Z, >n} (A.6)
veg(s) veG(s)

where we set the thresholds 7; and 75 to be
/slogd [slogd
T = CR2+1/V . (10gn)1+1/y . &7 To = C/R1+1/” . (log n)1/2+1/1/ . % (A'7)
n n
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Here C and C’ are absolute constants (which are specified in §B.3). We define the test function as
¢ = ¢1 V ¢a. The following theorem characterizes an upper bound for the minimax separation rate
by quantifying the SNR for ¢ to be asymptotically powerful, which attains the information-theoretic
lower bound in Proposition 3.1 up to logarithmic factors.

Theorem A.2. We consider the hypothesis testing problem in (A.T)) under Assumption[A.T} For

/slogd logn) T2/ slogd
— Q((logn)l—i—l/u . g /\ ( g )2 . g )7 (A.8)
n o n

it holds that R,,(¢; Gy, G1) = O(1/d). In other words, ¢ is asymptotically powerful.

Proof. See for a detailed proof. O
It follows from Theorem[A 2] that any sequence satisfying (i) of Definition [2.2]is asymptotically upper

bounded by any sequence that satisfies (A.8). As a result, it holds that

1 1 1+2/u 1
Vi =0 <1ogn1+1/" \/Sogd/\ ogn) -Sogd> (A.9)

Based on (3.2) and (A.9)), up to logarithmic factors, the minimax separatlon rate defined in Definition

2.2 takes the form
slogd slogd
= /28 /\ = ng (A.10)

Note that the query functions in (A.5) have exponential oracle complex1ty, since searching over

the parameter set G(s) requires querylng the statistical oracle T = ( ) 2% rounds. To construct a
computationally tractable test, we design query functions that access each entry Xjof X,

q; (V. X) =) (X7 = 1) 1{|p(Y)| < (Rlogn)"/} - 1{|X;| < R\/logn}, j € [d]

0V, X) =Y X; - 1{|Y| < (Rlogn)"/"} - 1{|X,| < R\/logn}, j € [d]. (A.11)
We denote by ZL j and 75 ; the responses of the statistical oracle to the query functions q;_ j and qo ;,
as defined in Definition . We define the test functions 51 and 52 as

b1 = ]l{sup 7> ?1}, By = ]l{bup Zo; > 72} \/1 { inf Zy, < —%2}, (A.12)
j€ld) j€ld] J€ld]

where we set the thresholds 77 and 7> to be
log d log d
71 = CR* /" (logn)'*+1/v. 05 , 7= C'R™VY (logn)'/2H1/v 4| %. (A.13)

Finally, we deﬁne~the test function to be $ = <;~51 V 52. By the definition of ¢ and ¢ in (A.12),

the test function ¢ is computationally tractable with query complexity 7" = 2d. The following
theorem characterizes an upper bound for the computational minimax separation rate, which attains
the computational lower bound in Theorem [3.2| up to logarithmic factors.

Theorem A.3. We consider the hypothesis testing problem in (A.T) under Assumption[A.] For

2logd | +2/v glogd
%Q((logn)l“/”' o8 /\(Ogn)2 208 ) (A.14)
n Q n

it holds that R, (¢; Go, G1) = O(1/d). In other words, ¢ is asymptotically powerful.
Proof. See for a detailed proof. O

It follows from Theorem[A 3| that any sequence satisfying (i) of Definition [2.4]is asymptotically upper
bounded by any sequence that satisfies (A.14). As a result, it holds that

1 1 1+2/u 1
’}/”—o(logn1+1/” /52 ogd/\ ogn 'sogd> (A15)

Based on (3.3) and (A.13)), up to logarithmic factors, the computatlonal minimax separation rate
defined in Deﬁnition[ﬂ] takes the form

2, 1 slogd
:1/57/\72.5Og . (A.16)
n [0 n
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B Proof of Main Results

In this section, we lay out the proofs of the main results in §3|and §A]

B.1 Proof of Proposition (3.1

Proof. We have the following lower bound of minimax risk,

R;(Go,G1) = igf sup Ry(¢;Go,G1) > i%fRn((b; Go,G1)

fi,f2.9
- inf{ sup Po (¢ = 1)+ sup Py (¢ = 0)}.
¢ Loxeg, 0*€Gy

where the first inequality is obtained by restricting f1, f2, and ¢ in the testing problem in
as follows. We set ¥(y) = y® and the sample {z;};c[,] to be generated from a mixture of the
linear regression model Y; = f1(X'3*) + € = X'j3* + ¢ and the mixed regression model
Yo = fo(XT8*) + € =n- XT3+ e Here we set ¢ ~ N(0,0%) and 7 to be a Rademacher
random variable, which is independent of both X and e. Since S;(Y7) = ||3*[3, S1(Y2) = 0, and
So(Y1,v) = So(Ya, ) = 2||3*||3, we have f1 € C; NC(v)) and fo € Co N C(¢)), where Cy, Ca, and
C(v) are defined in (2.4) and (2.3).

We further restrict the parameter space of 8* = (8*, o) as follows. Let * € {8 =p-v: v € G(s)},
where p is a positive constant and G(s) = {v € {0,1}¢: |v]o = s}. Therefore, the original
hypothesis testing problem is reduced to

Hy:Y =€y versus Hi: Y =

T % . J
{X B* + ¢, with probability c, (B.1)

n-XTB*+e  withprobability 1 —

where under Hy we have ¢g ~ N(0, 02 + sp?) and under H; we have e ~ N (0, 02). We denote by

Py and Py« the probability distributions of Z = (Y, X) under the null and alternative hypotheses

with 8* = p - v*, respectively. In addition, we define P = |G(s)|~* >_veg(s) PV, where we use the

superscript n to denote the n-fold product probability measure. By Neyman-Pearson lemma, we have
R}, (Go,G1) > il(;f[ﬂ”g(eb =1)+P(¢=0)] =1-1/2-Epy [|dP/dPG — 1]

_ 1/2
> 1-1/2- ((Ezy [aP/dPg])* — 1) (B.2)
where the second inequality follows from the Cauchy-Schwarz inequality. In what follows, we show
that Epy [dP/dPf]* = 14-0(1) under the condition in (3-T), which implies lim inf,, ., R};(Go,G1) >
1 —o(1) by (B-2). Note that on the right-hand side of (B.2)), we have
— 2 1 dPy dP7,
Ep- [dP/dPj|)” = Ep- L (71, Zn) |, B.3
( Po[ / OD 1G(s)]2 ;(‘) Fs {dpg dIP’g( 1 )} (B.3)
where Z; are independent copies of Z = (Y, X). The following lemma establishes an upper bound
of the right-hand side of (B-3).

Lemma B.1. For any vq,vs € G(s), if sp? = o(1), it holds that

dP,, dP;. 20 (v1,va) ) 2p2(v1,va)
E L2 (7)| < cosh| =~— =L Zsinh | L——20). B.4
Py [ B, dP, ( )} < cos ( o7 1 55 + a”sin PR (B.4)
Proof. See for a detailed proof. O

Following from Lemma [B.1] it holds that
dP? dP? dP,, dP, "
B [T ) (5 88 )

dpy dP? dP, dP,
202 20?% "
< feosn (22002 | 2 (2220 v\ T g s
0-2 + Sp2 0-2 + sz

where Z; are independent copies of Z = (Y, X). The following lemma by [62] establishes an upper
bound of the right-hand side in (B.3).
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Lemma B.2 ([62]]). Forany x > 0and 0 < k < 1, we have,
cosh(z) + ksinh(z) < exp(2kz) V cosh(2x).

Proof. See the appendix of [62] for a detailed proof. O

Following from (B.3), (B.3), and Lemma[B.2] we conclude
. 1 402 p? 402 n
(Epg [dP/aPg))° < ——— [exp<°‘p<v1"’2>) vcosh('wﬂ . (B.6)
)

|G(s)]? 02+ sp? 02+ sp?
v1,v2E€G(s
The following lemma shows that the right-hand side of is of order 1 + o(1).

Lemma B.3 ([62]). For
B [slogd 1 slogd
'Yn - 0( n /\ 0[2 n )7

if s = o(d'/?~%) for some absolute constant § > 0, it then holds that

1 4 2,2 s 4 2 ; n
g, 2, [ (ot Ve (G0 -1eew )
)

v1,v2€G(s

Proof. See §C.2|for a detailed proof. O

Combining Lemma and (B:6), we conclude that for v, = o(y/slogd/n A 1/a? -
slogd/n), it holds that (Epy [dP/dPg])?> — 1 = o(1). Then following from (B:2), we have
lim inf,, 0 R} (Go,G1) > 1, which concludes the proof of Proposition [3.1] O

B.2 Proof of Theorem3.2]

Proof. Tt follows from Definition that for v, = o(v;), any hypothesis testing problem in
7)) is asymptotically powerless. It remains to show that for v,, = o(v/s2/n A 1/a? - s/n), any
computationally tractable test is asymptotically powerless. First, we restrict the original estimation
problem to the following hypothesis testing problem,

XTB* +e, with probability o
n-XTB*+e  with probability 1 — a
In (B:8), we restrict 5* to the set 3* € {p-v:v € G(s)} with G(s) = {v € {0,1}% : ||v]o = s}.
We set € ~ N(0, 02 + sp?) under Hy and € ~ N (0, 0?) under H; so that straightforward tests based
on mean and variance are not able to detect the existence of a nonzero parameter 5*.

Hy:Y =€ versus Hy: Y = { (B.8)

By restricting the parameter space, we obtain a lower bound for the minimax risk. Recall that we
denote by Py and P, the distributions of Z,;, which denotes the response of the oracle to the query ¢
when the true distributions of the data are Py and P, correspondingly. We have

R} (Go,G1; 47, r] >  inf {Po(qb =1)+ sup Py(¢p= 0)} (B.9)
PEH (1) veg(s)

To show that any computationally tractable test is asymptotically powerless, it suffices to show that

the right-hand side of (B.9) is asymptotically lower bounded by one. By Theorem 4.2 of [53]], we

know that this holds true if

T sup IC(@I/1G(s)] = o(1),

where C(q) is defined as

o) = {v € 605): [Bn, [o2)] Bz, [a(2)]| > )
Here 7, is the tolerance parameter defined in Definition[2.3] with (Y, X) following IP,.. The following
lemma shows that T'- sup,c o [C(q)[/|G(s)| = o(1) if 7, 1s sufficiently small.

Lemma B.4 ([53]). For s = o(d'/?>~%), T = O(d"), and
_, f/\i s
m=ol Nz )
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it holds that
T - sup|C(q)|/|G(s)| = o(1). (B.10)
qeQ

Proof. See §C.3|for a detailed proof. O

By combining Theorem 4.2 of [53] and Lemma[B.4] we conclude that the right-hand side of (B.9)
is asymptotically lower bounded by one. Therefore, it holds that lim inf,, . R}[Go,G1; <, 7] > 1,
which concludes the proof of Theorem [3.2] O

B.3 Proof of Theorem[A.2]

Proof. Recall that we denote by Z = (Y, X) and Py, P, the distributions of Z under the null and
alternative hypotheses with * = p - v*, respectively. For the hypothesis testing problem in (A:T),
the following lemma characterizes the expectations of the query functions defined in (A-3).

