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Abstract

This paper establishes that optimistic algorithms attain gap-dependent and non-
asymptotic logarithmic regret for episodic MDPs. In contrast to prior work,
our bounds do not suffer a dependence on diameter-like quantities or ergodic-
ity, and smoothly interpolate between the gap dependent logarithmic-regret, and
the Õ(

√
HSAT )-minimax rate. The key technique in our analysis is a novel

“clipped” regret decomposition which applies to a broad family of recent opti-
mistic algorithms for episodic MDPs.

1 Introduction

Reinforcement learning (RL) is a powerful paradigm for modeling a learning agent’s interactions
with an unknown environment, in an attempt to accumulate as much reward as possible. Because
of its flexibility, RL can encode such a vast array of different problem settings - many of which are
entirely intractable. Therefore, it is crucial to understand what conditions enable an RL agent to
effectively learn about its environment, and to account for the success of RL methods in practice.

In this paper, we consider tabular Markov decision processes (MDPs), a canonical RL setting where
the agent seeks to learn a policy mapping discrete states x ∈ S to one of finitely many actions a ∈ A,
in an attempt to maximize cumulative reward over an episode horizon H . We shall study the regret
setting, where the learner plays a policy πk for a sequence of episodes k = 1, . . . ,K, and suffers a
regret proportional to the average sub-optimality of the policies π1, . . . , πK .

In recent years, the vast majority of literature has focused on obtaining minimax regret bounds that
match the worst-case dependence on the number states |S|, actions |A|, and horizon length H;
namely, a cumulative regret of

√
H|S||A|T , where T = KH denotes the total number of rounds of

the game [1]. While these bounds are succinct and easy to interpret, they paint an overly pessimistic
account of the complexity of these problems, and do not elucidate the favorable structural properties
of which a learning agent can hope to take advantage.

The earlier literature, on the other hand, establishes a considerable more favorable regret of the
form C log T , where C is an instance-dependent constant given in terms of the sub-optimality gaps
associated with each action at a given state, defined as

gap∞(x, a) = Vπ?(x)−Qπ?(x, a), (1)

where Vπ? and Qπ? denote the value andQ functions for an optimal policy π?, and the subscript-∞
denotes these bounds hold for a non-episodic, infinite horizon setting. Depending on the constant
C, the regret C log T can yield a major improvement over the

√
T minimax scaling. Unfortu-

nately, these analyses are asymptotic in nature, and only take effect after a large number of rounds,
depending on other potentially-large, highly-conservative, or difficult-to-verify problem-dependent
quantities such as hitting times or measures of uniform ergodicity [8, 15, 11].
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To fully account for the empirical performance of RL algorithms, we seek regret bounds which
take advantage of favorable problem instances, but apply in finite time and for practically realistic
numbers of rounds T .

Contributions: As a first step in this direction, [16] introduced a novel algorithm called EULER,
which enjoys reduced dependence on the episode horizon H for favorable instances, while main-
taining the same worst-case dependence for other parameters in their analysis as in [1].

In this paper, we take the next step by demonstrating that a common class of algorithms for solving
MDPs, based on the optimism principle, attains gap-dependent, problem-specific bounds similar to
those previously found only in the asymptotic regime. For concreteness, we specialize our analysis
to a minor modification of the EULER algorithm we call StrongEuler; as we explain in Section 3,
our analysis extends more broadly to other optimistic algorithms as well. We show that

• For any episodic MDPM, StrongEuler enjoys a high probability regret bound of CM log(1/δ)
for all rounds T ≥ 1, where the constant CM depends on the sub-optimality gaps between actions
at different states, as well as the horizon length, and contains an additive almost-gap-independent
term that scales as AS2poly(H) (Corollary 2.1).

Unlike previous gap-dependent regret bounds,
• The constant CM does not suffer worst-case dependencies on other problem dependent quantities

such as mixing times, hitting times or measures of ergodicity. However, the constant CM does
take advantage of benign problem instances (Definition 2.2).

• The regret bound of CM log(1/δ) is valid for any total number of rounds T ≥ 1. Selecting
δ = 1/T , this implies a non-asymptotic expected regret bound of CM log T 1.

• The regret of StrongEuler interpolates between instance-dependent regret CM log T and mini-
max regret Õ(

√
H|S||A|T ), the latter of which may be sharper for smaller T (Theorem 2.4).

Following [16], this dependence on H may also be refined for benign instances.

Lastly, while the StrongEuler algorithm affords sharper regret bounds than past algorithms, our
analysis techniques extend more generally to other optimism based algorithms:

• We introduce a novel “clipped” regret decomposition (Proposition 3.1) which applies to a broad
family of optimistic algorithms, including the algorithms analyzed in [16, 6, 5, 9, 1].

• Following our analysis of StrongEuler, the clipped regret decomposition can establish analogous
gap-dependent log T -regret bounds for many of the algorithms mentioned above.

What is CM? In many settings, we show that CM is dominated by an analogue to the sum over
the reciprocals of the gaps defined in (1). This is known to be optimal for non-dynamic MDP
settings like contextual bandits, and we prove a lower bound (Proposition 2.2) which shows that this
is unimprovable for general MDPs as well. Furthermore, building on [16], we show this adapts to
problems with additional structure, yielding, e.g., a horizon H-free bound for contextual bandits.

However, our gap-dependent bound also suffers from a certain dependence on the smallest nonzero
gap gapmin (see Definition 2.1), which may dominate in some settings. We prove a lower
bound (Theorem 2.3) which shows that optimistic algorithms in the recent literature - including
StrongEuler - necessarily suffer a similar term in their regret. We believe this insight will motivate
new algorithms for which this dependence can be removed, leading to new design principles and
actionable insights for practitioners. Finally, our regret bound incurs an (almost) gap-independent
burn-in term, which is standard for optimistic algorithms, and which we believe is an exciting direc-
tion of research to remove.

Altogether, we believe that the results in our paper serve as a preliminary but significant step to
attaining sharp, instance-dependent, and non-asymptotic bounds for tabular MDPs, and hope that
our analysis will guide the design of future algorithms that attain these bounds.

1.1 Related Work

Like the multi-armed bandit setting, regret bounds for MDP algorithms have been characterized both
in gap-independent forms that rely solely on S := |S|, A := |A|, H, T , and in gap-dependent forms

1By this, we mean that for any fixed T ≥ 1, one can attain CM log T regret. Extending the bound to
anytime regret is left to future work
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which take into account the gaps (1), as well as other instance-specific properties of the rewards and
transition probabilities.

Finite Sample Bounds, Gap-Independent Bounds: A number of notable recent works give undis-
counted regret bounds for finite-horizon, tabular MDPs, nearly all of them relying on the principle
of optimism which we describe in Section 3 [4, 1, 5, 9, 16]. Many of the more recent works [1, 16, 6]
attain a regret of

√
HSAT , matching the known lower bound of

√
HSAT established in [12, 8, 4].

As mentioned above, the EULER algorithm of [16] attains the minimax rates and simultaneously en-
joys a reduced dependence on H in benign problem instances, such as the contextual bandits setting
where the transition probabilities do not depend on the current state or learners actions, or when the
total cumulative rewards over any roll-out are bounded by 1 in magnitude.

Diameter Dependent Bounds: In the setting of infinite horizon MDPs with discounted regret,
many previous works have established logarithmic regret bounds of the form C(M) log T , where
C(M) is a constant depending on the underlying MDP. Notably, [8] give an algorithm which attains
a Õ(
√
D2S2AT ) gap-independent regret, and an Õ(D

2S2A
gap∗

log(T )) gap-dependent regret bound,
where gap∗ is the difference between the mean infinite-horizon reward of π∗ and the next-best
stationary policy, and where D denotes the maximum expected traversal time between any two
states x, x′, under the policy which attains the minimal traversal time between those two states.
We note that if gap∞(x, a) denotes the sub-optimality of any action a at state x as in (1), then
gap∗ ≤ minx,a gap∞(x, a). The bounds in this work, on the other hand, depend on an average
over inverse gaps, rather than a worst case. Moreover, the diameter D can be quite large when there
exist difficult-to-access states. We stress that the bound due to [8] is non-asympotic, but the bound
in terms of gap∗ dependences other worst-case quantities measuring ergodicity.

