
ID 5218: Supplementary Materials

1 Missing details from Section 3

1.1 Proof of Lemma 3.2

Consider an arbitrary collection of n persistence images {PI1, . . . ,PIn} (i.e, a collection of n vectors
in RN ). Set K = [kij ]n×n to be the n× n kernel matrix where kij = kw(PIi,PIj). Now given any
vector v = (v1, v2, ..., vn)T , we have that:

vTKv =

n∑
i,j=1

vivjkij

=

n∑
i,j=1

vivj

m∑
s=1

ω(ps)e
−

(PIi(s)−PIj(s))
2

2σ2

=

m∑
s=1

ω(ps)

n∑
i,j=1

vivje
−

(PIi(s)−PIj(s))
2

2σ2 .

Because Gaussian kernel is positive semi-definite and the weight-function ω is non-negative, vTKv ≥
0 for any v ∈ RN . Hence the WKPI kernel is positive semi-definite.

1.2 Proof of Theorem 3.4

By Definitions 3.1 and 3.3, combined with the fact that 1− e−x ≤ x for any x ∈ R, we have that:

Dω
2(A,B) = kw(PIA,PIA) + kw(PIB ,PIB)− 2kw(PIA,PIB)

= 2
N∑
s=1

ω(ps)− 2
n∑
s=1

ω(ps)e
− (PIA(s)−PIB(s))2

σ2

= 2

N∑
s=1

ω(ps)(1− e−
(PIA(s)−PIB(s))2

σ2 )

≤ 2cw

N∑
s=1

(1− e−
(PIA(s)−PIB(s))2

σ2 )

≤ 2
cw
σ2

n∑
s=1

(PIA(s)− PIB(s))2

≤ 2
cw
σ2
||PIA − PIB ||22

Furthermore, by Theorem 10 of [1], when the distribution φu to in Definition 2.1 is the normalized

Gaussian φu(z) = 1
2πτ2 e

− ‖z−u‖
2

2τ2 , and the weight function α = 1, we have that ‖PIA − PIB‖2 ≤√
10
π ·

1
τ · dW,1(A,B). (Intuitively, view two persistence diagrams A and B as two (appropriate)

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



measures, and dW,1(A,B) is then the “earth-mover” distance between them so as to convert the
measure corresponding to A to that for B, where the cost is measured by the total L1-distance that all
mass have to travel.) Combining this with the inequalities for Dω

2(A,B) above, the theorem then
follows.

1.3 Proof of Theorem 3.6

We first show the following properties of matrix L which will be useful for the proof later.

Lemma 1.1 The matrix L is symmetric and positive semi-definite. Furthermore, for every vector
f ∈ Rn, we have

fTLf =
1

2

n∑
i,j=1

Λij(fi − fj)2 (1)

Proof: By construction, it is easy to see that L is symmetric as matrices Λ and G are. The positive
semi-definiteness follows from Eqn (1) which we prove now.

fTLf = fTGf − fTΛf =

n∑
i=1

f2i gii −
n∑

i,j=1

fifjΛij

=
1

2

( n∑
i=1

f2i gii +

n∑
j=1

f2j gjj −
n∑

i,j=1

2fifjΛij
)

=
1

2

( n∑
i=1

f2i

n∑
j=1

Λij +

n∑
j=1

f2j

n∑
i=1

Λji

−
n∑

i,j=1

2fifjΛij
)

=
1

2

n∑
i,j=1

Λij · (f2i + f2j − 2fifj)

=
1

2

n∑
i,j=1

Λij(fi − fj)2

The lemma then follows.

We now prove the statement in Theorem 3.6. Recall that the definition of various matrices, and
that ht’s are the row vectors of matrix H . For simplicity, in the derivations below, we use D(i, j)
to denote the ω-induced WKPI-distance Dω(Ai, Aj) between persistence diagrams Ai and Aj .
Applying Lemma 1.1, we have:

Tr(HLHT ) =

k∑
t=1

(HLHT )tt =

k∑
t=1

htLh
T
t

=

k∑
t=1

1

2
·

n∑
j1,j2=1

D2(j1, j2)(ht,j1 − ht,j2)2

=

k∑
t=1

1

2
·

n∑
j1,j2=1

D2(j1, j2)(h2t,j1 + h2t,j2 − 2ht,j1ht,j2).