Lemma B.5. For any v,v* € G(s) and

1+2/v loe d
_ 141/ [slogd » (logn) ~slog
Tn = Q((log n) n /\ 0[2 n )

Ep, [q1+(Y, X)] < 1/n,  Ep, g2 (Y, X)] < 1/n. (B.11)
In addition, it holds that

[slogd
Ep,. [quv* (Y, X)] > sp2/2 if v, = Q((log n)lH/” /228 ),
n

1 14+2/v log d
Ep,. [g2v (Y, X)] > \/a2sp?/2 if v, = Q<( OgT;)Q 2 (;g >

it holds that

(B.12)

Proof. See §C.4for a detailed proof. O

In what follows, we establish an upper bound of the risk of ¢ = ¢; V ¢2. Recall that we define the
test functions ¢, and ¢5 in (A-6) with parameters

/slogd logd
T = OR2+1/V . (10gn)1+1/y . ﬂ, To = C’R1+1/V . (10gn)1/2+1/y . ﬂ (B.13)
n n
where C and C” are absolute constants. Note that the total number of query functions {1 v }veg(s)

and {g2,v }veg(s) 18 |Qg| = 2- (‘j) -25. Therefore, following from (2:12)) with ¢ = 1/d, for sufficiently
large d and n, it holds that

logd logd
T < CoR>1/¥ (log n)/>+1/v . /%7 s < CLRY™¥ (log n)/2H1/v /%7

(B.14)
where 7,, , and 7,4,  are the tolerance parameters of q1,, and gz, defined in Definition and
Cy, C} are positive absolute constants. We fix C' and C” in (B13) such that 7y > 7,  + 1/n and
Ty > Ty, + 1/n. Recall that we denote by 71 and Z3 , the responses of the statistical oracle to

the query functions ¢;  and g2 . Further recall that we denote by P, and P, the distributions of
response of the statistical oracle to the query functions when the true distribution of the data is P
and Py~ Following from Lemma [B.3] it holds for any v € G(s) and i € {1,2} that

Po(Ziw 2 75) < Po (| Zin = Bro [0 (¥, X)]| 2 74, ).
Based on (Z.1T)) with £ = 1/d, it holds for ¢ € {1, 2} that

Po((ﬁz = 1) = Po( sup Zi,v > Ti>
veg(s)

< P0< U {|Zi,v — Ep, [¢i v (Y, X)]| > r,,ivv}) < 2/d. (B.15)

veg(s)
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Recall that we define ¢ = ¢1 V ¢o. Therefore, we obtain from (B.13) that

Bo(d = 1) < Po(dr = 1) + Bo(¢hs = 1) = 4/d. (B.16)
In other words, the type-I error of ¢ is upper bounded by 4/d. It remains to upper bound the type-II
error of ¢. Following from the lower bound of SNR in (A-8), it holds that either sp?/4 > 71 or

\Va2sp? /4 > T, for a sufficiently large n. Following from Lemma if sp?/4 > 74, it holds that
Py (Z1ye <71) S Poe(Z1ve < B, [ (Y, X)] — 1)

< Po- (1210 By a1 (V. X)] | 2 74, ), (B.17)
where the last inequality holds since 71 > 74, .. Therefore, it follows from Z-IT) with £ = 1/d that

Py- (p1=0) = Pv*( sup Zl,v < 71) < Pv*(zl,v* <T1)
veg(s)

< EDV* (‘Zl,v* - E]P’\,* [ql,v* (K X)] | > qu‘v*) < 2/d (BIS)
Similarly, following from Lemma[B.3] if \/a?sp?/4 > 5, it holds that,

]pv* (¢2 = O) = PV*( sup ZQ,V < 7—2) S ]TDV* (ZZ,V* < 7—2)
veg(s)

< Po- (|Zae — Br,. [o (V. X)]| > 7.0 ) <2/, (B.19)
where the last inequality holds since 75 > 7, .. Note that (B.T8) and (B.T9) holds for any (5*,0) €
Gi1(s,vn) if (A8) holds. Therefore, by combining (B.18) and (B-19), we have

sup Py-(¢p =0) < sup {Py(¢1 =0) APy (o =0)} <2/d.  (B.20)
(5*,0)691(5,7”) (ﬁ*,a)Ggl(s,'yn)
In other words, the type-II error of ¢ is upper bounded by 2/d. By combining (B.16) and (B:20), we

conclude that if (A-8)) holds, the risk for ¢ is of order O(1/d), which completes the proof of Theorem
A2 O

B.4 Proof of Theorem[A.3

Proof. The proof is similar to that of Theorem[A.2]in Recall that we denote by Z = (Y, X ) and
Py, P« the distributions of Z under the null and alternative hypotheses with 3* = p - v*, respectively.
The following lemma characterizes the expectations of the query functions defined in (A:TT).

Lemma B.6. For any v* € G(s) and

2logd A (logn)'**" slogd
’Yn:Q((logn)lJfl/V.JS o8 /\(Og’;)2 i )

sup Ep, [q1,;(Y,X)] <1/n, sup Ep,[g2,;(Y,X)] < 1/n. (B.21)
JEld] J€ld]
In addition, it holds that

, ., [s?logd
sup Ee a1y (. X)) 2 /2 i 30 =0 Qo 177|778,
j€ld

it holds that

) logn)'*2/¥  slogd
sup |Ep,. [q2;(Y, X)]| = ap/2 if v, = Q(( E )2 208 ) (B.22)
jeld] o n
Proof. See §C.3|for a detailed proof. O

In what follows, we upper bound the risk of the test function (E = q~51 \Y gz~52. Recall that we define the
test functions ¢; and ¢» in (A-TT)) with parameters

~ logd [logd
71 = CR*t/v. (log n)1+1/” . Oi . Tp=C'R‘t/v. (log n)1/2+1/” : %7 (B.23)

where C, C' are absolute constants. Note that the total number of query functions {1 ;} jc[4) and
{a2.5}jera) is Q3| = 2d. Therefore, following from Deﬁnitionwith ¢ = 1/d, for sufficiently
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large d and n, the tolerance parameters of ¢; ; and gz ; are upper bounded as follows,
logd

log d
%7 Tgs, < CLRYY (logn)t/2 /0. s,
(B.24)

where Cj) and C1 are positive absolute constants. We fix C' and C" in (B.T3) such that 7, > 7, . +1/n
and 75 > Tgo; T 1/n. Recall that we denote by Zy,; and Z ; the responses of the statistical oracle

to the query functions g ; and ¢ ;, respectively. Further recall that we denote by Py and P,- the
distributions of response of the statistical oracle to the query functions when the true distribution of
the data is Py and P, -. Following from Lemma[B.6 for any j € [d] and i € {1, 2}, it holds that

Po(Zi; >71) < Po(’z,j —]EPO[%‘,J‘(Y,X)H > Tqi,j)-
Based on (2.11)) with ¢ = 1/d, it holds for i € {1,2} that
Po(%, = 1) = Pg(sup Zi,j > 7~'1)

JE€ld]

< IF)()( U {|Zz,] — ]E]po [Qz,j(}/a X)H > Tqi }) < 2/d, (BZS)

j€ld]
Recall that we define ¢ = ¢ V ¢y. Therefore, we obtain from (B:23) that
Po(¢p=1) < Po(p1 = 1) + Py(py = 1) = 4/d. (B.26)

In other words, the type-I error of <Z is upper bounded by 4/d. It remains to upper bound the type-II
error of ¢. Following from the lower bound on SNR in (A:T4), it holds that either p?/4 > 7| or
ap/4 > T, with a sufficiently large n. For any v* € G(s), let j* = argmax;c(q Ep,. [q1,;(Y, X)].
Following from Lemma if p2 /4 > 71, it holds that

Py (Z1,j» <71) < Pyx (Zu* <Ep,.[q1,-(Y,X)] — 7~'1>

o, < CyR**H(logm) /2417

< Po- (1215 = Bp,. [ (Y X)) 2 7, ), (B.27)

where the last inequality holds since 71 > 7,, .. Therefore, we conclude from Z.TT) with { = 1/d
that

PV*(al =0) =P, (SUP Zyj < 7~'1> <Py (Z1,j+ < T1)

jeld]
< ]pv* (’ZLj* — Epv* [ql’j*(yv, X)H > Tlh,j*) S 2/d (BZS)
Similarly, for any v* € G(s), let k* = argmax;ciq Ep,. [g2,;(Y, X)] and £* =

argmin;cq Ep, . [q2,; (Y, X)]. Following from Lemma if ap/4 > 7o, it holds that either
E[g2 1+ (Y, X)] > ap/2 or E[ga ¢+ (Y, X)] < —ap/2. If it holds that Ep« [go 1+ (Y, X)] > ap/2 >
279, we have

Po- (G2 = 0) < Py (5up Zoj < 7o) < Por(Zae < )
jEld]

Py« (|22,k* — Ep, [q2,1+ (Y, X)H > qu,k*) <2/d, (B.29)
where the last inequality holds since 75 > 74, , .. If it holds that Ep: [g2 ¢« (Y, X)] < —ap/2 < —27,
we have
Py- (¢ = 0) < Py~ <jl€n[£] Zyj > —?2) <Py (Zope > —T2)
< Py <|Zz,e* — Ep, [g2,- (Y, X)]| > qu) <2/d, (B.30)
where the last inequality holds since 75 > 7, .. Note that (B:28), (B.29), and (B.30) holds for any
(B*,0) € Gi(s,7n) if (AT4) holds. Therefore, by combining (B.28), (B.29), and (B.30), we have

sup P, - (d)—()) sup {Py- d)l—O ) AP~ (¢2_O}<2/d (B.31)
(B*,0)€G1(5,7n) (B*,0)€G1(5,7n)
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In other words, the type-II error of ¢ is upper bounded by 2/d. By combining (B.26) and (B.31),

we conclude that if (A.T4) holds, the risk for ¢ is of order O(1/d), which completes the proof of
Theorem[AJ] O

B.5 Proof of Theorem 3.3

Proof. We prove by contradiction in the following. We assume that there exist an absolute constant
7 and an algorithm &7 € A(T) with T' = O(d") that estimates 5* in (2.6), such that for any given
oracle r € R[&, n, T, n(Q)], it holds that

P(IIB8 = B*13/0® = 7 /16) = o(1), (B.32)
where 3 is the estimator of 3*. In other words, it holds that H B—p* |3/0% < v,/16 with probability
1 —o(1). Recall that we set ||3*||? /o = ~,,. Based on ( , it holds with probability 1 — o(1) that

1B+ B3 < (18 — 8"l + 211" ]12)* < 21 - B* ||2 FSIBIE < (1/8 4 8) 0% (B33)
Combining (B:32)) and (B.33), it follows from the Cauchy-Schwartz inequality that

IBIE = 18°13]" = |(B—B)T(B+ 87" < 1B 813 1B+ B3 <5/8 02, (B34)
which holds with probability 1 — o(1). In what follows, we construct an asymptotically powerful
test with T = O(d") query complexity for the hyppthesis testing problem in 2.7). We set ¢ =
]I{HBH2 > ~,/5}, where 3 is the estimator of 3* given the algorithm /. Following from (B:32),
it holds with probability 1 — o(1) that [|3]|2/02 < ~,/16 under the null hypothesis with 3* = 0.