Asymptotic Bounds: Prior to [8], and building on the bounds of [3], [15] presented bounds in
terms of a diameter-related quantity D̄ ≥ D, which captures the minimal hitting time between
states when restricted to optimal policies. [15] prove that their algorithm enjoys a regret2 of∑

(s,a)∈CRIT
D̄2

gap∞(x,a) log(T ) asymptotically in T where CRIT contains those sub-optimal state-
action pairs (x, a) such that a can be made to the the unique, optimal action at x by replacing
p(s′|s, a) with some other vector on the S-simplex. Recently, [11] present per-instance lower bounds
for both structured and unstructured MDPs, which apply to any algorithm which enjoys sub-linear
regret on any problem instance, and an algorithm which matches these bounds asymptotically. This
bound replaces D̄2 with H̄2, where H̄ denotes the range of the bias functions, an analogue of H
for the non-episodic setting [2]. We further stress that whereas the logarithmic regret bounds of [8]
hold for finite time with polynomial dependence on the problem parameters, the number of episodes
needed for the bounds of [3, 15, 11] to hold may be exponentially large, and depend on additional,
pessimistic problem-dependent quantities (e.g. a uniform hitting time in Proposition 29 in [14]).

Novelty of this work: The major contribution of our work is showing problem-dependent log(T )
regret bounds which i) attain a refined dependence on the gaps, as in [15], ii) apply in finite time
after a burn-in time only polynomial in S, A, H and the gaps, iii) depend only on H and not on
the diameter D (and thus, are not adversely affected by difficult to access states), and iv) smoothly
interpolate between log T regret and the minimax

√
HSAT rate attained by [1] et seq.

1.2 Problem Setting, Notation, and Organization
Episodic MDP: A stationary, episodic MDP is a tuple M := (S,A, H, r, p, p0, R), where for
each x ∈ S, a ∈ A we have that R(x, a) ∈ [0, 1] is a random reward with expectation r(x, a),
p : S × A → ∆S denotes transition probabilities, p0 ∈ ∆S is an initial distribution over states,
and H is the horizon, or length of the episode. A policy π is a sequence of mappings πh : S → A.
For our given MDP M, we let Eπ and Pπ denote the expectation and probability operator with
respect to the law of sequence (x1, a1), . . . , (xH , aH), where x1 ∼ p0, ah = πh(xh), xh+1 ∼
p(xh, ah). We define the value of π as Vπ

0 := Eπ
[∑H

h=1 r(xh, ah)
]

and for h ∈ [H] and x ∈ S ,

Vπ
h(x) := Eπ

[∑H
h′≥h r(xh′ , aa′) | xh = x

]
, which we identify with a vector in RS . We define

the associated Q-function Qπ : S × A → R, Qπ
h(x, a) := r(x, a) + p(x, a)>Vπ

h+1, so that

2[15] actually presents a bound of the form D̄2SA
min(s,a)∈CRIT gap∞(x,a)

log(T ) but it is straightforward to extract

the claimed form from the proof.
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Qπ
h(x, πh(x)) = Vπ

h(x). We denote the set of optimal policies π? := arg maxπ Vπ
0 , and let

π?h(x) := {a : πh(x) = a, π ∈ π?} denote the set of optimal actions. Lastly, given any optimal
π ∈ π?, we introduce the shorthand V?

h = Vπ
h and Q?

h = Qπ
h, where we note that even when π is

not unique, V?
h and Q?

h do not depend on the choice of optimal policy.

Episodic Regret: We consider a game that proceeds in rounds k = 1, . . . ,K, where at each state
an algorithm Alg selects a policy πk, and observes a roll out (x1, a1), . . . , (xH , aH) ∼ Pπk . The
goal is to minimize the cumulative simple regret, defined as RegretK :=

∑K
k=1 V?

0 −Vπk
0 .

Notation and Organization: For n ∈ N, we define [n] = {1, . . . , n}. For two expressions f, g that
are functions of any problem-dependent variables ofM, we say f . g (f & g, respectively) if there
exists a universal constant c > 0 independent of M such that f ≤ cg (f ≥ cg, respectively). /
will denote an informal, approximate inequality. Section 2 presents our main results, and Section 3
sketches the proof and highlights the novelty of our techniques. All references to the appendix refer
to the appendix of the supplement. All formal proofs, and many rigorous statement of results, are
deferred to the appendix, whose organization and notation are described at length in Appendix A.

1.3 Optimistic Algorithms
Lastly, we introduce optimistic algorithms which select a policy which is optimal for an over-
estimated, or optimistic, estimate of the true Q-function, Q?.
Definition 1.1 (Optimistic Algorithm). We say that an algorithm Alg satisifes optimism if, for each
round k ∈ [K] and stage h ∈ [H], it constructs an optimistic Q-function Qk,h(x, a) and policy
πk = (πk,h) satisfying ∀x, a : Qk,H+1(x, a) = 0, Qk,h(x, a) ≥ Q?

h(x, a), and πk,h(x) ∈
arg maxa Qk,h(x, a). The associated optimistic value function is Vk,h(x) := Qk,h(x, πk,h(x)).

We shall colloquially refer to an algorithm as optimistic if it satsifies optimism with high prob-
ability. Optimism has become the dominant approach for learning finite-horizon MDPs, and all
recent low-regret algorithms are optimistic [5, 6, 1, 16, 9]. In model-based algorithms, the overesti-
mates Qk,h are constructed recursively as Qk,h(x, a) = r̂k(x, a) + p̂k(x, a)>Vk,h+1 + bk,h(x, a),
where r̂k(x, a) and p̂k(x, a) are empirical estimates of the mean rewards and transition probabil-
ities, and bk,h(x, a) ≥ 0 is a confidence bonus designed to ensure that Qk,h(x, a) ≥ Q?(x, a).
Letting nk(x, a) denote the total number of times a given state-action pair is visited, a simple bonus

bk,h(x, a) h
√

H log(SAHK/δ)
nk(x,a) suffices to induce optimism, yielding the UCBVI-CH algorithm of

[1]. This leads to an episodic regret bound of
√
H2SAT , a factor of

√
H greater than the minimax

rate. More refined bonuses based on the “Bernstein trick” achieve the optimal H-dependence [1],
and the EULER algorithm of [16] adopts further refinements to replace worst-case H dependence
with more adaptive quantities. The StrongEuler algorithm considered in this work applies similarly
adaptive bonuses, but our analysis extends to all aforementioned bonus configurations. We remark
that there are also model-free optimistic algorithms based on Q-learning (see, e.g. [9]) that construct
overestimates in a slightly different fashion. While our main technical contribution, the clipped re-
gret decomposition (Proposition 3.1), applies to all optimistic algorithms, our subsequent analysis is
tailored to model-based approaches, and may not extend straightforwardly to Q-learning methods.

2 Main Results
Logarithmic Regret for Optimistic Algorithms: We now state regret bounds that describe the per-
formance of StrongEuler, an instance of the model-based, optimistic algorithms described above.
StrongEuler is based on carefully selected bonuses from [16], and formally instantiated in Algo-
rithm 1 in Appendix E. We emphasize that other optimistic algorithms enjoy similar regret bounds,
but we restrict our analysis to StrongEuler to attain the sharpest H-dependence.The key quantities
at play are the suboptimality-gaps between the Q-functions:
Definition 2.1 (Suboptimality Gaps). For h ∈ [H], define the stage-dependent suboptimality gap
gaph(x, a) := V?

h(x) − Q?
h(x, a), as well as the minimal stage-independent gap gap(x, a) :=

minh gaph(x, a), and the minimal gap gapmin := minx,a,h{gaph(x, a) : gaph(x, a) > 0}.