(2)

2



Now by definition of hti, it is non-zero only when i ∈ Ct. Combined with Eqn (2), it then follows
that:

Tr(HLHT ) =

k∑
t=1

1

2
·
( ∑
j1∈Ct,j2∈[1,n]

D2(j1, j2)

costω(t, ·)

+
∑

j1∈[1,n],j2∈Ct

D2(j1, j2)

costω(t, ·)
− 2

∑
j1,j2∈Ct

D2(j1, j2)

costω(t, ·)
)

=

k∑
t=1

1

2

( ∑
j1∈Ct,j2 /∈Ct

D2(j1, j2)

costω(t, ·)

+
∑

j1 /∈Ct,j2∈Ct

D2(j1, j2)

costω(t, ·)
)

=

k∑
t=1

∑
j1∈At,j2 /∈At

D2(j1, j2)

costω(t, ·)

=

k∑
t=1

costω(t, ·)− costω(t, t)

costω(t, ·)

= k − TC(ω)

This proves the first statement in Theorem 3.6. We now show that the matrix HGHT is the k × k
identity matrix I. Specifically, first consider s 6= t ∈ [1, k]; we claim:

(HGHT )st = hsGh
T
t =

n∑
j1,j2=1

hsj1Gj1j2htj2 = 0.

It equals to 0 because hsj1 is non-zero only for j1 ∈ Cs, while htj2 is non-zero only for j2 ∈ Ct.
However, for such a pair of j1 and j2, obviously j1 6= j2, which means that Gj1j2 = 0. Hence the
sum is 0 for all possible j1 and j2’s.

Now for the diagonal entries of the matrix HGHT , we have that for any t ∈ [1, k]:

(HGHT )tt = htGh
T
t =

n∑
j1,j2=1

htj1Gj1,j2htj2

=
∑

j1,j2∈Ct

Gj1j2
costω(t, ·)

=
∑
j1∈Ct

Gj1j1
costω(t, ·)

=
∑
j1∈Ct

∑n
`=1D

2(j1, `)

costω(t, ·)

=

∑
j1∈Ct,`∈[1,n]D

2(j1, `)

costω(t, ·)

=
costω(t, ·)
costω(t, ·)

= 1.

This finishes the proof that HGHT = I, and completes the proof of Theorem 3.6.

2 More details for Experiments

2.1 More on neuron experiments

Description of neuron datasets. Neuron cells have natural tree morphology (see Figure 1 (a) for
an example), rooted at the cell body (soma), with dentrite and axon branching out. Furthermore,
this tree morphology is important in understanding neurons. Hence it is common in the field of

3



neuronscience to model a neuron as a (geometric) tree (see Figure 1 (b) for an example downloaded
from NeuroMorpho.Org[2]).

Our NEURON-BINARY dataset consists of 1126 neuron trees classified into two (primary) classes:
interneuron and principal neurons (data partly from the Blue Brain Project [15] and downloaded
from http://neuromorpho.org/). The second NEURON-MULTI dataset is a refinement of the 459
interneuron class into four (secondary) classes: basket-large, basket-nest, neuglia and martino.

(a) (b)
Figure 1: (a) An neuron cell (downloaded from Wikipedia)and (b) an example of a neuron tree
(downloaded from NeuroMorpho.Org).

Setup for persistence images. Persistence-images are both needed for the methodology of [1] and
as input for our WKPI-distance. For each dataset, the persistence image for each object inside is
computed within the rectangular bounding box of the points from all persistence diagrams of input
trees. The y-direction is then discretized to 40 uniform intervals, while the x-direction is discretized
accordingly so that each pixel is a square. For persistence image (PI) approach of [1], we show results
both for the unweighted persistence images (PI-CONST), and one, denoted by PI-PL, where the
weight function α : R2 → R (for Definition 2.1) is the following piecewise-linear function (modified
from one proposed by Adams et al. [1]) where b the largest persistence for any persistent-point among
all persistence diagrams.

α(x, y) =


|y−x|
b |y − x| < b and y > 0

|−y−x|
b | − y − x| < b and y < 0

1 otherwise

(3)

Weight function learnt. In Figure 2 we show the heatmaps of the learned weight-function ω∗ for
both datasets. Interestingly, we note that the important branching features (points in the birth-death
plane with high ω∗ values) separating the two primary classes (i.e, for Neuron-Binary dataset)
is different from those important for classifying neurons from one of the two primary classes
(the interneuron class) into the four secondary classes (i.e, the Neuron-Multi dataset). Also high
importance (weight) points may not have high persistence. In the future, it would be interesting to
investigate whether the important branch features are also biochemically important.