Meanwhile, following from (B-34)), it holds with probability 1 — o(1) that 1B112/0% > 4y /5 under
the alternative hypothesis with 8* # 0 and ||3*|?/0? = ~,. In other words, ¢ is asymptotically

powerful and computationally tractable with v, = o(1/s2/n A 1/a? - slogd/n), which contradicts
the computational minimax separation rate in (A.16). [

C Proof of Lemmas

In this section, we lay out the proof of the lemmas in §B]

C.1 Proof of Lemma[B.1]

Proof. Tt follows from the model in (B.T)) that under the alternative hypothesis
1-—
Z=(Y,X)~a-N(0,5(+) + —— - N(0,5(v)) + T N(0,5(—v)),

1 1-
~ % LN (0,5()) + ——= - N(0,5(—v)),
where X(v) is the covariance matrix
_ o? + sp2 ,OVT (d+1)x (d+1)
S(v) = [ )8 1, | €R . (C.1)

Meanwhile, we have Z = (Y, X) ~ N(0, () under the null hypothesis, where we denote by
Yo = X(0). Recall that we denote by P, and Py the distributions of Z under the alternative and null
hypotheses, respectively. Therefore, it holds that

dPy .« 1+a | det(X) ADR R VAl
dPo(Z)* 2 det(S(v)) ( 2 ) >
l-a det (%) Z(E (V) -z
+— ) -ex <— 5 0 > (C.2)

where we denote by X ~1(v) the inverse matrix of ¥(v). We denote by ¢ the Bernoulli random
variable with distribution

1 1-—
S S (C3)
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Therefore, it follows from (C.2) that

Z(5Yev) —2gh)ZT
jﬁZ(Z) - Egl d:ce(;(]ifg)) . oxp <— B )2 o) ) : (C.4)
Following from (C.4), for v; and vs in G(s), we have
. [d}P’Vl dP,, (Z)} — B, ¢, det(Xo) C.5)
dPo dPo ’ \/det(E(ﬁlvl)) - det (2(E2v2))

)

.exp(_1/2 ZT(E N Ev) + 57 (Gva) — 2251)2)

where &; and & are independent copies of ¢ defined in (C3). In what follows, we calculate the
right-hand side of (C.3)) by invoking Fubini’s theorem. We first calculate the right-hand side of (C.3))
by integrating under [Py and obtain that

Ep, {exp(—l/? ZT (S Ev) + 27 (Eve) — 220—1)2)}
1

- ' exp(—1/2-2" (87 (& “L(Eve) — 252 z
T /Cm)T - det(Do) /zeﬂwl p( 1/2- 2 (ST (&ve) + 57 (Gava) Eg))dPO()

- (det(E_l(flvl) + 5 NG ve) — 55 ) - det(Zo)) o (C.6)
By plugging (C.6) into (C.5), we obtain
B, o Er, [ e exp(~1/2 27 (27 €v) + 5 (6rv) - 255)2)
V/det(S(rv)) - det(S(€ava))
— B, l det(Xp) . det(E_l(flvl) + 2—1(51\,2) _ 251) det(20)>1/21
Vdet(S(Erv)) - det(S(€ava))
= /det(So) - Ee, e, [det(Z(Elvl) + X(Eava) — z(glvl)zglz(ggvz))‘”z}. €7

Meanwhile, by (C-1) it holds that det(3o) = o + sp? and
S(&v1) + B(&ava) — B(6ve) - Bp ' - B(éava)

_ 02+ 5p%(1 — &1&9 - v] va) 0 8

0 Lo — (p*6162)/(0® + 5p*) -vavg | '
Therefore, we are able to calculate the right-hand side of (C.7) explicitly. Combining (C.3) and (C.7)
and apply Fubini’s theorem, we obtain that
dP,, dP, p2&i&s
! 2(Z)| = E 1-——>—"="- . C.9
Po |: dP, dP, ( ):l 517f2|: o2 + sp2 <V17V2> (C9)

Recall that &; and &5 are independent copies of & defined in (C.3), it then holds that

dP,, dP,, 14+ a?(0? 4+ 5p2) 1 p? - (vi,v
3 (z)] = LEol o) P Wvs) (C.10)
d]PO d]P() 1— (J + Sp ) P <V17V2>
Meanwhile, for 0 <z < 1/2and 0 < k < 1, we have
1+k
. J_r xf < cosh(2z) + k - sinh(2z).
Therefore, following from (C.10) with sp? = o(1), we obtain that
d]P)v d]PV 2p2 . <V1 V2> . 2[)2 . <V1 V2>
E L—2(Z)| <cosh| =~ ?.sinh | = C.11
Po [ B, dP, ( )} < cos < Tt 5p? + a” - sin Tis? ) ( )
which concludes the proof of Lemma [B.T] O
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C.2 Proof of Lemma[B.3|

Proof. In what follows, we establish the upper bound of the following sum,

1 4a?p? - (v1,va) 4p% - (vi,va)\ 1"
—_— h{ ————-* . C.12
“ WP, 2 )[e"p< e A A N 1
In specific, we show that S =1+ o(1) if it holds that

( /slogd/\ slogd)
a? n

The proof strategy is similar to that of Theorem 3.1 by [62]. We define V(s) the class of index set as

follows,

V(s) ={S C[d]:|S| = s}.
We further denote by S; and S, two independent random variables, which are uniformly distributed
over V(s) and

T = |S1 n 82‘
We obtain from (C.12)) the following upper bound of S,
[ 402p*T 42T \\"
S S ET {exp(w> vCOSh(oW . (C13)

Let {7; }ie[n) be n independent Rademacher random variables and U be their sum. Following from
(C.13) and the fact that cosh(z) = E,, [exp(n;x)], we obtain

[ dna“p 4p*UT
<E E
o= B o <02+s,0>\/ U[ < 2+ sp? )]

ana?p*T 4p*UT
=ErEy lexp (02 T2 > \/ exp <02 T 8p2)
We apply Fubini’s theorem to calculate the right-hand side of (C.14). We first calculate the expectation
with respect to T'. Recall that we denote by T = |S; N Sz2|. Therefore, it holds that

dna?p?T \/ 4p2UT
exp| —= exp| ——=
p 0—2 + Sp2 p 0—2 + 5,02
4na?p? \/ 40°U T
exp| — exp| ——
p 0-2_|_Sp2 p O'2+Sp2
< sup Es,

Ana2 p? 402U [SNS2|
L Y B ) e e
SeV(s) o+ 5p 0%+ sp

where the last inequality holds since S is uniformly distributed over V(s). We fix an arbitrary
S € V(s) and denote by |S N Sa| = >, ., vi, where {v; }4cy are random variables that takes value
one if i € SN S, and zero otherwise. Recall that S, is uniformly distributed over C(s). Therefore,
v; takes value one with probability s/d and zero otherwise. Meanwhile, for ¢ # j, v; and v, are
negatively associated with each other. Thus, it holds that

477,0(2[)2 4p2U |SNS2|
o l{exp(ﬂ + sp2> \/exp(UQ 5P
4na?p? 4p°U i
: EE {exp<02 +sp2> \/exp<02 + 507

4na?p? 402U ’
_ <s/d- [exp<02"j':fp2> \/exp<02‘jr8p2)] 1 —s/d> . (C.16)
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722 Since the inequality in (C.I6) holds for any S € V(s), it holds for the supreme over V(s). By
723 plugging (C.16) into (C.15), we obtain that

dna?p?T 4p*°UT
E == F- -
T[exp< +Sp2>veXp<02+8p2>

2 k
5\ /5\k 4na2p? 42U
< — . i A _apry _ . .
_1+;(k>(d) [eXp<02+Sp2>\/exp(a2+sp2) 1 (C.17)

724 Finally, by combining (C.14) and (C.17), we obtain from Fubini’s theorem that
2 () [l Ve () )
SO o) ]
O wfol2)

725 It now suffices to show that the right-hand side of (C.I8) is of order o(1). The following lemma upper
726 bounds the first term on the right-hand side of (C.18).

727 Lemma C.1 ([62])). For v, = sp?/a? = o(1/a? - slogd/n), it holds that
°L (5 /s\* 4na’p? F
; (k> (g) : {exp(w> - 1] = o(1). (C.19)

728 Proof. See §C.0|for a detailed proof. O

U> noﬂ] . (C.18)

729 We denote by Q = 4p2U/(0? + sp?). Note that exp(z) — 1 < 2z for 0 < z < 1. Therefore, the
730 following upper bound of the second term on the right-hand side of (C.I8)) holds,

> ()" = fool(555) )

s 2 k
< Z(k) Eu[(21QD* + exp(HQD - 1{1Q] 2 1]

U>0

} Z( > -Ey [exp(k|Q)) - 1{|Q| > 1}]. (C.20)
k=

(i) (i)
731 The following Lemma establishes the upper bounds of terms (i) and (ii) in (C.20).
732 Lemma C.2 ([62]). For~, = sp?/0? = o(\/s log d/n), it holds that

iEU[QS B'Q'} — o(1),

°L /5%
1= 3 (59)"  Eofesp(ki@l) - 1001 > 1)] = o(1). (€21
k=1
733 Proof. See §C.7|for a detailed proof. O

734 By combining (C-T8) and (C:20), we obtain from Lemmas [C.1]and [C.2]that S — 1 = o(1) for

B [slogd 1 slogd
_0( n /\a2 n )’

735 which concludes the proof of Lemma[B.3] O

23



736

737

739

740

741

742

743

744
745

746

747
748

749

750

751
752

C.3 Proof of Lemma[B.4

Proof. In what follows, we prove that 7" - su C G(s)| = o(1) under the assumptions of
p Pgeg IL\G p

Lemma|B.4] Our proof strategy is similar to that of Theorem 5.3 by [53]]. As |G(s)| is given, we focus
on upper bounding |C(q)|. We first partition C(q) into two parts, namely, C1(¢) and Ca2(q), where

Ci(a) = {v € G(s) : Br, [a(2)] ~ Bp, [a(2)] > 7, },
and C2(q) = C(q)\C1(g). It holds that
sup |C(q)| < sup [C1(q)| + sup [C2(q)- (C22)
qeQ qeQ qeEQ