Note that any optimal a? ∈ π?h(x) satisfies the Bellman equation Q?
h(x, a?) = maxa Q?

h(x, a)=
V?
h(x), and thus gaph(x, a?) = 0 iff a? ∈ π?h(x). Following [16], we consider two illustrative

benign problem settings which afford an improved dependence on the horizon H:
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Definition 2.2 (Benign Settings). We say that an MDP M is a contextual bandit instance if
p(x′|x, a) does not depend on x or a. An MDP M has G-bounded rewards if, for any policy π,∑H
h=1R(xh, ah) ≤ G holds with probability 1 over trajectories ((xh, ah)) ∼ Pπ .

Lastly, we define Zopt as the set of pairs (x, a) for which a is optimal at x for some stage h ∈ [H]:
Zopt := {(x, a) : ∃h ∈ [H] with a ∈ π?h(x)} and its complement Zsub := S × A − Zopt. Note
that typically |Zopt|. H|S| or even |Zopt|. |S| (see Remark B.2 in the appendix). We now state
our first result, which gives a gap-dependent regret bound that scales as log(1/δ) with probability
at least 1 − δ. The result is a consequence of a more general result stated as Theorem 2.4, itself a
simplified version of more precise bounds stated in Appendix B.1.
Corollary 2.1. Fix δ ∈ (0, 1/2), and let A = |A|, S = |S|, M = (SAH)2. Then with probability
at least 1 − δ, StrongEuler run with confidence parameter δ enjoys the following regret bound for
all K ≥ 1:

RegretK .

 ∑
(x,a)∈Zsub

H3

gap(x, a)
log

MT

δ

+
H3|Zopt|
gapmin

log
MT

δ

+H4SA(S ∨H) log
MH

gapmin
log

MT

δ
. (2)

Moreover, ifM is either a contextual bandits instance, or has G-bounded rewards for G . 1, then
the factors of H3on the first line can be sharped to H . In addition, if M is a contextual bandits
instance, the factor of H3 in the first term (summing over (x, a) ∈ Zsub) can be sharped to 1.

Setting δ = 1/T and noting that
∑K
k=1 V?

0 −Vπk
0 ≤ KH = T with probability 1 (recall R(x, a) ∈

[0, 1]), we see that the expected regret E[
∑K
k=1 V?

0 −Vπk
0 ] can be bounded by replacing 1/δ with

T in right hand side of the inequality (2); this yields an expected regret that scales as log T .

Three regret terms: The first term in Corollary 2.1 reflects the sum over sub-optimal state-action
pairs, which a lower bound (Proposition 2.2) shows is unimprovable in general. In the infinite
horizon setting, [11] gives an algorithm whose regret is asymptotically bounded by an analogue of
this term. The third term characterizes the burn-in time suffered by nearly all model-based finite-time
analyses and is the number of rounds necessary before standard concentration of measure arguments
kick in. The second term is less familiar and is addressed in Section 2.2 below.

H dependence:Comparing to known results from the infinite-horizon setting, one expects the op-
timal dependence of the first term on the horizon to be H2. However, we cannot rule out that
the optimal dependence is H3 for the following three reasons: (i) the infinite-horizon analogues
D, D̄, H̄ (Section 1.1) are not directly comparable to the horizon H; (ii) in the episodic setting, we
have a potentially different value function V?

h for each h ∈ [H], whereas the value functions of the
infinite horizon setting are constant across time; (iii) theH3 may be unavoidable for non-asymptotic
(in T ) bounds, even if H2 is the optimal asymptotic dependence after sufficient burn-in (possibly
depending on diameter-like quantities). Resolving the optimal H dependence is left as future work.
We also note that for contextual bandits, we incur no H dependence on the first term; and thus the
first term coincides with the known asymptotically optimal (in T ), instance-specific regret [7].

Guarantees for other optimistic algorithms: To make the exposition concrete, we only provide
regret bounds for the StrongEuler algorithm. However, the “gap-clipping” trick (Proposition 3.1)
and subsequent analysis template described in Section 3.1 can be applied to obtain similar bounds
for other recent optimistic algorithms, as in [1, 5, 16, 6].3

2.1 Sub-optimality Gap Lower Bound
Our first lower bound shows that when the total number of rounds T = KH is large, the first term
of Corollary 2.1 is unavoidable in terms of regret. Specifically, for every possible choice of gaps,
there exists an instance whose regret scales on the order of the first term in (2).

Following standard convention in the literature, the lower bound is stated for algorithms which have
sublinear worst case regret. Namely, we say than an algorithm Alg is α-uniformly good if, for any
MDP instanceM, there exists a constant CM > 0 such that EM[RegretK ] ≤ CMKα for all K.4

3To achieve logarithmic regret, some of these algorithms require a minor modification to their confidence
intervals; otherwise, the gap-dependent regret scales as log2 T . See Appendix E for details.

4We may assume as well that Alg is allowed to take the number of episodes K as a parameter.

5



Proposition 2.2 (Regret Lower Bound). Let S ≥ 2, and A ≥ 2, and let {∆x,a}x,a∈[S]×[A] ⊂
(0, H/8) denote a set of gaps. Then, for anyH ≥ 1, there exists an MDPM with states S = [S+2],
actions A = [A], and H stages, such that,

gap1(x, a) = ∆x,a, ∀x ∈ [S], a ∈ A
gaph(x, a) ≥ 1/2, ∀x ∈ {S + 1, S + 2}, a ∈ A− {1},

and any α-uniformly good algorithm satisfies

lim
K→∞

EM[RegretK ]

log T
& (1− α)

∑
x,a:gap1(x,a)>0

H2

gap1(x, a)

The above proposition is proven in Appendix H, using a construction based on [4]. For simplicity,
we stated an asymptotic lower bound. We remark that if the constant CM is poly(|S|, |A|, H), then
one can show that the above asymptotic bound holds as soon as K ≥ (|S||A|H/gap∗)O(1/(1−α)),
where gap∗ := {min gap1(x, a) : gap1(x, a) > 0}. More refined non-asymptotic regret bounds
can be obtained by following [7].

2.2 Why the dependence on gapmin?
ithout the second term, Corollary 2.1 would only suffer one factor of 1/gapmin due to the sum
over state-actions pairs (x, a) ∈ Zsub (when the minimum is achieved by a single pair). However, as
remarked above, |Zopt| typically scales like |S| and therefore the second term scales like |S|/gapmin,
with a dependence on 1/gapmin that is at least a factor of |S| more than we would expect. Here, we
show that |S|/gapmin is unavoidable for the sorts of optimistic algorithms that we typically see in
the literature; a rigorous proof is deferred to Appendix G.
Theorem 2.3 (Informal Lower Bound). Fix δ ∈ (0, 1/8). For universal constants c1, c2, c3, c4,
if ε ∈ (0, c1), and S satisfies c2 log(ε−1/δ) ≤ S ≤ c3ε

−1/log(ε−1/δ), there exists an MDP
with |S|= S, |A|= 2 and horizon H = 2, such that exactly one state has a sub-optimality
gap of gapmin = ε and all other states have a minimum sub-optimality gap gaph(x, a) ≥
1/2. For this MDP,

∑
h,x,a:gaph(x,a)>0

1
gaph(x,a) . S + 1

gapmin
but all existing optimistic algo-

rithms for finite-horizon MDPs which are δ-correct suffer a regret of at least S
gapmin

log(1/δ) &∑
h,x,a:gaph(x,a)>0

log(1/δ)
gaph(x,a) + S log(1/δ)

gapmin
with probability at least 1− c4δ.

The particular instance described in Appendix G that witnesses this lower bound is instructive be-
cause it demonstrates a case where optimism results in over-exploration.

2.3 Interpolating with Minimax Regret for Small T
We remark that while the logarithmic regret in Corollary 2.1 is non-asymptotic, the expression can be
loose for a number of rounds T that is small relative to the sum of the inverse gaps. Our more general
result interpolates between the log T gap-dependent and

√
T gap-independent regret regimes.