Figure 2: Heatmaps of the learned weight-function ω∗ for Neuron-Binary (left) and Neuron-Multi
(right) datasets. Each point in this plane indicates the birth-death of some branching feature. Warmer
color (e.g, red) indicates higher ω∗ value. x- and y-axies are birth / death time measured by the
descriptor function f (modified geodesic function, where for points in dendrites they are negation of
the distance to root).

4



2.2 More on graph classification experiments

Benchmark datasets for graph classification. Below we first give a brief description of the
benchmark datasets we used in our experiments. These are collected from the literature.

NCI1 and NCI109 [18] consist of two balanced subsets of datasets of chemical compounds screened
for activity against non-small cell lung cancer and ovarian cancer cell lines, respectively.
PTC [8] is a dataset of graph structures of chemical molecules from rats and mice which is designed
for the predictive toxicology challenge 2000-2001.
DD [7] is a data set of 1178 protein structures. Each protein is represented by a graph, in which the
nodes are amino acids and two nodes are connected by an edge if they are less than 6 Angstroms
apart. They are classified according to whether they are enzymes or not.
PROTEINS [3] contains graphs of protein. In each graph, a node represents a secondary structure
element (SSE) within protein structure, i.e. helices, sheets and turns. Edges connect nodes if they
are neighbours along amino acid sequence or neighbours in protein structure space. Every node is
connected to its three nearest spatial neighbours.
MUTAG [6] is a dataset collecting 188 mutagenic aromatic and heteroaromatic nitro compounds
labelled according to whether they have a mutagenic effect on the Gramnegtive bacterium Salmonella
typhimurium.
REDDIT-5K and REDDIT-12K [21] consist of graph representing the discussions on the online
forum Reddit. In these datasets, nodes represent users and edges between two nodes represent whether
one of these two users leave comments to the other or not. In REDDIT-5K, graphs are collected from
5 sub-forums, and they are labelled by to which sub-forums they belong. In REDDIT-12K, there are
11 sub-forums involved, and the labels are similar to those in REDDIT-5K.
IMDB-BINARY and IMDB-MULTI [21] are dataset consists of networks of 1000 actors or actresses
who played roles in movies in IMDB. In each graph, a node represents an actor or actress, and an edge
connects two nodes when they appear in the same movie. In IMDB-BINARY, graphs are classified
into Action and Romance genres. In IMDB-MULTI, they are collected from three different genres:
Comedy, Romance and Sci-Fi.

The statistics of these datasets are provided in Table 1. In our experiments, for REDDIT-12K dataset,
due to the larger size of the dataset (with about 13K graphs), we deploy the EigenPro method
([14], code available at https://github.com/EigenPro/EigenPro-matlab), which is a preconditioned
(stochastic) gradient descent iteration) to significantly improve the efficiency of kernel-SVM.

Table 1: Statistics of the benchmark graph datasets

Dataset #classes #graphs average #nodes average #edges
NCI1 2 4110 29.87 32.30

NCI109 2 4127 29.68 31.96
PTC 2 344 14.29 14.69

PROTEIN 2 1113 39.06 72.82
DD 2 1178 284.32 715.66

IMDB-BINARY 2 1000 19.77 96.53
IMDB-MULTI 3 1500 13.00 65.94
REDDIT-5K 5 4999 508.82 594.87

REDDIT-12K 11 12929 391.41 456.89

Persistence generation. To generate persistence diagram summaries, we want to put a meaningful
descriptor function on input graphs. We consider two choices in our experiments: (a) the Ricci-
curvature function fc : G→ R, where fc(x) is a discrete Ricci curvature for graphs as introduced in
[13]; and (b) Jaccard-index function fJ : G→ R.

Then Ollivier’s Ricci curvature between two nodes u and v is καuv = 1−W (mα
u ,m

α
v )/d(u, v) where

W (·, ·) is Wasserstein distance between two measures and d(u, v) is the distance between two nodes,

5



and probability measure mα
u around node u is defined as

mα
x(x) =


α x = u

(1− α)/nu x ∈ N (u)

0 otherwise
(4)

nu = |N (u)| and α is a parameter within [0, 1]. In this paper, we set α = 0.5.