We introduce the following distributions

IEJicl(q) Z Py, IPicz(q) Z Py.

v661 (2) VECz(q)
We further denote by

7 dP, dP,.
o —_— —_— = C .
Cila.v) = argmax{ a1 22 e ap 0] 1 \ l=lc@lp ol e
for ¢ € {1, 2}. It then holds that
dPe, () 2 1 dP, dP,,
gy 1) | = Y Eg |t N(2)| -1
( ar, 2 Ce(q) o | By By 2

v,v' €Ce(q)

< oy L 3 Epo{dp d]P’v/(Z)]l

D,2(Pe,(g),Po) = Ep,

veeda) [Cela)] |, & 7" LdPo P
1 dP, dP,.
< sup oo Ep [V A Z} -1, (C.24)
vece(q) |Ce(q)] ,ecz(: 9 O dPy dPg (2)
where the last inequality follows from the definition of C(g, v) in (C:23). By Lemma|B.1} it holds
that
dby dP. P, V’> 2 2p% - (v, V')
IP, ap, 2| Seosh| —m ssinh ( 20 ). C.25
Po idﬂ% dP, ( )] cos ( 74 5p? + a” - sin o ( )

Combining (C:24) and (C.23)), we conclude that
1+ DX2 (PCg(q)a Po)
1 2 2, / 2 2, /
< sup { Z cosh(W) +a?. Sinh<p2<v";>> } (C.26)
e el , 2= ot rsp o+ sp

In what follows, we calculate the sum on the right-hand side of (C:26). To achieve this, we calculate
the sum based on the value of (v, v’). We denote by

={v eg(s): (v,v)=s—j}.
Then for any choice of ¢, ¢, and v € Cy(q), there exists an integer k;(q, v) such that
Cel(q,v) = Co(v) U+ UCpygv)—1 UCilg,v),
where C)(q,v) = Ce(q,v)\ U?‘:(g’v)fl C;(v). Note that we have
ke(gv)—1

Cila, V) = [Ce(a)l = D 1G] < [Chygmy (V)]

=0
Hence, the cardinality of C;(g,v) is between Zk’(q’ ~'|¢;(v)| and Zk"(q’ |C;(v)|. Following

form (C.26)), we have

Lt Dya(Bey g, Bo) < 2o Fal0) -G + hakalg, ) -[Chla: v
x*\1Ce(q)s =

Sk ey (v >|+|c< V)]

, (C.27)
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where we denote by h,(j) the right-hand side of (C:23)) when v’ € C;(v). In other words, it holds

that
, 2p%(s — Jj) 2 o (20°(s =)
ha (]) = COSh (2—|—Sp —|— o . Slnh Tsp . (C28)

Note that &, (j) is monotonically decreasing as j increases. Therefore it follows from (C:27) that
558 hai) - 16(3)|
Rk e 10
Further note that |C;(v)| = (Ssj)( ; *). Therefore, it holds that
Cira (/G (V)| = (s =) (d — s = j)/(j + 1)* > d/257,

where j € {0,...,5s —1},v € G(s), and s = o(d'/?>~?%). We denote by ¢ = d/2s?, which satisfies
¢~ = o(1) by the assumption that s = o(d"'/2~?). It then holds that

14 Dy (Pe, (), Po) < (C.29)

el kla)
C@ < 3 IGmI<em: S ¢
=0 =0
—(s—=ke(q,v)) .
< B cpptenkta g (€30)

For any integer k¥ > 1 and two positive sequences {w;}5°, and {u;}5°, such that w;/w;—1 >
u;/u;—1 > 1, it holds that

k . k .
Zj:() wj . hoz(j) < Zj:() U’] . ha(])

< (C31)

k k

Dico Wj Ej:o Uy

Therefore, by setting w; = |C;(v)| and u; = ¢?, we conclude from (C.29) and (C.3T) that
28 ha()

14 D,z (P, (g), Po) < 222 (C.32)

ke(q,v
Zji&? e,

‘e Pls=0)\ ., 2 20%(s — j) e
Z ¢ cosh( T 157 > + ~sinh(02+3p> Z <
k:[(qv . 2 9 qv) 1
_ 4 _
< 5 o fem(EE Ve ()L e

where the last inequality follows from Lemma [B.T] In what follows, we denote by

10) = o () ) - e (1) ©33)

o2 + 8p2 o2 + Sp2
for notational simplicity. Note that
. . 4p?
fG=-1/f0G) = COSh<02+Sp2>-
Therefore, it holds for j € {0,1,...,k¢(q,v) — 1} that

4p2 ke(q,v)—j—1
F) < fkelg,v) = 1) - {cosh<02+8p2>} : (C.34)

Meanwhile, we have

N 2 2/ 2 2\ B . ﬁ ke(g,v)—j—1
9(j) = exp(4a?p®(s — j)o* + sp°) = g(ke(q,v) —1) - { exp p 3 .

2+ sp
(C.3%5)
We denote by
I(s,p) = exp(az — 2) \/cosh( e ) (C.36)
Combining (C.34) and (C.33)), we conclude that
fFG) V() < {f(ke(qw) —1) Vg(ke(q,v) - 1)} - (T(s, p)) @ (C.37)
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Following from (C:32) and (C.37), it holds that
1+ DX2 (Pck(q), ]P’o)

v)— . ke(q,v)—j—1
Zfi(g) ) 1 C‘] . (F(S7p)) Z(q ) J
Skl

< {1 (kelav) = 1) v g(Rela,v) ~ 1) } - (C.38)

By direct calculation, we obtain
v)— ; ke(q,v)—7—1 v)— (q,v)— ke(q,v)—7—1
SR G (D (s, )T relam 1 R T (s ) gy PO

Skl =t g Che(a) =L . 8@ (= (hu(av)=i=1)
ke(q,v _
1=/ 1o (C39)
1 — (hela) 1=T(s,p)/C '

Note that I'(s, p) > 1. Therefore, the following upper bound of the right-hand side of (C.39) holds,
ke(q,v _ _
1—(I(s,p)/<) (@) 1—¢ ! o 1=¢ !

1_<—ke(q,v) ’ 1—F(8,p)/< > 1—F(s,p)/§l (C.40)
Combining (C:38), (C.39), and (C.40), we conclude that
1— -1
1+ Dyz2(Pe,(q), Po) < {f(kg(q, v) — 1)V g(ke(g, v) — 1)} : 1—1“(§p)/g’ (C.41)

where f(j) and g(j) are defined in (C:33). Meanwhile, by Lemma 4.5 of [53]], it holds that
Dy (Pe, (g Po) > log(T /&) /n. (C.42)
We denote by 72 the right-hand side of (C.42). Combining (C.41) and (C.42), we have
1—¢!
2
T +1§{f ke(gq,v) —1)V g(ke(g,v) — 1 }7
( ( ) ) ( ( ) ) 1*F(S,p)/C

Therefore, one of the following inequalities holds,

—I'(s a?p? - (s —ke(q,v
72 APV < ) - 1) = op (M AV LD
—1I'(s 4. (s —ke(q,v 2
(1+ 72) : 11I;(C,_p1)/§ < f(ke(Q,V) — 1) < exp(Qp (<02 +éi(j)2)g i 1) ), (C.43)

where the second inequality holds because of the fact that cosh(z) < exp(z?/2). We take the
logarithm of (C:43)) and obtain that one of the following inequalities holds,

1—¢t 4a%p? - (s — ke(q,v) + 1)
log(1+7%) +1 <
el Og(lF(s,p)/C>_ a2 + sp?

2

1-¢! 2p" - (5 = ke(g,v) +1)

log(1 4 7%) + 1o <
et s ) <

Following from the definition of I'(s, p) in (C.36), we have I'(s, p) /¢ = o(1). By Taylor’s expansion,
it holds that

1-¢t - 1-T(s,p) —1 4\, 1,2 2
log():log(l—(j Lo — 2% ) =0t v ¢ ta?p?). (C.45)

Y EWINS (s, p)/c )~ )
For vy, = sp?/6% = o(y/s2/nA1/a?-s/n), where o2 is a constant, it holds that &%V p* = o(1/n).
Hence, the right-hand side of (C.43) is negligible compared with log(1 + 72). Then following form

(C44), it holds that

2 22 . 2 2 2 . 2
A (RS M |y Wy (RSO B C SRS
204 4a2p2

)

(C.44)
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782 Note that log(1 + 72) > 72/2 = log(T/€)/(2n) for T < 1. Therefore, by combining (C:30) and
783 (C.46), we conclude that

sup,coC(q)]

1G(s)l
< AT - exp (—logC- {\/(02 + 8/)4)2p log(T'/€) 1\/\/ (02 + sgpna ll)og(T/g) B 1})

784 Note that p* - n V a?p? - n = o(1) for sp?/o? = o(1/s2/n A 1/a? - s/n). We choose an absolute
785 constant C' > 0 satisfying §(C' — 1) > p, where p and ¢ are absolute constants such that 7' = O(d*)

786 and s = o(d'/?=?%). Then it holds for a sufficiently large 7 that

\/(02+8p )2 - log(T/€) \/\/ (02 + sp2) - log(T/€)

8na?p?

(C47)

\/(02+8p )% - log(1/€) \/\/02+8p 1og(1/6) (C.48)

8na?p? -

767 Note that ¢ = d/(2s%) = Q(d%) for s = o(d'/?>~?%), where § > 0 is an absolute constant. Finally,
788 combining and (C.48), we obtain that for 7' = O(d"),
T-sup |C(q)|/1G(s)| < O(d" - ¢~ O7Y) = O(a**C7D) = o(1), (C.49)
qeQ

789 which concludes the proof of Lemma[B.4] O

790 C.4 Proof of Lemma(B.5

791 Proof. In the following proof, we denote by C and C’ absolute constants, the value of which may
792 vary from lines to lines. We define the following unbounded query functions,

(V. X) =0 (V) - [s7'(vTX)? = 1] - 1{[u (V) < (B -logn) '/}, v €G(s),
(Y, X)=Y - (sTVATX) - L{|Y] < (R-logn)/"}, v eG(s) (C.50)
793 In the sequel, we first upper bound the difference between the query functions in (A-3) and the query

704 functions in (C.50). We then characterize the two expectations Ep, [¢; (Y, X )] and Ep, [¢; (Y, X)]
795 using the corresponding expectations of g; (Y, X). Following from (A:3) and (C.30), it holds that

Qv — v =0() - [s” v X)? —1] - 1{|w(Y)| < (R - logn) 1/”} ]1{|VTX| > R-/slogn},
Goyv —Qav =Y - (s —1/2 TX ]l{|Y| < (R-logn) 1/”} ]l{\VTX| >R- \/slogn} (C.51)
796 Then following from the Cauchy-Schwartz inequality, it holds for ¢;  and ¢ that
~ 2
Er, [q1,4 (Y, X) = @1, (Y, X)]|

2
< ’EPO {w(y) (AT X)? - 1)” Po(lv' X| > R-/slogn). (C.52)
797 Note that under Hy, X ~ N(0, I) is the standard Gaussian distribution, which is independent of Y.