Theorem 2.4 (Main Regret Bound for StrongEuler). Fix δ ∈ (0, 1/2), and let A = |A|, S = |S|,
M = (SAH)2. Futher, define for all ε > 0 the set Zsub(ε) := {(x, a) ∈ Zsub : gap(x, a) <
ε}. Then with probability at least 1 − δ, StrongEuler run with confidence parameter δ enjoys the
following regret bound for all K ≥ 2:

RegretK . min
ε>0

{√
|Zsub(ε)|H T (log T ) log MT

δ }+
∑

(x,a)∈Zsub\Zsub(ε)

H3

gap(x, a)
log
(
MT
δ

)}
+ min

{√
|Zopt|H T (log T ) log MT

δ , |Zopt|
H3

gapmin
log
(
MT
δ

)}
+H4SA(S ∨H) min log MT

δ

{
log MT

δ , log MH
gapmin

}
.
√
HSAT log(T ) log(MT

δ ) +H4SA(S ∨H) log2 TM
δ ,

where the second inequality follows from the first with max{maxε|Zsub(ε)|, |Zopt|} ≤ SA. More-
over, ifM is an instance of contextual bandits, then the factors of H under the square roots can be
refined to a 1, and ifM has . 1-bounded rewards, then these same factors of H can be replaced by
a 1/H . In both settings, logarithmic terms can be refined as in Corollary 2.1.
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By the same argument as above, Theorem 2.4 with δ = 1/T implies an expected regret scaling like
gap-dependent log T or worst-case

√
HSAT . In Appendix B.1, we state a more refined bound given

in terms of the reward bound G, and the maximal variance of any state-action pair (Theorem B.2).

3 Gap-Dependent bounds via ‘clipping’
In this section, we (i) introduce the key properties of optimistic algorithms, (ii) explain existing
approaches to the analysis of such algorithms, and (iii) introduce the “clipping trick”, and sketch
how this technique yields gap-dependent, non-asymptotic bounds.
Definition 3.1 (Optimistic Surplus). Given an optimistic algorithm Alg, we define the (optimistic)
surplus Ek,h(x, a) := Qk,h(x, a) − r(x, a) − p(x, a)>Vk,h+1. Alg is strongly optimistic if
Ek,h(x, a) ≥ 0 for all k ≥ 1, and (x, a, h) ∈ S×A× [H], which implies that Alg is also optimistic.

While the nomenclature “suplus” is unique to our work, surplus-like terms arise in many prior regret
analyses [5, 16]. The notion of strong optimism is novel to this work, and facilitates a sharper H-
dependence in contextual bandit setting of Definition 2.2; intuitively, strong optimism means that
the Q-function Qk,h at stage h over-estimates Q?

h more than Qk,h+1 does Q?
k,h+1.

The Regret Decomposition for Optimistic Algorithms: Under optimism alone, we can see that
for any h and any a? ∈ π?(x),

Vk,h(x) = max
a

Qk,h(x, a) ≥ Qk,h(x, a?) ≥ Q?
h(x, a?) = V?

h(x),

and therefore, we can bound the sub-optimality of πk as V?
0 −Vπk

0 ≤ Vk,0 −Vπk
0 .

We can decompose the regret further by introducing the following notation: we let ωk,h(x, a) :=
Pπk [(xh, ah) = (x, a)] denote the probability of visiting x and playing a at time h in episode
k. A standard regret decomposition (see e.g. Lemma E.15 [5]) then shows that for a trajec-
tory (xh, ah)Hh=1, Vk,0 −Vπk

0 = Eπk [
∑H
h=1 Ek,h(xh, ah)] =

∑H
h=1

∑
x,a ωk,h(x, a)Ek,h(x, a),

yielding a regret bound of
K∑
k=1

V?
0 −Vπk

0 ≤
K∑
k=1

Vk,0 −Vπk
0 ≤

K∑
k=1

H∑
h=1

∑
x,a

ωk,h(x, a)Ek,h(x, a).

Existing Analysis of MDPs: We begin by sketching the flavor of minimax analyses. Intro-
ducing the notation nk(x, a) := {#times (x, a) is visited before episode k}, existing analyses
carefully manipulate the surpluses Ek,h(x, a) to show that

∑H
h=1

∑
x,a ωk,h(x, a)Ek,h(x, a) .∑H

h=1

∑
x,a ωk,h(x, a) CM√

nk(x,a)
+ lower order terms, where typically CM = poly(H, log(T/δ).

Finally, they replace nk(x, a) with an “idealized analogue”, nk(x, a) :=
∑k
j=1

∑H
h=1 ωj,h(x, a) :=∑k

j=1 ωj(x, a), where we introduce ωj(x, a) :=
∑H
h=1 ωj,h(x, a) denote the expected number of

visits of (x, a) at episode j. Letting {Fk} denote the filtration capturing all events up to the end
episode k, we see that E[nk(x, a) − nk−1|Fk−1] = ωk(x, a), and thus by standard concentration
arguments (see Lemma B.7, or Lemma 6 in [6]), nk(x, a) and nk(x, a) are within a constant factor
of each other for all k such that nk(x, a) is sufficiently large. Hence, by replacing nk(x, a) with
nk(x, a), we have (up to lower order terms)

K∑
k=1

V?
0 −Vπk

0 .
∑
x,a

K∑
k=1

ωk(x, a)
CM√
nk(x, a)

+ lower order terms. (3)

A
√
SAK poly(H) bound is typically concluded using a careful application of Cauchy-Schwartz,

and an integration-type lemma (e.g., Lemma C.1). An analysis of this flavor is used in Appendix B.4.

On the other hand, one can exactly establish the identity V?
0 − Vπk

0 =∑
x,a

∑H
h=1 ωk,h(x, a)gaph(x, a). Then one can achieve a gap dependent bound as soon

as one can show that the algorithm ceases to select suboptimal actions a at (x, h) after sufficiently
large T . Crucially, determining if action a is (sub)optimal at (x, h) requires precise knowledge
about the value function at other states in the MDP at future stages h′ > h. This difficulty is
why previous gap-dependent analyses appeal to diameter or ergodicity assumptions, which ensure
sufficient uniform exploration of the MDP to reason about the value function at subsequent stages.
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3.1 The Clipping Trick

We now introduce the “clipping trick”, a technique which merges both the minimax analysis in terms
of the surpluses Ek,h(x, a), and the gap-dependent strategy, which attempts to control how many
times a given suboptimal action is selected. Core to our analysis, define the clipping operator

clip [x | ε] = xI{x ≥ ε},
for all x, ε > 0. We can now state our first main technical result, which states that the sub-optimality
V?

0 − Vπk
0 can be controlled by a sum over surpluses which have been clipped to zero whenever

they are sufficiently small.

Proposition 3.1. Let ˇgaph(x, a) :=
gapmin
2H ∨ gaph(x,a)

4H . Then, if πk is induced by an optimistic
algorithm with surpluses Ek,h(x, a),

V?
0 −Vπk

0 ≤ 2e

H∑
h=1

∑
x,a

ωk,h(x, a) clip [Ek,h(x, a) | ˇgaph(x, a)] .

If the algorithm is strongly optimistic, and M is a contextual bandits instance, we can replace
ˇgaph(x, a) with ˇgaph(x, a) :=

gapmin
2H ∨ gaph(x,a)

4 .

The above proposition is a consequence of a more general bound, Theorem B.3, given in Ap-
pendix B. Unlike gap-dependent bounds that appeal to hitting-time arguments, we do not reason
about when a suboptimal action a will cease to be taken. Indeed, an algorithm may still choose a
suboptimal action a even if the surplus Ek,h(x, a) is small, because future surpluses may be large.
Instead, we argue in two parts:

1. A sub-optimal action a /∈ π?h(x) is taken only if Qk,h(x, a) ≥ Q?
h(x, a?) for some

a? ∈ π?h(x), or equivalently in terms of the surplus, only if Ek,h(x, a)+p(x, a)>(Vk,h+1−
V?
k,h+1) > gaph(x, a). Thus if Alg selects a suboptimal action, then this is because either

the current surplus Ek,h(x, a) is larger than Ω(
gaph(x,a)

H ), or the expectation over future sur-
pluses, captured by p(x, a)>(Vk,h+1−V?

k,h+1) is larger than (1−O
(

1
H

)
)gaph(x, a). In-

tuitively, the first case occurs when (x, a) has not been visited enough times, and the second
when the future state/action pairs have not experienced sufficient visitation. In the first case,
we can clip the surplus at Ω(

gaph(x,a)
H ); in the second, Ek,h(x, a) + p(x, a)>(Vk,h+1 −

V?
k,h+1) ≤ (1 + O

(
1
H

)
)p(x, a)>(Vk,h+1 − V?

k,h+1), and push the the contribution
of Ek,h(x, a) into the contribution of future surpluses. This incurs a factor of at most
(1 +O

(
1
H

)
)H . 1, avoiding an exponential dependence on H .