In particular, the Jaccard-index of an edge (u, v) ∈ G in the graph is defined as ρ(u, v) =
|NN(u)∩NN(v)|
|NN(u)∪NN(v)| , where NN(x) refers to the set of neighbors of node x in G. The Jaccard in-
dex has been commonly used as a way to measure edge-similarity1. As in the case for neuron data
sets, we take the union of the 0-th persistence diagrams induced by both the sublevel-set and the
superlevel-set filtrations of the descriptor function f , and convert it to a persistence image as input to
our WKPI-classification framework 2.

In all results reported in main text and in Table 2, Ricci curvature function is used for the small
chemical compounds data sets (NCI1, NCI9, PTC and MUTAG), while Jaccard function is used for
the two proteins datasets (PROTEIN and DD) as well as the social/IMDB networks (IMDB’s and
REDDIT’s). Both 0-dim and 1-dim extented persistence diagrams are employed. In general, we
observe that Ricci curvature is more sensitive to accurate graph local structure, while Jaccard function
is better for noisy graphs (with noisy edge). In Figure 3, we show the heatmaps of the weight function
before and after our metric learning for NCI1 and REDDIT-5K datasets. In particular, the left column
shows the heatmaps of the initialized weight function, while the right column shows the heatmaps of
the optimal weight function as learned by our algorithm.

Table 2: Classification accuracy on graphs. Our results are in columns WKPI-kM and WKPI-kC.

Dataset Previous approaches Our appraches
RetGK WL WL-OA DGK FGSD PSCN GIN P-WL-UC WKPI-kM WKPI-kC

NCI1 84.5 85.4 86.1 80.3 79.8 76.3 82.7 85.6 87.5 84.5
NCI109 - 84.5 86.3 80.3 78.8 - - 85.1 85.9 87.4

PTC 62.5 55.4 63.6 60.1 62.8 62.3 66.6 63.5 62.7 68.1
PROTEIN 75.8 71.2 76.4 75.7 72.4 75.0 76.2 75.9 78.5 75.2

DD 81.6 78.6 79.2 - 77.1 76.2 - 78.5 82.0 80.3
MUTAG 90.3 84.4 84.5 87.4 92.1 89 90 85.2 85.8 88.3

IMDB-BINARY 71.9 70.8 - 67.0 71.0 71.0 75.1 73.0 70.7 75.4
IMDB-MULTI 47.7 49.8 - 44.6 45.2 45.2 52.3 - 46.4 49.5
REDDIT-5K 56.1 51.2 - 41.3 47.8 49.1 57.5 - 59.1 59.5

REDDIT-12K 48.7 32.6 - 32.2 - 41.3 - - 47.4 48.4
Average - 66.39 - - - - - - 69.99 71.66

Additional results. Many graph classification methods have been proposed in the literature. We
compare our results with a range of existing approaches, which includes state-of-the-art results on
different datasets: six graph-kernel based approaches: RetGK[22], FGSD[19], Weisfeiler-Lehman
kernel (WL)[18], Weisfeiler-Lehman optimal assignment kernel (WL-OA)[10], Deep Graphlet kernel
(DGK)[21], and the very recent persistent Weisfeiler-Lehman kernel (P-WL-UC)3 [17]; two graph
neural networks: PATCHYSAN (PSCN) [16], Graph Isomorphism Network (GIN)[20]; as well as
the topology-signature-based neural networks [9].

Additional results of comparing our results with more existing methods are given in Table 2. The
results of DL-TDA (topological signature based deep learning framework) [9] are not listed in Table 2,
as only the classification accuracy for REDDIT-5K (accuracy 54.5%) and REDDIT-12K (44.5%) are
given in their paper (although their paper contains many more results on other objects, such as images).
While also not listed in this table, we note that our results also outperform the newly independently
proposed general neural network architecture for persistence representations reported in the very
recent preprint [4]. Comparison with other topological-based non-neural network approaches are
given below.

1We modify our persistence algorithm slightly to handle the edge-valued Jaccard index function
2We expect that using the 0-th zigzag persistence diagrams will provide better results. However, we choose

to use only 0-th standard persistence as it can be easily implemented to run in O(n logn) time using a simple
union-find data structure.