798 Therefore, it holds that Ep,[(s~1(X Tv)? — 1)2] = 2. Then following from the Cauchy-Schwartz
799 inequality, we obtain that

B, [pV) - (7702 = 1)] | Bo (T X > R+ /sTogm)
< Ep, [QZ)Q(Y)] - Ep, [(S_I(XTV)2 - 1)2] 'Po(|VTX| >R- \/slogn)

=C -Py(lv'X|>R-/slogn) (C.53)
goo for a positive absolute constant C. Note that X "v/y/s ~ N(0,1) under the null hypothesis.
go1  Following from the tail bound of standard Gaussian distribution, it holds for any ¢ > 1 that

Po(|X "v/Vs| > t) < 2exp(—t?/2). (C.54)
sz Combining (C.52)), (C.33)), and (C.54)), we obtain that
‘EPO [ql)v(Y, X)— c}l’v(Y,X)} ’2 <C- P('VTX| > R sy/logn)
< C-exp(—R?-logn/2). (C.35)
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sos In the following, we upper bound the distance between g1 (Y, X) and g1 (Y, X) under P,. Follow-
go4 ing from the Cauchy-Schwartz inequality, it holds that

|E]P’V* |:q1,v(Ya X) - al,v(K X)] |2
< Ep,. [¢2(Y) (sTHYTX)? - 1)2} Py (V' X| > R /slogn)

< \/Eu»v* W] - Ee,. [(s7 (vTX)2 = 1) - Pre (v

sos Note that under Assumption Ep,. [¢*(Y)] is upper bounded. Meanwhile, we have that
86 X 'v/y/s ~ N(0,1). Therefore, it holds for an absolute constant C' that

|]EIP’V* [q1,v(}/a X) - al,V(Y7 X)} ’2 < C- exp(—R2 : lOg n/2) (C57)

so7  Similar arguments apply to g2 (Y, X) and g2 (Y, X). Under the null hypothesis, it holds for an
sos  absolute constant C’ that

’EIPU (02,0 (Y, X) = @2, (Y, X)] ’2 < Ep, [Y?] - Ep, [3_1(XTV)2] . IED(|VTX| > R-+/slogn)
< C'" - exp(—R? -logn/2), (C.58)
gos which also holds under the alternative hypothesis with distribution P,-. Therefore, following from
s10  (C33), (C37), and (C.58), it holds for a sufficiently large constant R that
|Es,. [q1,v(Y, X) — @ (Y, X)] |V |Ep, [a14 (Y, X) — q1,0 (Y, X)]| < 1/n,
|Ep,.. [q2.5 (Y, X) = 20 (Y. X)]| V [Ep, [g2,4 (Y, X) — G20 (Y, X)]| < 1/n, (C.59)

s11 which holds for any v € G(s). In what follows, we characterize the expectations of g; v (Y, X ) under
stz the null and alternative hypotheses for ¢ € {1,2}. We then obtain the desired bounds of ¢; (Y, X)
813 based on ¢; (Y, X). Note that under the null hypothesis, Y is independent of X. Then, following
s14  from (C:30) and the fact that X ~ N (0, I), it holds that

slog n) (C.56)

Ep, [q1,v(Y, X)] = Ep, [¢2,v(Y, X)] = 0. (C.60)
815 Following from (A.3)), we have
507 = Bp,. [0 (VX)) < Ba. [6(V) - (570" T X0 = 1) = oV X)) (C.61)

= Ep,. (V) (s X2 = 1) - 1{Jp(V)] > (R- logn)l/”}}

Y)| > (R-logn)'/¥),

< e [120) - (72 T2 - 1)) - R
st6  where the last inequality follows from the Cauchy-Schwartz inequality. It then follows from Assump-
17 tion[A Tl that

Py ([9(Y)] > (R - log n)l/”) < C-exp(—R - logn). (C.62)
sts  Meanwhile, following from the Cauchy-Schwartz inequality, it holds that

Ep,. {wQ(Y) (s TX)? - 1)2] < \/Epv* [¥*(Y)] - Es,. [(s—l(v”)()2 - 1)4}, (C.63)

819 which is upper bounded by an absolute constant. Combining (C.61)), (C.62)), and (C.63)), if it holds that

820 sp?/a? = Q(/slogd/n), then for sufficiently large n and constant R, we obtain that 1/n < sp?/4
g21 and

sp® — Ep,. [q1,v(Y, X)] < sp?/4. (C.64)
s22 In other words, it holds that Ep,. [¢1,v(Y, X)] > 3sp?/4. Similar arguments hold for the query
g23  function gav (Y, X). If it holds that sp? /o = Q(1/a? - slog d/n), then for sufficiently large n and
s24 constant R, we obtain that 1/n < y/a?sp?/4 and

Ep,. [ZJVQ,V(}/, X)] > 3v/a?sp? /4. (C.65)
25 Combining (C.39), (C.60), (C.64), and (C.63), it holds for sufficiently large n and constant R that

Ep, [q1,v(Y, X)] <1/n, Ep,[g2 (Y, X)] < 1/n.
s26 Furthermore, it holds for sufficiently large n and constant R that
Ep,. [q1+ (Y, X)] > sp/2, if sp*/o® = Q(/slogd/n),
Ep,. [g2+ (Y, X)] > Va2sp?/2, if sp®/o® = Q(1/a® - slogd/n),

g2z which concludes the proof of Lemma[B.3] O
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C.5 Proof of Lemma[B.6l

Proof. In the following proof, we denote by C' and C’ absolute constants, the value of which may
vary from lines to lines. We define the following unbounded query functions,

(V. X) =) (X7 —1) - L{|[p(Y)| < (R-logn)"/"}, j € [d],

GV, X)=YX; 1{([Y| < (R-logn)"/"}, j€d]. (C.66)
The proof is similar to the proof of Lemma [B.3]in §C.4] Following from (C.66) and (A-TT), it holds
that
~ 2
[Ee, [1,;(Y, X) = q13 (Y, X)]|” < Ee, [9°(Y) - (X7 = 1)*] - Po(|X;]| > R+ /logn), (C.67)
where the inequality follows from the Cauchy-Schwartz inequality. Under the null hypothesis, Y is
independent of X. Meanwhile, it holds that X ~ N (0, I;). Thus, we have X; ~ N (0, 1). Following
from the Gaussian tail bound in (C:34), we have
~ 2
|Ep, [q1,;(Y, X) — q1,;(Y, X)]|” < C - exp(—R* - log n/2). (C.68)
Therefore, for a sufficiently large constant R, the right-hand side of (C.68)) is upper bounded by 1/n?.
Under the alternative hypothesis, it follows from the Cauchy-Schwartz inequality that

e, [d1,5 (Y, X) = a1y (V0] < B, [02(Y) - (X7 = 1)) - Pos ( logn)

(C.69)

< \JBe [0 (V)] - Be,. [(X2 — 1)) - P ( logn).
Following from Assumption it holds that Ep_[1)*(Y")] is upper bounded under the alternative
hypothesis. Meanwhile, it holds that X; ~ N (0, 1) under the alternative hypothesis. Therefore, for a
sufficiently large constant R, the right-hand side of (C:69) is upper bounded by 1/n?.
For ¢5 ;(X,Y"), we follow similar arguments. By the Cauchy-Schwartz inequality, it holds under the
null hypothesis that
~ 2

[Eeg [G2,5(Y, X) = g2, (V, X)]|” < B [Y2X7] - Po(|X;] > R - v/logn). (C.70)
Note that Y is independent of X and X; ~ N (0, 1) under the null hypothesis. Thus, following from
the Gaussian tail bound, it holds for a sufficiently large constant R that

- 2
|Ep, [G2,; (Y, X) — q2,;(Y, X)]|” < 1/n. (C.71)
Meanwhile, it holds under the alternative hypothesis that
_ 2
’EP\/* [qu (Y? X) — 41 (Ya X)] | < EIPV [Y2 ] ( log n)

< \/Ez,.[V?] ‘Eg,. [X4] Py (X, logn), (C.72)
where the above mequahtles follow from the Cauchy-Schwartz inequality. Also, by Assumption[A.T]
it holds that Ep_, [Y'*] is upper bounded under the alternative hypothesis. Therefore, the right-hand

side of is upper bounded by 1/n? with a sufficiently large constant R. In conclusion, it holds
for a sufficiently large constant R that

B, [q1,5(Y, X) — qu;(Y, X)] |V [Ep, [01,;(Y, X) — q1,;(Y, X)]| < 1/n,
B, [q2,5(Y, X) — G2.5(Y, X)]| V [Ep, [q2,(Y, X) — g2,;(Y, X)]| < 1/n. (C.73)

It remains to characterize the expectations of g1 ;(Y, X) and g2 ;(Y, X') under the null and alternative
hypotheses. Note that under the null hypothesis, it holds that Y is independent of X and X; ~

N(0,1). Therefore, we have Ep,[X7 — 1] = 0 and Ep, [X;] = 0, which imply
Ep, [31,(¥. X)) = Ez, [WY) (X3 = 1) 1{Jp()] < (R-logm)/+}] =0,
Er, [d2,,(Y, X)] = Er, [YX; - 1{|Y| < (R-logn)'/"}| =0, (C.74)
Under the alternative hypothesis, it follows from (A:3) and (A-4) that
Ep,. [(Y) - (XJ2 -1)] > ,02v*27 Ep, [Y X;] = apvj, (C.75)
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where vi € {—1,0, 1} is the j-th entry of v* € G(s). For the query function ¢y ;(Y, X), it holds that
PPV = Be,. [0V, X)) < Be. [Y2(X2 = 1) 1{|Y| > (R-logn) /" }]

< \Ee.. [Y4(X2 - 1)2] - V- (Y] > (R -logm)1/7)
< C-exp(—R -logn), (C.76)
where C'is a positive absolute constant and the last inequality follows from Assumption[A.T] We fix

an index k such that v} # 0. Therefore, if sp? /0? = Q(1/slogd/n), it holds for a sufficiently large
constant R that

p® —Ep, [Q16(Y, X)] < p?/4. (C.77)
In other words, it holds that sup, ¢ (4 Ep, [q1,;(Y, X)] > 3p? /4. Similarly, we have
pvi = Ep. [d1;(Y, X)] = Es.. [ij Y] > (R-log n)l/”}} . (C.78)

Meanwhile, if sp?/o? = Q(1/a? - slogd/n), it holds for a sufficiently large constant R that
’]EPV* [YXj A{ Y] > (R~1ogn)1/”}”

< JEp V2X2] /B (Y] > (R logn)1/*) < ap/d. (C.79)

Recall that v} € {—1,0,1} is the j-th entry of v* € G(s). Following from (C.78) and (C.79), we
obtain that
sup [Ep,. [q1,;(Y, X)]| > 3ap/4. (C.80)
j€ld]
Combining (C.73), (C.74), (C.T7), and (C.80), we conclude that for sufficiently large n and constant
R, it holds that

sup Ep, [qu(Y, X)] <1/n, sup Ep, [qlJ(Y, X)] <1/n. (C.81)
J€ld] J€ld]
Moreover, for sufficiently large n and constant R, it holds that

sup Ep« [q1,;(Y, X)] > p?/2 if sp*/o® = Q(/slogd/n),

jeld]
sup Ep« [g2,; (Y, X)] > ap/2 if sp®/o* = Q(1/a® - slogd/n), (C.82)
jeld]

which concludes the proof of Lemma [B.6] O

C.6 Proof of Lemma[C.1]

Proof. In what follows, we show that for v,, = sp?/0? = o(1/a? - slogd/n), we have

"L (8 /s\F dnka?p?
r= kz::l <k‘) (g> ' exp<02 + 8p2> = o(b)-
Note that if y,, = sp?/0? = o(1/a? - slogd/n), it holds that p? /(02 + sp?) = o(1/a? - logd/n),
where o2 is a constant. Therefore, we have
s\k dnka?p? < (5 k Ok
(ﬁ) 'exp(a2+sp2> < (g> -exp(C - klogd) = (s-d~ )", (C.83)
which holds for an arbitrary positive absolute constant C' and a sufficiently large n, respectively.