2. Clipping surpluses for pairs (x, a) for optimal a ∈ π?h(x) requires more care. We intro-
duce “half-clipped” surpluses Ëk,h(x, a) := clip

[
Ek,h(x, a) | gapmin2H

]
where all actions

are clipped at gapmin/2H , and recursively define value functions V̈πk
h (·) correspond-

ing to these clipped surpluses (see Definition D.1). We then show that, for V̈πk
0 :=

Ex∼p0
[
V̈1(x)

]
, we have (Lemma D.2)

V?
0 −Vπk

0 ≤ 2(V̈πk
0 −Vπk

0 ).

This argument is based on carefully analyzing when πk,h first recommends a suboptimal
action πk,h(x) /∈ π?(x), and showing that when this occurs, V?

0 −Vπk
0 is roughly lower

bounded by gapmin
H times the probability of visiting a state x where πk,h(x) plays subopti-

mally. We can then subtract off gapmin
2H from all the surplus terms at the expense of at most

halving the suboptimality, and using the fact Ek,h − gapmin
2H ≤ clip

[
Ek,h| gapmin2H

]
concludes

the bound. This step is crucial, because it allows us to clip the surpluses even at pairs (x, a)
where a ∈ π?h(x) is the optimal action. We note that in the formal proof of Proposition 3.1,
this half-clipping precedes the clipping of suboptimal actions described above.

Unfortunately, the first step involving the half-clipping is rather coarse, and leads to S/gapmin term
in the final regret bound. As argued in Theorem 2.3, this is unavoidable for existing optimistic
algorithms, and suggests that Proposition 3.1 cannot be significantly improved in general.
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3.2 Analysis of StrongEuler

Recall that StrongEuler is precisely described by Definition 1.1 up to our particular choice of con-
fidence intervals defined (see Algorithm 1 in Appendix E). We now state a surplus bound (proved
in Appendix F) that holds for these particular choice of confidence intervals, and which ensures that
the strong optimism criterion of Definition 1.1 is satisfied:
Proposition 3.2 (Surplus Bound for Strong Euler (Informal)). Let M = SAH , and define the
variances Var?h,x,a := Var[R(x, a)] + Varx′∼p(x,a)[V

?
h+1(x′)]. Then, with probability at least

1− δ/2, the following holds for all (x, a) ∈ S ×A, h ∈ [H] and k ≥ 1,

0 ≤ Ek,h(x, a) .

√
Var?h,x,a log(Mnk(x, a)/δ)

nk(x, a)︸ ︷︷ ︸
Blead
k,h (x,a)

+ lower order terms.

We emphasize that Proposition 3.2, and its formal analogue Proposition B.4 in Appendix B.2, are the
only part of the analysis that relies upon the particular form of the StrongEuler confidence intervals;
to analyze other model-based optimistic algorithms, one would simply establish an analogue of this
proposition, and continue the analysis in much the same fashion. While Q-learning [9] also satisfies
optimism, it induces a more intricate surplus structure, which may require a different analysis.

Recalling the clipping from Proposition 3.1, we begin the gap-dependent bound
with

∑K
k=1 V?

0 − Vπk
0 .

∑
x,a,k,h ωk,h(x, a) clip [Ek,h(x, a) | ˇgaph(x, a)]. Neglect-

ing lower order terms, Proposition 3.2 ensures that this is approximately less than∑
x,a,k,h ωk,h(x, a) clip

[
Blead
k,h (x, a) | ˇgaph(x, a)

]
. Introduce the minimal (over h)

clipping-gaps ˇgap(x, a) := minh ˇgap(x, a) ≥ gap(x,a)∨gapmin
4H and maximal variances

Var?x,a := maxh Var
?
h,x,a. We can then render Blead

k,h (x, a) ≤ f(nk(x, a)), where f(u) .

clip
[√

1
uVar

?
x,a log(Mu/δ) | ˇgap(x, a)

]
. Recalling the approximation nk(x, a) ≈ nk(x, a)

described above, we have, to first order,

K∑
k=1

V?
0 −Vπk

0 .
∑

x,a,k,h

ωk,h(x, a) clip
[
Blead
k,h (x, a) | ˇgaph(x, a)

]
.
∑
x,a,k

ωk(x, a)f(nk(x, a)) .
∑
x,a,k

ωk(x, a)f(nk(x, a)),

where we recall the expected visitations ωk(x, a) :=
∑H
h=1 ωk,h(x, a). Since nk(x, a) :=∑k

j=1 ωj(x, a), we can regard the above as an integral of the function f(u) (see Lemma C.1),
with respect to the density ωk(x, a). Evaluating this integral (Lemma B.9) yields (up to lower order
terms)

K∑
k=1

V?
0 −Vπk

0 /
∑
x,a

HVar?x,a log MT
δ

minh ˇgaph(x, a)
/
∑
x,a

HVar?x,a log MT
δ

gap(x, a) ∨ gapmin
.

Finally, bounding Var?x,a ≤ H2 and splitting the bound into the statesZsub := {(x, a) : gap(x, a) >
0} and Zopt := {(x, a) : gap(x, a) = 0} recovers the first two terms in Corollary 2.1. In benign
instances (Definition 2.2) , we can bound Var?h,x,a . 1, improving theH-dependence. In contextual
bandits, we save an addition H factor via ˇgaph(x, a) & (gapmin/H)∨ gap(x, a). The interpolation
with the minimax rate in Theorem 2.4 is decribed in greater detail in Appendix B.4.
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[7] Aurélien Garivier, Pierre Ménard, and Gilles Stoltz. Explore first, exploit next: The true shape
of regret in bandit problems. Mathematics of Operations Research, 2018.

[8] Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11(Apr):1563–1600, 2010.

[9] Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably
efficient? In Advances in Neural Information Processing Systems, pages 4868–4878, 2018.

[10] Andreas Maurer and Massimiliano Pontil. Empirical bernstein bounds and sample variance
penalization. arXiv preprint arXiv:0907.3740, 2009.

[11] Jungseul Ok, Alexandre Proutiere, and Damianos Tranos. Exploration in structured reinforce-
ment learning. In Advances in Neural Information Processing Systems, pages 8888–8896,
2018.

[12] Ian Osband and Benjamin Van Roy. On lower bounds for regret in reinforcement learning.
stat, 1050:9, 2016.

[13] Max Simchowitz, Kevin Jamieson, and Benjamin Recht. Best-of-k-bandits. In Conference on
Learning Theory, pages 1440–1489, 2016.

[14] Ambuj Tewari. Reinforcement learning in large or unknown MDPs. University of California,
Berkeley, 2007.

[15] Ambuj Tewari and Peter L Bartlett. Optimistic linear programming gives logarithmic regret for
irreducible mdps. In Advances in Neural Information Processing Systems, pages 1505–1512,
2008.

[16] Andrea Zanette and Emma Brunskill. Tighter problem-dependent regret bounds in rein-
forcement learning without domain knowledge using value function bounds. arXiv preprint
arXiv:1901.00210, 2019.