3Note that results for three version of persistent WL kernels are reported in their paper. We take the one
(P-WL-UC, with uniform node labels) that performs the best from their Table 1.

6



Initial weight function Learnt weight function

Figure 3: Heatmap of initialized weight function (left column) and that of the learnt weight-function
ω∗ (right column). Top row shows results for NCI1 data set; while bottom row contains those for
REDDIT-5K data set.

Topological-based methods on graph data. Here we compare our WKPI-framework with the
performance of several state-of-the-art persistence-based classification frameworks, including: PWGK
[11], SW [5], PI [1] and PF [12]. We also compare it with two alternative ways to learn the metric
for persistence-based representations: trainPWGK is the version of PWGK [11] where we learn the
weight function in its formulation, using the same cost-function as what we propose in this paper for
our WKPI kernel functions. altWKPI is the alternative formulation of a kernel for persistence images

where we set the kernel to be k(PI,PI′) =
∑N
s=1 e

−ω(ps)(PI(s)−PI′(s))2

2σ2 , instead of our WKPI-kernel
as defined in Definition 3.1.

Table 3: Classification accuracy on graphs for topology-based methods.

Datasets Existing TDA approaches Alternative metric learning Our WKPI framework
PWGK PI-CONST PI-PL SW PF trainPWGK altWKPI deWKPI-kM deWKPI-kC

NCI1 73.3 72.5 72.1 80.1 81.7 76.5 77.4 87.2 84.7
NCI109 71.5 74.3 73.1 75.5 78.5 77.2 81.2 85.5 86.9

PTC 62.2 61.3 64.2 64.5 62.4 62.5 64.2 61.1 64.3
PROTEIN 73.6 72.2 69.1 76.4 75.2 74.8 75.1 77.4 75.6

DD 75.2 74.2 76.8 78.9 79.4 76.4 72.5 79.8 79.1
MUTAG 82.0 85.2 83.5 87.1 85.6 86.4 88.5 85.5 88.0

IMDB-BINARY 66.8 65.5 69.7 69.6 71.2 71.8 67.3 70.6 75.4
IMDB-MULTI 43.4 42.5 46.4 48.7 48.6 45.8 45.3 47.1 48.8
REDDIT-5K 47.6 52.2 51.7 53.8 56.2 53.5 54.7 58.7 59.3
REDDIT-12K 38.5 43.3 45.7 48.3 47.6 43.7 42.1 45.2 44.5

Average 63.41 64.3 65.23 68.29 68.64 66.86 66.83 69.81 70.66

Table 4: Graph classification accuracy of GIN and RetGK on graph benchmarks with the same nested
cross validation setup

NCI1 NCI109 PTC PROTEIN DD MUTAG IMDB-BIN IMDB-MULTI Reddit5K Reddit12K
RetGK 84.5±0.2 84.8±0.2 62.9±1.6 75.4±0.6 81.6±0.4 90.0±1.1 72.3±1.0 47.7±0.4 55.8±0.5 48.5± 0.2

GIN 82.4±1.6 86.5±1.5 67.8±6.5 76.7±2.6 81.1±2.5 89.0±7.5 75.6±5.3 52.4±3.1 57.2±1.5 47.9± 2.1

We use the same setup as our WKPI-framework to train these two metrics, and use their resulting
kernels for SVM to classify the benchmark graph datasets. WKPI-framework outperforms the existing
approaches and alternative metric learning methods on all datasets except MUTAG. WKPI-kM (i.e,
WKPI-kmeans) and WKPI-kC (i.e, WKPI-kcenter) improve the accuracy by 3.9% − 11.9% and
5.4%−13.5%, respectively. Besides, we show results by another experimental setup. In 10-fold cross
validation, choose m and σ leading to the smallest cost function value, then evaluate the classifier
on the test set. Repeat this process 10 times. That is, m and σ are not the hyperparameters of the

7



SVM classifiers, but are determined by the metrics learning. We refer to these two approaches
as deWKPI-kM and deWKPI-kC in accordance with the initialization methods. The classification
accuracy of all these methods are reported in Table 3.

References
[1] H. Adams, T. Emerson, M. Kirby, R. Neville, C. Peterson, P. Shipman, S. Chepushtanova,

E. Hanson, F. Motta, and L. Ziegelmeier. Persistence images: a stable vector representation of
persistent homology. Journal of Machine Learning Research, 18:218–252, 2017.