Meanwhile, note that s = o(d'/2~?) for an absolute constant § > 0 and (}) < (es/k)*. By (C83),
it holds that

(2) (g)k < (s%e/k-d°7)F < (efk-d9T2) (C84)

Since C is arbitrary, we fix C' < §. Following from (C.84)), we obtain that

"L s\ /s\F dnka?p? >
=Y (7> cexp( L) < 3 (e/k - dO)E = o(1),
= (k:) d exp<az+sp2) =2 F et
which concludes the proof of Lemma[C.1] O
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C.7 Proof of Lemmal[C.2]

Proof. In the following proof, we denote by C, C’, and C” absolute constants, the value of which
may vary from lines to lines. We first show that for 7,, = sp?/0? = o(y/slogd/n), it holds that

ZEU (23 eQ) 1 — o(1),

where Q = 4p*U/(0? + sp?). Recall that U is the sum of n independent Rademacher random
variables with Orlicz ¢)5-norm equal to one. Therefore, it holds that ||U]|,, < C'v/n for an absolute
constant C. It then follows from the definition of Orlicz vo-norm [51]] that

VE-4p% - |[Ully, \* _ [ Cp*Vnk\*
E M<|—F—5"2) <(o5— ) . .
U“Q' ] - ( 02 + sp? > - (02+sp2> (€85
Following from (C.83), it holds that
2s eIQI] < szp%/ﬁ)’“
T < Ey Ce- . C.86
| Z { < k; aVE (C.86)
For sp? /02 = o(y/slog d/n) and s = o(d'/?79%), it holds that
sy/n/d-sp®/o* = o(s/d-+/slogd) = o(1). (C.87)
Combining (C.86) and (C.87), we obtain that T; = o(1). It remains to show that
s 526 k
7, - ;(,“) By [exp(KQ]) - 1{]Q) 2 1] = (1)

By integration by parts, we have
E&KP“WQD'HHQ|21}]:*Kpaﬁ'PQQ|Z]J4*LT k- exp(th) - Flg(t)dt.  (C.88)

Note that Q = 4p?U /(0% + sp?) is symmetric and sub-Gaussian with Orlicz 2-norm upper bounded
by [|Qlly, < Cp?v/n/(0? + sp?) for an absolute constant C. Thus, it holds that

Co - 12( 52 2\2

PQ > 1) §C1~exp<— P (0—4 + 5p?) )
pin

where C and C) are positive absolute constants. Then for the right-hand side of (C.88), it holds that

/100 k- exp(tk) - F)(t)dt

k2p4n e} 02(0'2+5,02)2 kp4n 2
<Cikexp( " ). S T (- P ) a
< cikon () eXp( (- ) )

k2ptn p*/n
4Cy (02 + sp?)?2 ) o2+ sp?’
where C is a positive absolute constant. Meanwhile, for sp? /02 = o(y/slog d/n), it holds for the
right-hand side of (C.90) that
k?p'n p*Vn ' 2
exp(402(02 n sp2)2> ST 5 < C'y/logd/s - exp(Cok~logd/s), (C91)

which holds for an arbitrary positive absolute constant Cy and a sufficiently large n, respectively.
Here C’ is a positive absolute constant. Combining (C.88)), (C.90), and (C.91), we conclude that

(C.89)

<Ck- eXp( (C.90)

s 26 k
=3 (7)) Eulewiiad-1iQl = ]

2.2 k
Sclz(sk‘;> + " \/logdJs - Zk ( eXp(C’Oklogd/s)) . (C.92)

k=1
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Note that s = o(d'/?~%) for a positive absolute constant §. Thus, it holds that s2¢?/(kd) = o(1) for

0 < k < s, which implies that
L /s2e2\*
Z( i ) =o(1). (C.93)

k=1
Meanwhile, it holds for any 1 < k < s that
2.2 2,2
“d -exp(Coklogd/s) < k—z exp(Cologd) < e?/d* 0, (C.94)

Since Cj is arbitrary, we fix CO > 24. It then holds for a positive absolute constant C' that

k
Viegd/s - Zk < -exp(Coklogd/s) ) < C-\/logd/s-e*/d*~“ =o(1). (C.95)

Combining - , and (C.93), we obtain that 75 = o(1), which concludes the proof of
LemmalC2] O

D Upper Bounds for General Cases

In this section, we characterize the upper bounds for the hypothesis testing problem in (A.I]) under
the general setting. In specific, we consider the hypothesis testing problem that takes the form

Fi(XTB*) +¢€,  with probability o,

f2(XTB*)+¢,  with probability 1 — .’
Here ¢ is a Gaussian noise with variance o2, ¢ is a noise such that the variances of Y under the
null and alternative hypotheses are the same. Besides, f; € C; NC(¢) and fy € C2 N C(1)) are two

unknown link functions, where Cy (1)), C2(%)), and C(v)) are defined in (2.4) and (2.3). Meanwhile,
we set X ~ N(0, I4) and

Hy:Y =€ versus Hy: Y = { D.1)

(8%,0) € Gi(s, ) = {(8%,0) € RTL: |18l = 5, K(8",0) = 7u} (D.2)
under the alternative hypothesis, where x(3*, o) = ||3*||3/0? is the SNR. We further denote by
H(s, o) = {B° € R [|B7]3/0% = 50 /0 =y, 18 [l0 = 5} (D.3)

We denote by Z = (Y, X) and Py, Ps- be the distributions of Z under the null and alternative
hypotheses, respectively. We assume that the Assumption [A-T|holds. We denote by
={Seld:|S|=s}

the class of index sets. For each index set S € V(s ), we denote by B(S) the s-sparse unit sphere that
is supported on the index set S. We further denote by N (e, S) C B(S) the minimum e-covering of
the s-sparse unit sphere B(S). In other words, it holds for any u € B(S) that ||u — v||2 < e for some
v € N(e,S). Meanwhile, N (e, S) attains the smallest cardinality among the sets that have such a
property. It then holds that

IN(e,8)] < Co-(1+2/e)°, (D.4)

where () is a positive absolute constant. We define
N = |J NES). (D.5)

SeV(s)
Therefore, it holds that
d

Wl < G-+ /e (4), (D.6)
In what follows, we construct test functions based on v € A/(1/2). We introduce the following query

functions for v € N (1/2),
GV, X)=9(Y) - [(vTX)? 1] - 1{|»(Y)] < (Rlogn)"/*} - 1{|[vTX| < R-/logn},
@ (Y, X)=Y - (vTX) - 1{|Y]| < (Rlogn)"/*} - 1{|v"X| < R- \/logn}. (D.7)

We denote by 71+ and Z, v the responses of the statistical oracle to query functions ¢ and gz v, as
defined in Definition[2.3} We define the test functions ¢ and ¢ as

or=1{ sw Ziy=m}, dr=1{ sw Z,=nf, (D)
veg(s) veG(s)
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where we set the thresholds 7; and 75 to be

[slogd logd
™ = CR2+1/V . (log n)1+1/’/ . %, To = CIR1+1/V . (log n)1/2+1/y . %, (D_9)

where C' and C’ are positive absolute constants that will be specified in We define the test
function as ¢ = ¢1 V ¢2. Following from (D.6), the capacity of Q is upper bounded as follows,

|Qs| <2Cp - 5° - (j) (D.10)

The following theorem characterizes an upper bound for the minimax separation rate by quantifying
the SNR for ¢ to be asymptotically powerful.

Theorem D.1. We consider the hypothesis testing problem in (D.I)) under Assumption For

1+2/v
%=Q<(logn)1“/”-\/510gd/\ (logn)2 -Slogd>, (D.11)
n (6] n

it holds that R,,(¢; Go, G1) = O(1/d). In other words, ¢ is asymptotically powerful.

Proof. See §D.1]|for a detailed proof. O

To construct a computationally tractable test, we define query functions as follows,
0, (Y, X) = (V) - (X7 = 1) - 1{|[9(Y)] < (Rlogn)"/} - 1{|X;| < R\logn}, j € [d]
02V, X) =Y X; - 1{|Y] < (Rlogn)"/"} - 1{|X;| < R\/logn}, j € [d]. (D.12)
We denote by Z; j and 75, ; the responses of the statistical oracle to the query functions q; j and g2 ;,
as defined in Definition . We define the test functions q~51 and q~52 as

51 = ]l{sup Zl,j > ?1}, ¢2 = ]l{sup Zgj > 7'2}\/ {mf ZQJ < —?2}, (D.13)

j€ld) jEld] J€ld]
where we set the thresholds 77 and 75 to be

- logd . [logd
T = CR2+1/”(10gn)1+1/” . Oi . To = C’R1+1/”(logn)1/2+l/” . %. (D.14)

We define the test function ;5 = 251 vV 52. Therefore, the test function (E is with capacity of query
functions \Q$| = 2d. The following theorem holds, which characterizes the minimum SNR required

for the test function 5 to be asymptotically powerful.
Theorem D.2. We consider the hypothesis testing problem in ( under Assumption [A.T] For

2logd A (logn)' 2/ slogd
%Q(lognlﬂ/" \/s o8 /\ Og” -Sog ) (D.15)

it holds that R, (¢; Go, G1) = O(1/d). In other words, ¢ is asymptotlcally powerful.