10



Contents

1 Introduction 1

1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Problem Setting, Notation, and Organization . . . . . . . . . . . . . . . . . . . . . 3

1.3 Optimistic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Main Results 4

2.1 Sub-optimality Gap Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Why the dependence on gapmin? . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Interpolating with Minimax Regret for Small T . . . . . . . . . . . . . . . . . . . 6

3 Gap-Dependent bounds via ‘clipping’ 7

3.1 The Clipping Trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Analysis of StrongEuler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

A Notation and Organization 13

Notation Table 13

I Precise Results and Analysis 15

B Precise Statement and Rigorous Proof Sketch of Main Regret Bounds 15

B.1 More Precise Statement of Regret Bound Theorem 2.4 . . . . . . . . . . . . . . . 15

B.2 Rigorous proof of upper bounds: Preliminaries . . . . . . . . . . . . . . . . . . . 17

B.3 Proof of Corollary B.1: A proof via integration . . . . . . . . . . . . . . . . . . . 18

B.4 Proof of Theorem B.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

C Proof of Technical Lemmas 22

C.1 Proof of clipping with future bounds, Lemma B.6 . . . . . . . . . . . . . . . . . . 22

C.2 Proof of sampling lemma (Lemma B.7) . . . . . . . . . . . . . . . . . . . . . . . 24

C.3 Proof of integral conversion, Lemma B.8 . . . . . . . . . . . . . . . . . . . . . . . 24

C.4 Proof of interal conversion for G-bounds, Lemma B.10 . . . . . . . . . . . . . . . 25

C.5 General Integral computations (Lemma B.9) . . . . . . . . . . . . . . . . . . . . . 25

D Proof of ‘clipping’ bound: Proposition 3.1 / Theorem B.3 29

D.1 Proof of Lemma D.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

D.2 Proof of Lemma D.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

D.3 Proof of Lemma D.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

II StrongEuler and its surpluses 34

11



E The StrongEuler Algorithm 34

F Analysis of StrongEuler: Proof of Proposition B.4 35

F.1 Proof of Optimism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

F.2 Proof of Surplus Bound Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . 37

F.3 Definition of Aconc, and proofs of supporting lemmas . . . . . . . . . . . . . . . 40

III Lower Bounds 44

G Min-Gap Lower Bound for Optimistic Algorithms (Theorem 2.3) 44

G.1 Formal Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

G.2 Algorithm Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

G.3 Formal Lower Bound Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

G.4 The Lower Bound: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

G.4.1 Proof of Proposition G.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

G.5 Proof of Claim G.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

H Information Theoretic Lower Bound (Proposition 2.2) 51

H.1 Construction of the hard instance . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

H.2 Regret Lower Bound Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 52

H.3 Proof of Equation (29) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

12



General Notation
. denotes inequality up to a universal constant.
f h g denotes f . g . f . log+(x) := log max{x, 1}.
I denotes an indicator function
M = (S,A, [H], p0, p, R) denotes an MDP
H denote the horizon,
A and S denotes the space of actions and states
A := |A| and S := |S|
h ∈ [H], a ∈ A, x ∈ S are used for stages, actions, and states
R(x, a) ∈ [0, 1] denotes the R.V. with reward distribution at (x, a).
r(x, a) := E[R(x, a)] denotes expected reward
p0(x) denotes initial distribution of x1

p(x′|x, a) denotes transition probability.
M = SAH
K denotes number of episodes, indexed with k ∈ [K]
T = KH denotes total length of game.

A Notation and Organization

Organization: This section describes the organization of the appendix, and clarifying our notation.
The remainder of the appendix is divided into three parts:

Part I presents more detailed statements of the regret upper bounds obtained by StrongEuler, and
their complete proofs. Section B.2 introduces Corollary B.1 and Theorem B.2, refining Corollary 2.1
and Theorem 2.4, from the main text. The section continues to prove both results. In addition, we
introduce Theorem B.3, which refines the clipped regret decomposition Proposition 3.1. The proofs
in this section rely on numerous technical lemmas, whose proofs are defered to Section C. Finally,
this section states Proposition B.4, which ensures that StrongEuler is optimistic and provides a
precise bound on the surpluses Ek,h(x, a), described informally in Proposition 3.2.

In Part II, we present the StrongEuler algorithm and its guarantees. Section E describes how
StrongEuler instantiates the model-based examples of optimistic algorithms described in Sec-
tion 1.3; the algorithm and choice of confidence bonuses are specified in pseudocode. In Section F,
we prove the surplus bound Proposition B.4, and verify that StrongEuler is strongly optimistic

Lastly, Part III contains the proofs of our lower bounds. Section G proves the Ω(S/gapmin) lower
bound described in Theorem 2.3, and rigorously describes the class of algorithms to which it applies.
Finally, Section H proves the information theoretic lower bound, Proposition 2.2.

Notational Rationale: Unfortunately, the regret analysis of tabular MDPs requires significant no-
tational overhead. Here we take a moment to highlight some notational conventions that we shall
use throughout. The superscript (·)? denotes “optimal” quantities, i.e. the optimal policy π?, the
optimal value V?, and variances of the optimal policy Var?h,x,a. The accents (·) will be used to
denote upper bounds on quantities, e.q. an optimistic Q-function Qk,h is an upper bound on Q?

k,h,
and Var is an upper bound on the variance, and so on. (·) will denote lower bounds on quantities.
For example, StrongEuler will maintain lower bounds on the values Vk,h ≤ V?. The accent (̌·) will
pertain to clipped quantities; e.g. ˇgap is the gap-value at which surpluses are clipped. Many quan-
tities, like gaph(x, a) (gaps) and Var?h,x,a (variances) depend on the triples (x, a, h). The quantities
gap(x, a) and Var?x,a with h suppresed to denote worse-case bounds on these term over h ∈ [H];
e.g. gap(x, a) := minh∈[H] gaph(x, a) and Var?x,a := maxh∈[H] Var

?
h,x,a.
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Policies, Value Functions, Q-functions
π = (πh)Hh=1 denotes a policy with πh : S → A
Vπ

0 denotes the value of π
Vπ
h(x) denotes the value of π at h ∈ [H] and x ∈ S

Qπ
h(x, a) denotes Q-function of π

V?
0,V

?
h(x),Q?(x, a) denote optimal value, value function, Q-function

π?h(x) denotes the set of optimal actions at h ∈ [H], x ∈ S.
Vk,h(x)/Qk,h(x, a) denotes optimistic value/Q function
πk,h(x) = arg maxa Qk,h(x, a) denotes optimistic policy

Problem Dependent Quantities
gaph(x, a) := V?

h(x)−Q?
h(x, a).

gap(x, a) := minh gaph(x, a)
gapmin := minx,a{gaph(x, a) : gaph(x, a) > 0}
αx,a,h ∈ [0, 1] denotes transition suboptimality (Definition B.3)
Var?h,x,a := Var[R(x, a)] + Varx′∼p(x,a)[V

?
h+1(x)]

Var?x,a := maxh Var
?
x,a

Var := maxx,a,h Var
?
h,x,a.

G ≤ H: upper bound on
∑H
h=1R(x, πh(x)) (Definition 2.2)

HT := min{Var ,G2/H}

Quantities for Analysis
L(u) :=

√
2 log(10M2 max{u, 1}2/δ)

ωk,h(x, a) := Pπk [(xh, ah) = (x, a)] denotes the surplus
ωk(x, a) :=

∑H
h=1 ωk,h(x, a) denotes the surplus

nk(x, a) denotes the number of times (x, a) is observed up to time k − 1

nk(x, a) :=
∑k
t=1 ωt(x, a).

τ (x, a) denotes time after which nk(x, a) is sufficiently large
Aconc (good concentration event)
Esamp (good sampling event, Lemma B.7)
Hsample . H log M

δ number of sampes for Esamp to apply
ˇgaph(x, a) :=

gapmin
2H ∨ gaph(x,a)

4(Hαx,a,h∨1) (clipped gap)
ˇgapmin := minx,a,h ˇgaph(x, a) (clipped gap)

Varπh,x,a := Var[R(x, a)] + Varx′∼p(x,a)[V
π
h+1(x′)]

Var
(k)
h,x,a = min

{
Var?h,x,a, Var

πk
h,x,a

}
Ek,h(x, a) := Qk,h(x, a)− r(x, a)− p(x, a)>Vk,h+1 denotes the surplus

Ek,h(x, a) . Blead
k,h (x, a) + Eπk

[∑H
t=h Bfut

k (xt, at) | (xh, ah) = (x, a)
]

(surplus bound, Proposition B.4)

Blead
k,h (x, a) := H ∧

√
Var

(k)
h,x,a log

(
Mnk(x,a)

δ

)
nk(x,a) (lead bound on surplus)

Bfut
k (x, a) = H3 ∧H3

(√
S log

(
Mnk(x,a)

δ

)
nk(x,a) +

S log
(
Mnk(x,a)

δ

)
nk(x,a)

)2

(bound on future surpluses)
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Part I

Precise Results and Analysis
B Precise Statement and Rigorous Proof Sketch of Main Regret Bounds

In this section, we present a precise statements and formal proofs of the upper bounds, Corollary 2.1
and Theorem 2.4, from the main text. These bounds both makes the improvements in the benign
instances of Definition 2.2, and takes advantage of other possibly-favorable instance-specific quanti-
ties. The remainder of the section is organized as follows. In Section B.1, we introduce the relevant
problem-dependent quantitites in terms of which we state our more refined bounds. We then state
Corollary B.1, a more precise analogue of the log-regret bounds in Corollary 2.1, followed by The-
orem B.2, which refines the regret bound Theorem 2.4 in interpolating between the log T and

√
T

regimes.