[2] G. A. Ascoli, D. E. Donohue, and M. Halavi. Neuromorpho. org: a central resource for neuronal
morphologies. Journal of Neuroscience, 27(35):9247–9251, 2007.

[3] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. Vishwanathan, A. J. Smola, and H.-P. Kriegel.
Protein function prediction via graph kernels. Bioinformatics, 21(suppl_1):i47–i56, 2005.

[4] M. Carriere, F. Chazal, Y. Ike, T. Lacombe, M. Royer, and Y. Umeda. A general neural network
architecture for persistence diagrams and graph classification. arXiv preprint arXiv:1904.09378,
2019.

[5] M. Carrière, M. Cuturi, and S. Oudot. Sliced Wasserstein kernel for persistence diagrams.
International Conference on Machine Learning, pages 664–673, 2017.

[6] A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman, and C. Hansch.
Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds.
correlation with molecular orbital energies and hydrophobicity. Journal of medicinal chemistry,
34(2):786–797, 1991.

[7] P. D. Dobson and A. J. Doig. Distinguishing enzyme structures from non-enzymes without
alignments. Journal of molecular biology, 330(4):771–783, 2003.

[8] C. Helma, R. D. King, S. Kramer, and A. Srinivasan. The predictive toxicology challenge
2000–2001. Bioinformatics, 17(1):107–108, 2001.

[9] C. Hofer, R. Kwitt, M. Niethammer, and A. Uhl. Deep learning with topological signatures. In
Advances in Neural Information Processing Systems, pages 1634–1644, 2017.

[10] N. M. Kriege, P. L. Giscard, and R. C. Wilson. On valid optimal assignment kernels and
applications to graph classification. In Advances in Neural Information Processing Systems,
pages 1623–1631, 2016.

[11] G. Kusano, K. Fukumizu, and Y. Hiraoka. Kernel method for persistence diagrams via kernel
embedding and weight factor. Journal of Machine Learning Research, 18(189):1–41, 2018.

[12] T. Le and M. Yamada. Persistence Fisher kernel: A Riemannian manifold kernel for persistence
diagrams. In Advances in Neural Information Processing Systems (NIPS), pages 10028–10039,
2018.

[13] Y. Lin, L. Lu, and S.-T. Yau. Ricci curvature of graphs. Tohoku Mathematical Journal, Second
Series, 63(4):605–627, 2011.

[14] S. Ma and M. Belkin. Diving into the shallows: a computational perspective on large-scale
shallow learning. In Advances in Neural Information Processing Systems, pages 3778–3787,
2017.

[15] H. Markram, E. Muller, S. Ramaswamy, M. W. Reimann, M. Abdellah, C. A. Sanchez, A. Ail-
amaki, L. Alonso-Nanclares, N. Antille, S. Arsever, et al. Reconstruction and simulation of
neocortical microcircuitry. Cell, 163(2):456–492, 2015.

[16] M. Niepert, M. Ahmed, and K. Kutzkov. Learning convolutional neural networks for graphs.
International conference on machine learning, pages 2014–2023, 2016.

[17] B. Rieck, C. Bock, and K. Borgwardt. A persistent weisfeiler-lehman procedure for graph
classification. International Conference on Machine Learning, 2019.

8



[18] N. Shervashidze, P. Schweitzer, E. J. v. Leeuwen, K. Mehlhorn, and K. M. Borgwardt. Weisfeiler-
Lehman graph kernels. Journal of Machine Learning Research, 12:2539–2561, 2011.

[19] S. Verma and Z.-L. Zhang. Hunt for the unique, stable, sparse and fast feature learning on
graphs. Advances in Neural Information Proceeding Systems, pages 88–98, 2017.

[20] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? Interna-
tional Conference on Learning Representations, 2019.

[21] P. Yanardag and S. Vishwanathan. Deep graph kernels. Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 1365–1374, 2015.

[22] Z. Zhang, M. Wang, Y. Xiang, Y. Huang, and A. Nehorai. Retgk: Graph kernels based on return
probabilities of random walks. In Advances in Neural Information Processing Systems, pages
3968–3978, 2018.

9


	Missing details from Section 3
	Proof of Lemma 3.2
	Proof of Theorem 3.4
	Proof of Theorem 3.6

	More details for Experiments
	More on neuron experiments
	More on graph classification experiments