Proof. See §D.2)for a detailed proof. O

D.1 Proof of Theorem [D.1]

Proof. The proof is similar to that of Theorem[A.2]in Recall that we denote by Py and P~ the
distributions of Z = (Y, X) under the null and alternative hypotheses, respectively. The following
lemma holds, which characterizes the expection of g1, and g2, under the null and alternative
hypotheses, respectively.

Lemma D.3. For any v € NV (1/2), 3* € H(s,Vn), and

—Q(logn 41w /slogd/\ (logn) 1+2/”.slogd>

Ep, [q1,v(Y, X)] <1/n, Ep,[g2 (Y, X)] < 1/n. (D.16)

it holds that
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In addition, it holds that

logd
sup Ep,. [ql,v(Y, X)] > s5p2/2 if 7y, = Q((logn)IH/V 1/ SOg),
veN(1/2) n

logn)' %" slogd
sup Ep,. [g2.0(V. X)) > v/aZei? /2 if, = o W8T slosd) T 1)
ven(y2) o a? n
Proof. See §D.3|for a detailed proof. O

It now suffices to upper bound the risk of ¢ = ¢ V ¢o, where ¢1 and ¢, are defined in (D.8). Recall
that we define the threshold 7; and > as

log d log d
7'1:CR2+1/”~(logn)1+1/”~q/%, = C'RYTYY . (logn)Y/2+1/Y . %, (D.18)

where C and C’ are positive absolute constants. Note that for the test function ¢, the capacity of
query functions is upper bounded in (D-10). Therefore, following from (2:12) with £ = 1/d, it holds
for a sufficiently large n that

slogd

Tt < CIR2+1/V(IOg n)1/2+1/y . - ,

/s]
Tganw < 02R1+1/V(10g n)1/2+1/V . %’ (D.19)

where 7,, , and 7,4, , are the tolerance parameters of ¢; . and gz , defined in Definition and
(1, Cy are positive absolute constants. We fix C' and C” in (D.I8) such that 7; > 7,, +I§% and
Ty > Tq,, + 1/n. The rest of the proof then follows a similar argument in §B.3| Recall that we
denote by Z1,v and Zg,v the responses of the statistical oracle to the query functions ¢;  and g2 .
We denote by Py and P~ the distributions of response of the statistical oracle to the query functions
when the true distribution of the data is Py and P-. Following from Lemma[D.3] it holds for any
v € N(1/2) that

Bo(Zinv > ) < Bo(|Zinw — Br, [0 (v, )] 2 7., ), i € {12},
Therefore, following from (2.11) with £ = 1/d, we obtain

PQ((@ = 1) = Po( sup Z@v > Ti>
vEN(1/2)

< H_J’o< U {\Z,V — Ep, [giv (Y, X)]| > Tq}> < 2/d. (D.20)

vEN(1/2)
Recall that we define ¢ = ¢1 V ¢2. Then it holds that
Po(dp=1) <Po(¢1 =1) + Py =1) =4/d, (D.21)

which is an upper bound of the type-I error of ¢. It now suffices to upper bound the type-II error of ¢.

If (D-TT) holds, we obtain that either sp?/4 > 11 or \/a2sp? /4 > T, for a sufficiently large n. We
denote by

v* € argmax Ep,, [(]17\,(1/7 X)], u* € argmax Ep,. [QQ,V(K X)]
veN(1/2) veN (1/2)

If it holds that sp2 /4 > 71, then following from Lemma we obtain that
Pg+(¢1 =0) = Pﬂ*( sup  Ziy < 7'1) <Pge(Z1v <71)

veN(1/2)
< Pg- (Zw < Ep,. [q1,+ (Y, X)] — n) (D.22)
<Py (|21 — By [01- (V. X)) > 7,0, (D.23)

where the last inequality follows from the fact that 71 > 7,, .. Therefore, following from 2.1T)
with € = 1/d, we obtain that the right-hand side of (D.22)) is upper bounded by 2/d. Similarly, if it
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holds that y/«?sp?/4 > 75, we obtain

EDB* (Q52 = 0) = Pﬁ* ( sup Zl,v < Tl) < ]F)B* (ZQ,U* < Tg)
veEN(1/2)
< Pg- (|Zz,u»« —Ep,. [g2.u- (Y, X)]| > 7, ) (D.24)

where the last inequality follows from the fact that 7y > 7,, .. Therefore, following from @2.1T)
with & = 1/d, we obtain that the right-hand side of (D.24)) is upper bounded by 2/d. Note that (D-22))
and (D-24) holds for all (8*,0) € Gi(s, v, if (D.I1) holds. Therefore, we conclude that

sup Pge(¢=0)< sup {Pg(¢1 =0)APg(¢2=0)} <2/d. (D.25)

(B*,0)€G: (B*,0)€G:
Combining and (D.23)), we obtain that if (D.TT)) holds, the risk of ¢ is O(1/d), which concludes
the proof. O

D.2 Proof of Theorem [D.2]

Proof. The proof is similar to that of Theorem [A.3]in §B.4] Recall that we denote by Py and Pg- the
distributions of Z = (Y, X)) under the null and alternative hypotheses, respectively. The following
lemma holds, which characterizes the expection of ¢; ;(Y, X) and g2 ;(Y, X) under the null and
alternative hypotheses, respectively.

Lemma D.4. For any 8* € H(s,~,) and

— Q( log n) 177 .4/ 2 logd/\ logn )R , Slogd)

sup Ep, [q1;(Y, X)] <1/n, sup Ep, [g2,;(Y, X)] < 1/n. (D.26)
J€ld] J€ld]
In addition, it holds that

. L, [s?logd
sup B 01V, X)) 2 /2 if 3, = Q((lognf“/ -/ ng>,
JEld

it holds that

. logn)*2/V  slogd
sup [Bs,.. (42,5 (Y, X)]| > ap/2 if 7, =Q(< gn) 7 slos ) (D27)
jeld] @ "
Proof. See §D4for a detailed proof. O

In what follows, we upper bound the risk of ¢ = ¢, V ¢ where ¢; and ¢» are defined in (D:13).
Recall that we define the threshold 7; and 75 as

- [logd /logd
leCRQH/”(logn)Hl/”- %, TQ:C’R1+1/”(logn)1/2+l/”- %, (D.28)

where C and C” are absolute constants. Note that for (E, the capacity of query functions is 2d.
Therefore, following from (2.12)) with £ = 1/d, it holds for a sufficiently large n that

log d log d
Tar, < CLREFVY (logn)V/2H1/v . %, Tan, < CaR"FV/¥ (logn) /2117 %7

(D.29)
where C and Cy are positive absolute constants. We fix C'and C” in (D:28) such that 7, > 7,, . +1/n
and 73 > 71, ; 4 1/n for a sufficiently large n. Recall that we denote by ZL]‘ and ZQJ‘ the responses

of the statistical oracle to the query functions ¢ ; and g2 ;. We denote by Py and Pg* the distributions
of response of the statistical oracle to the query functions when the true distribution of the data is Py
and Pg-. Following from Lemma it holds for j € [d] and ¢ € {1,2} that

Po(Zij > 1) < P0(|Zi,j — Eg, [0, (Y, X)]| > Tqi,j)- (D.30)
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Therefore, following from Z.IT)) with § = 1/d, it holds for i € {1, 2} that
EDO((Ez = 1) = ]TDO (Sup Zi’j > ’FZ)

JEld]

<Py < U {1205 = Braais (V. X)] | > 7., }) < 2/d, (D.31)
jeld]
which further shows that B N B
Po(¢p =1) <Po(¢r = 1) +Po(¢2 = 1) < 4/d. (D.32)
In other words, it holds that the type—INerror of (E is asymptotically upper bounded by 4/d. It remains

to upper bound the type-II error of ¢. Note that if (D.13) holds, it holds that either p?/4 > 7| or
ap/4 > 7, for a sufficiently large n. We denote by

J* € argmaxEp,, [ql’j(Y, X)], k' e argmax’]EPm [qzyj(Y, X)] ’
JEld] J€ld]

If it holds that p? /4 > 71, following from Lemma we obtain that
Pg- (1 = 0) < Py (Sup Zy; < F2) < Pp-(Z15+ <T1)

j€ld]
< Pg- (21,3'* < Ep,. [q14 (Y, X)] — ﬁ)
<Py (|20 — Be, [02- (Y X)]| > 74,.,. ) < 2/, (D.33)

where the fourth inequality follows from the fact that 71 > 74, .., and the last inequality following
from @.11) with € = 1/d. If it holds that ap/4 > 75, following from Lemma|D.4] we obtain that
either Ep,. [g2, 1+ (Y, X)] > ap/2 or Ep,. [q2 1~ (Y, X)] < —ap/2. If Ep,. [q2.%- (Y, X)] > ap/2,
we obtain that

Pg-(¢3 = 0) < Pg. (Sél[% Zo; < F2) < Ppe (Zop < 7o)
J

< Pg- (Zz,k* < Ep,. [q26+ (Y, X)] — 7~'2>
< By (| Zoe = Bo, @240 (¥, X)]| > 73,.,. ) <2/, (D34)

where the fourth inequality follows from the fact that 72 > 74, ., and the last inequality follows
from 2:11)) with § = 1/d. If it holds that Ep,. [g2,x~ (Y, X)] < —ap/2, we obtain that

5 (92 = 0) < Pg- ( lﬂ[f] Zaj > —Tz) < Pge(Zope > —T2)

< Pg- (Z2,k* > Ep,. [q2,6- (Y, X)] + ?2)

< Py (|Zage — By [ (VX)) | > 74,00 ) < 2/d, (D.35)

where the fourth inequality follows from the fact that 72 > 7, ., and the last inequality follows

from 2.11) with ¢ = 1/d. Note that (D.33)), (D-34), and (D.33) holds for all (3*,0) € G (s,7,) if
(D-15) holds. Therefore, we obtain that

sup Pse(p=0)< sup {Ps- (1 =0)APs(do =0)} <2/d. (D.36)

(B*,0)€G1 (B*,0)€G1
Combining (D-32) and (D.36), we obtain that if (D.13) holds, the risk of ¢ is O(1/d), which concludes
the proof of Theorem|D.2] O

D.3 Proof of Lemma[D.3|

Proof. In the following proof, we denote by C' and C’ absolute constants, the value of which may
vary from lines to lines. We define the following query functions,

G (Y, X) =9(Y) - [(vIX)? =1] - 1{[(Y)] < (R-logn)"/"}, v €G(s),
(Y, X)=Y - (vTX) - 1{|Y| < (R-logn)*/"}, veG(s) (D.37)
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Following from (D.7) and (D-37)), we conclude that
Qv —que =9(Y) [T X)? = 1] 1{[p (V)] < (R logn)' "} - 1{[v X| > R /logn},
B —qov =Y - (v X) - 1L{|Y] < (R-logn)"/} - 1{|v' X| > R- \/logn}. (D.38)
Therefore, following from the Cauchy-Schwartz inequality, we obtain from (D-38) that
|Ep, [q1,v(Y, X) — q1,(Y, X)] |2