Next, in Section B.2, we set up the preliminaries for the proof of our upper bound, including (a)
Theorem B.3, the granular clipping bound strengthening Proposition 3.1, (b) Proposition B.4, which
upper bounds the surpluses Ek,h(x, a) for StrongEuler, and (c) Lemma B.6 which combines the two
into a useful form.

Then, in Section B.2, we present a rigorous proof of Corollary B.1 based on integration tools de-
veloped in Section C. Finally, we modify the arguments slightly to obtain the interpolation in Theo-
rem B.2. The proof of Proposition 3.1 is given in Section F, Theorem B.3 is given in Section D, and
the remainder of technical results in the present section are established in Section C.

We emphasize that the tools in this section provide a general recipe for establishing similar regret
bounds for the existing model-based optimistic algorithms in the literature. We have attempted to
present our tools in a modular fashion in hope that they can be borrowed to automate the proofs of
similar guarantees in related settings.

B.1 More Precise Statement of Regret Bound Theorem 2.4

We shall begin by stating a more precise version of Theorem 2.4, Following [16], we begin by
defnining the variances of the value optimal functions::

Definition B.1 (Variance Terms). We define the variance of a triple (x, a, h) as

Var?h,x,a := Var[R(x, a)] + Varx′∼p(x,a)[V
?
h+1(x′)],

and the statewise maximal variances as Var?x,a := maxh Var
?
h,x,a, and the maximal variance as

Var := maxx,a,h Var
?
h,x,a.

Remark B.1 (Typical Bounds on the variance ). While Var ≤ H2 for general MDPs (see e.g. [1]),
we have Var is smaller for the benign instances in Definition 2.2. We briefly summarize this
discussion from [16]: If M has G bounded rewards, then V?

h+1(x) ≤ G for any x, and thus
Var?h,x,a ≤ 1 + G2, which is . 1 if G . 1. For contextual bandits, p = p(x, a) does not de-
pend on x, a, and V?

h+1(x) = (maxaR(x, a)) + (Ex′∼pV?
h+2(x′)), where the second term does

not dependent Hence, Varx′∼p[V
?
h+1(x′)] ≤ Var[(maxaR(x, a))] ≤ 1, and thus Var?h,x,a ≤ 2.

We can then define an associated “effective horizon”, which replaces H with a possibly smaller
problem dependent quantity:

Definition B.2 (Effective Horizon). Suppose thatM has G-bounded rewards, as in Definition 2.2)
We define the effective horizon as

HT := min

{
Var ,

G2

H
log T

}
.

Since any horizon-H MDP has H-bounded rewards, HT always satisfies HT ≤
min

{
H2, H log T

}
.
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We note that the bound Var . 1 for contextual bandits implies HT . 1, whereas if M has G-
bounded rewards with G . 1, HT . 1 ∧ 1

H log T .

Lastly, we shall introduce one more condition we call transition suboptimality, which is a notion of
distributional closeness that enables the improved clipping and sharper regret bounds for the special
case of contextual bandits (Definition 2.2):
Definition B.3 (Transition Sub-optimality). Given α ∈ [0, 1], we say that a tuple (x, a, h) is α-
transition suboptimal if there exists an a? ∈ π?h(x) such that

p(x′|x, a)− p(x′|x, a?) ≤ αp(x′|x, a) ∀x′ ∈ S.

Intuitively, the condition states that the transition distributions p(x, a) and p(x, a?) are close in a
pointwise, multiplicative sense. This is motivated by the contextual bandit setting of Definition 2.2,
where each (x, a, h) is exactly 0-transition suboptimal. For arbitrary MDPs, the bound p(x′|x, a?) ≥
0 implies that every triple (x, a, h) is at most 1-transition suboptimal.5

With these definitions in place, we can state the more precise analogue of Corollary 2.1 as follows:
Corollary B.1 (Logarithmic Regret Bound for StrongEuler). Fix δ ∈ (0, 1/2), and let A = |A|,
S = |S|, M = (SAH)2. Then with probability at least 1 − δ, StrongEuler run with confidence
parameter δ enjoys the following regret bound for all K ≥ 2:

RegretK .
∑

(x,a)∈Zsub

Var?x,a(1 ∨αH)

gap(x, a)
log(Mδ ( H

gap(x,a) ∧ T )) + |Zopt|
VarH

gapmin(x, a)
log(Mδ ( H

gap(x,a) ∧ T ))

+H4SA(S ∨H) log TM
δ min

{
log HM

gapmin
, log TM

δ

}

In particular, ifM is an instance of contextual bandits, then Var can be replaced by 1, HT can be
replaced by 1 and max{αH, 1} = 1. IfM has G . 1 bounded rewards, then Var can be replaced
by 1 in the above bound,

Moreover, our more precise analogue of Theorem 2.4, which interpolates between the log T and
√
T

regimes, is as follows:
Theorem B.2 (Main Regret Bound for StrongEuler). Fix δ ∈ (0, 1/2), and let A = |A|, S = |S|,
M = (SAH)2. LetHT be as in Definition B.2, and suppose that each tuple (x, a, h) isα-transition
suboptimal. Futher, define Zsub(ε) := {(x, a) ∈ Zsub : gap(x, a) < ε}. Then with probability at
least 1 − δ, StrongEuler run with confidence parameter δ enjoys the following regret bound for all
K ≥ 2:

RegretK . min
ε>0


√
HT |Zsub(ε)|T log MT

δ +
∑

(x,a)∈Zsub\Zsub(ε)

max{αH, 1} Var?x,a
gap(x, a)

(Mδ ( H
gap(x,a) ∧ T ))


+ min

{√
HT |Zopt|T log MT

δ , |Zopt|
HVar

gapmin
log(Mδ ( H

gap(x,a) ∧ T ))

}
+H4SA(S ∨H) log MT

δ min

{
log

MH

gapmin
, log MT

δ

}
.
√
HSAT log(T ) log(MT

δ ) +H4SA(S ∨H) log2 TM
δ ,

where the second inequality follows from the first with max{maxε|Zsub(ε)|, |Zopt|} ≤ SA. In
particular, if M is an instance of contextual bandits, then Var can be replaced by 1, HT can be
replaced by 1 and max{αH, 1} = 1. IfM has G . 1 bounded rewards, then Var can be replaced
by 1 in the above bound, and HT replaced by min{1, log T

H }.

We observe that Theorem 2.4, and Corollary 2.1 are direct consequences of the above theorem.

5The condition can be relaxed somewhat to only needing to hold for a set S for which p(x′ ∈ S | x, a) is
close to 1; for simplicity, consider the unrelaxed notion as defined as above.
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Remark B.2 (Bounds on |Zopt|). Note that |Zopt|≤
∑
x,h|π?h(x)|; in particular if for each (x, h)

there is exactly one optimal action, then |Zopt|≤ H|S|. If in addition the same action is optimal at
x for each h ∈ [H], then |Zopt|= |S|. For many environments |Zopt|. |S|; for instance, a race car
doing many laps around a track may have h-dependent optimal actions in the first and last laps, but
for the steady-state laps the optimal action will depend just on the current state.