< Es, [W(Y) JTX)? - 1]2} Po(vTX| > R-\/logn). (D.39)
Further note that under the null hypothesis, Y is independent of X and X ~ N(0, I;). Therefore,
for v € N'(1/2), it holds that v X ~ N(0, 1). Meanwhile, following from Assumption Y has

bounded fourth moment. Therefore, we obtain from (D.39) and the tail bound of standard Gaussian
distribution in (C-34) that

_ 2
|Ep, [G1,v (Y, X) — q13(Y, X)]|” < C - exp(—R*logn), (D.40)
where C'is a positive absolute constant. Similarly, it holds under the alternative hypothesis that
~ 2
’Epg [0 (Y, X) = g1 (Y, X)]|

< Bpy [02(0) - [(vTX)2 = 1]°] - Po(|vTX| = R /logn)
1/2
< (JEPB [ ()] - Bpy [ [(vTX)? = 1]4}) Po([v' X| > R-\/logn), (D41

where the above inequalities follow from the Cauchy-Schwartz inequality. Then following from
Assumption and the fact that X ~ N (0, I;) under the alternative hypothesis, we conclude that
~ 2
[Ee; (71, (Y, X) — 10 (Y, X)]|” < O+ P (VT X| > R+ /logn)
< " - exp(—R?%logn), (D.42)
where C” is a positive absolute constant, and the last inequality follows from the tail bound of standard
Gaussian distribution in (C.34). Similar argument holds for the query functions ¢» (Y, X) and

¢2v(Y, X). We conclude from (D.40), (D.42) and a similar argument on ¢ (Y, X) and g2 (Y, X)
that

|Ep,. [a13 (Y. X) — 10 (Y, X)]| V [Ep, [q1,0 (Y, X) — @ (Y, X)]| < 1/n,
|Ep,. [q23 (Y. X) — G2 (Y, X) ]| V |Ep, [g2,4 (Y, X) — oo (Y, X)]| < 1/n, (D.43)

which holds for v € N (1/2), 8* € H(s, V), and sufficiently large n and constant R. Note that
under the null hypothesis, it holds that X ~ N(0, ;) and Y is independent of X. Therefore, it
follows from (D:37) that

Eo[q1v(Y, X)] = Eo[g2, (Y, X)] =0, (D.44)

which holds for all v € N (1/2). Meanwhile, following from the definition of A/(1/2) in (D.3), it
holds that for any 8* € H(s,7y), there exist a v* € N (1/2) such that

18/ sp? =v*[3 < 1/4,

Vi B > 7/8 - \/sp. (D.45)
Therefore, following from (A.3) and (D.43), it holds that

49/64 - sp* — Ep,. [q1,v- (Y X)} (v g2 —Ep,. [q1,v+ (Y, X)]
gEPW[wm-( 1)—q1vYX]
= Ep,. [1/1(Y) (v 1) - H{p¥)| > (R- 1ogn)1/”}}

< \/Epm [w?(y)-(( “T X2 } \/Pﬁ

where the last inequality follows from the Cauchy-Schwartz inequality. It then follows from the
Cauchy-Schwartz inequality and Assumption [A.T] that

49/64 - sp® — Ep,. [q1,v+ (Y, X)] < C - exp(—R/2 - logn), (D.47)

which is equivalent to

Y)| > (R-logn)t/v), (D.46)
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where C is a positive absolute constant. If it holds that sp? /0% = Q(+/slogd/n), we obtain that for
sufficiently large n and constant R, it holds that sp?/64 > 1/n and

49/64 - sp* — Ep,. [q1v+(Y, X)] < 1/64 - 5p°. (D.48)
In other words, it holds that Ep,. [§1,v+ (Y, X)] > 3/4 - sp*. Similarly, following from (A-4) and
(D:43)), we obtain
7/8 -V a2sp? — Ep,. [ (V. X)] < a- v 5" = Ep,. [Gov- (Y, X)]
< B, [V (v X) = @10 (Y, X))

= Ep,. [Y-(V*TX) {|Y] > ( R-logn)l/”}}

< VBey [Y2- (v TX)2] - \[Ba (IY] > (R -logm)1/¥). (D.49)
Then following from the Cauchy-Schwartz 1nequahty and Assumption[A-]] we obtain that

7/8-a?sp? —Ep,. [Gan- (Y, X)] <O - exp(—R/2 - logn), (D.50)
where C' is a positive absolute constant. If it holds that sp? /0% = Q(1/a - slog d/n), we obtain that
for sufficiently large n and constant R, it holds that \/a2sp?/8 > 1/n and

7/8-a2sp? — Ep,, [G2 (Y, X)] < 1/8-\/a2sp?. (D.51)
In other words, it holds that Ep,. [ga,v+ (Y, X)] > 3/4 - \/a?sp?. Combining (D.43), (D.48), and
(D:3T)), we conclude that for sufﬁ01ently large n and constant R, it holds that
Ep, [q1,v(Y,X)] <1/n, Ep,[g2(Y,X)] < 1/n.
Furthermore, it holds for sufficiently large n and constant R that

sup, )En»ﬁ* [q1,4(Y, X)] > Ep,. [q1.v- (Y, X)] > sp° /2, if sp° Jo? = Q(y/slogd/n),
\4S 1/2

jS\}J(p/ )Epﬁ* [q2,v (Y, X)] > Ep,. [g2.0- (Y, X)] > \/a2sp?/2, if sp®/o® = Q(1/a?® - slogd/n),
veN(1/2
which concludes the proof of Lemma[D.3] O

D.4 Proof of Lemma[D.4

Proof. In the following proof, we denote by C and C’ absolute constants, the value of which may
vary from lines to lines. We define the following query functions,

G (V. X) =9(Y) - (XF = 1) - 1{[(Y)] < (R-logn)"/}, j € [d],
&V, X)=YX; - 1{|[Y| < (R-logn)*/"}, j€[d]. (D.52)
Following from (D.13) and the Cauchy-Schwartz inequality, it holds that
- 2
[Ez, [31;(Y: X) = qu3 (V. X)]|” < Ep, [0*(V) - (X7 = 1)*] - Po(IX;] = R~ /logn). (D.53)

Note that under the null hypothesis, Y is independent of X and X ~ N (0, I;). Then following from
Assumption [A-T|and the tail bound of standard Gaussian distribution in (C.34), it holds that

B, [G1,5(Y: X) = 1,3 (Y, X)][* < C - exp(—R? - log n), (D.54)
where C' is a positive absolute constant. Under the alternative hypothesis, it holds that
~ 2
|Ep,. [¢1,;(Y,X) = q1;(Y, X)]|” < Ep,. [0°(Y) - (X7 —1)] - Pg ( log )

(D.55)
< \JBp,. [9000)] - B, [(X2 = 1)4] - Bo- (1X;] > R+ Viogn),

where the above inequalities follows from the Cauchy-Schwartz inequality. Note that under the
alternative hypothesis, we have X ~ N (0, I;). Then following from Assumption and the tail
bound of standard Gaussian distribution in (C.34), it holds that

|Ez,.. [G1,;(Y, X) — q1;(Y, X)]|* < C" - exp(—R? - logn), (D.56)
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where C is a positive absolute constant. Similar argument holds for ¢, ;(Y, X). Combining (D.54),
(D:36), and a similar argument on g2 ; (Y, X), we obtain that

By [01,5(Y, X) = @1, (V. X)]| V [Eps [q1,; (Y, X) = @1 3(Y, X)]| < 1/n,
|Ep, [q2,; (Y, X) — G2,; (Y, X)] | v |]EIP>;; (42, (Y, X) — G2,;(Y, X)]| < 1/n, (D.57)

which holds for j € [d], 8* € H(s,7x), and sufficiently large n and constant R. Note that under the
null hypothesis, it holds that X ~ N(0, I;) and Y is independent of X. Therefore, following from

(D:32)), we obtain
Es, [d1,(Y, X)] = Es, [G2.;(Y, X)] = 0. (D.58)
Meanwhile, under the alternative hypothesis, it follows from (A.3) that

B;% = Ep,. [31,,(Y, X)]
< Be,. [0(0) - (X2 = 1) {[(Y)| > (R-logn)"/"}]

< fBe,. [0200) - (X3 = 1)2] - [P (0

< (Epﬁ* [44(Y)] - Ep,. [(X2 — 1 ) \/IPB V)| > (R-logn)/),  (D.59)
where we denote by 37 the j-th entry of 3, and the above 1nequa11t1es follow from the Cauchy-

Schwartz inequality. Then following from Assumption and the fact that X ~ N (0, I;) under the
alternative hypothesis, we obtain that

B*2 —Ep,. [q1,;(Y,X)] < C-exp(—R/2 - logn), (D.60)

where C'is a positive absolute constant. Note that ||3*||3 = sp? and ||3*||o = s. Therefore, we
obtain that

Y)| > (R-logn)'/¥)

sup |B7] > p. (D.61)
Jj€ld]

Following from (D.60) and (D.61), if it holds that sp? /a? = Q(y/s?log d/n), then for sufficiently
large n and constant R, we obtain that p?/4 > 1/n and

Su[p] Ep,. [q1,;(Y,X)] > 3p°/4. (D.62)
jEld

Similar argument holds for ¢ ;(Y, X). Following from (A4), we obtain that under the alternative
hypothesis, it holds that

aff; = Ep,. [@2,5(Y, X)] = Eg,. [w( Xj - 1{[(Y)| > (R -logn)"/ ”}} : (D.63)
Meanwhile, it follows from the Cauchy-Schwartz mequahty that

2
‘Epﬁ* [Y X 1Y > (R-logn)l/”}” < Ep,.[V2- X2 Pge

(R -logn)*/")

< \/IEPB* - Ep,. [X4] - Pg- ( (R-logn)'/")

< C"-exp(—Rlogn), (D.64)
where the last inequality follows from Assumption F and the fact that X ~ N(0, ;) under
the alternative hypothesis. Combining (D.61), (D.63), and (D.64), we obtain that for sp®/c? =
Q(1/a? - slogd/n), it holds for sufficiently large n and constant R that ap/4 > 1/n and

sup |Ep,. [32,; (Y, X)]| = Bap/4. (D.65)
NS

Combining (D.57), (D.62)), and (D.63), we obtain that for sufficiently large n and constant R, it holds
that

sup Ep, [q1,;(Y,X)] <1/n, sup Ep, [q1,;(V,X)] < 1/n. (D.66)
jeld] Jjeld]
Moreover, for sufficiently large n and constant R, it holds that

su[p] Ep,. [ql,j(Y, X)] > p2/2 if 5/)2/02 = Q(+/slogd/n),
je

sup Ep,. [g2,;(Y, X)] > ap/2 if sp?/o? = Q(1/a? - slogd/n), (D.67)
jeld]
which concludes the proof of Lemma [D.4] O
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