Remark B.3 (Coupling Variances and Gaps). For state action pairs (x, a) ∈ Zsub, Corollary B.1
Theorem B.2 suffer for the term

(1∨αH)Var?x,a
gap(x,a) , where Var?x,a := maxh Var

?
h,x,a is the maximal

variance over stages, and gap(x, a) = minh gaph(x, a) is the minimal gap. This quantity can be

refined to defend on roughly maxh
Var?h,x,a
gaph(x,a) , coupling the variance and gap terms. To do so, one

needs to bin the gaps into intervals of [2j−1H, 2j ] or integers j ∈ N, and apply numerous careful
manipulations. In the interest of brevity, we defer the details to a later work.

B.2 Rigorous proof of upper bounds: Preliminaries

We now turn to a rigorous proof of the regret bounds for StrongEuler: Corollary B.1 and Theo-
rem B.2 (and consequently Theorem 2.4 and Corollary 2.1).

We first state our generalized surplus clipping bound in terms of the transition-suboptimality condi-
tion, which generalizes Proposition 3.1:

Theorem B.3. Suppose that each tuple (x, a, h) is αx,a,h transition-suboptimal, and set
ˇgaph(x, a) :=

gapmin
2H ∨ gaph(x,a)

4(Hαx,a,h∨1) . Then, if πk is induced by a strongly optimistic algorithm
with surpluses Ek,h(x, a),

V?
0 −Vπk

0 ≤ 2e

H∑
h=1

∑
x,a

ωk,h(x, a) clip [Ek,h(x, a) | ˇgaph(x, a)] .

If the algorithm is optimistic but not strongly optimistic, then the above holds by replacing αx,a,h
with 1 in the definition of ˇgaph(x, a).

The proof of the above theorem is given in Section D. We remark that the above theorem specializes
to Proposition 3.1 by noting that each tuple (x, a, h) is 0-transition suboptimal for contextual bandits.
For simplicitiy, we shall assume in the proof of Theorem B.2 that each state is α-suboptimal for a
common α; the bound can be straightforwardly refined to allow α to vary across (x, a, h).

Next, in order to ensure optimalH-dependence when interpolating with theO
(√

T
)

regret bounds,
we introduce policy-dependent variance quantities:

Definition B.4. Define the variances

Varπh,x,a := Var[R(x, a)] + Varx′∼p(x,a)[V
π
h+1(x′)].

where we recall that Var?h,x,a := Varπ∗h,x,a. Further, define Var(k)
h,x,a = min

{
Var?h,x,a, Var

πk
h,x,a

}
.

We are now ready to state the formal version of Proposition 3.2, which upper bounds the surpluses
of StrongEuler, and verifies that the algorithm satisfies strong optimism:

Proposition B.4 (Surplus Bound for StrongEuler). There exists a universal constant c ≥ 1 and
event Aconc, with P[Aconc] ≥ 1 − δ/2, such that on Aconc, for all x ∈ S , a ∈ A, h ∈ [H] and
k ≥ 1,

0 ≤ 1

c
Ek,h(x, a) ≤ Blead

k,h (x, a) + Eπk
[
H∑
t=h

Bfut
k (xt, at) | (xh, ah) = (x, a)

]
.
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where have defined the terms

Blead
k,h (x, a) := H ∧

√√√√Var
(k)
h,x,a log

(
Mnk(x,a)

δ

)
nk(x, a)

, and

Bfut
k (x, a) = H3 ∧H3


√√√√S log

(
Mnk(x,a)

δ

)
nk(x, a)

+
S log

(
Mnk(x,a)

δ

)
nk(x, a)


2

.

The above proposition is proven in Appendix F. Here Blead denotes a “lead term” in the analysis,
which contributes to the dominate factors in our regret bounds. Bfut notates “future” bound terms
under a rollout of πk starting at a given triple (x, a, h); these terms are responsible for the lower
Õ
(
SAH4(S ∨H)

)
-term in the regret.

Remark B.4 (Remarks on Proposition B.4). First, the dominant term in the upper bound on
Ek,h is Blead

k,h (x, a), which decays as Õ
(
nk(x, a)−1/2

)
. The terms Bfut

k (x, a) decay more rapidly
Õ
(
nk(x, a)−1

)
, and will thus be responsible for the (nearly gap-free) portion of the regret. Sec-

ond, in order to analyze similar optimistic algorithms in the same vein (e.g. [1, 4, 5]), one would
instead prove the appropriate analogue to Proposition B.4 and follow the remaining steps of the
present proof. Little would change, except one would be forced to replace Var?h,x,a with a more
pessimistic, less problem-dependent quantity. Lastly, note that the lead term Blead

k,h (x, a) depends on
the minimum of the variance of the optimal value function, Var?h,x,a and of the variance of the value
function for πk, Varπkh,x,a. As in the aforementioned works, this dependence on Varπkh,x,a is crucial

for obtaining the correct minimax Õ(
√
HSAT ) regret.

Next, let us combine Proposition B.4 with our main clipping theorem, Theorem B.3. Since
Ek,h(x, a) . Blead

k,h (x, a) +Eπk [
∑

(. . . ) | (. . . )], combining the two results into a convenient form
requires that we reason about how to distribute clipping operations across sums of terms. To this
end, we invoke the following technical lemma:
Lemma B.5 (Distributing the clipping operator). Let m ≥ 2, a1, . . . , am ≥ 0, and ε ≥ 0.
clip [

∑m
i=1 ai | ε] ≤ 2

∑m
i=1 clip

[
ai | ε

2m

]
.

Proof. Let us assume without loss of generality 0 ≤ a1 ≤ . . . ≤ am, and that
∑m
i=1 ai ≥ ε.

Defining the index i∗ := min{i : ai ≥ ε
2m}, we observe that ai∗ ≥ ε

2m , and since (ai) are non-
decreasing by assumption,

∑m
i=i∗ ai =

∑m
i=i∗ clip

[
ai | ε

2m

]
≤
∑m
i=1 clip

[
ai | ε

2m

]
. It therefore

suffices to show that
∑m
i=1 ai ≤ 2

∑m
i=i∗ ai. To this end, we see that, since ai ≤ ε

2m for i < i∗,∑i∗−1
i=1 ai ≤

∑i∗−1
i=1

ε
2m ≤

(i∗−1)ε
2m ≤ ε/2. On the other hand, since

∑m
i=1 ai ≥ ε, we must have

that
∑m
i=i∗ ai ≥

ε
2 , and thus

∑m
i=1 ai ≤ 2

∑m
i=i∗ ai, as needed.

Applying the above lemma careful, we arrive at the following useful regret decomposition:
Lemma B.6 (Clipped Regret Decomposition Lead and Future Bounds). Let ˇgapmin =
minx,a,h ˇgaph(x, a). Then on the event Aconc the regret of StrongEuler is bounded by

RegretK ≤ 4e

K∑
k=1

H∑
h=1

∑
x,a

ωk,h(x, a) clip

[
cBlead

k,h (x, a) | ˇgaph(x, a)

4

]
.

+ 8He

K∑
k=1

H∑
h=1

∑
x,a

ωk,h(x, a) clip

[
cBfut

k (x′, a′)| ˇgapmin

8SAH

]
,

where c is a universal constant.

B.3 Proof of Corollary B.1: A proof via integration

Note that Lemma B.6 bounds RegretK by a sum of local bounnds terms Blead
k,h (x, a) and Bfut

k ,
which depend only on the number of samples nk(x, a) obtained from state action pair (x, a). More
precisesly, we can represent the bound terms by defining the functions

18



glead
x,a (u) :=

√
Var?x,a log(Muδ )

u , and gfut(u) = H3

√S log
(
Mu
δ

)
u +

S log
(
Mu
δ

)
u

2

.

Further, define εlead
x,a := minh

ˇgaph(x,a)
4 , εfut :=

ˇgapmin

8SAH , and lastly set

f lead
x,a (u) := H ∧ clip

[
cglead
x,a (u)|εlead

x,a

]
, f fut(u) := H3 ∧ clip

[
cgfut(u)|εfut

]
.

Then, recalling the definitions of Blead,Bfut, and the fact that Blead
k,h (x, a) ≤ H and Bfut

k (x, a) ≤
H3, we can write

RegretK .
K∑
k=1

H∑
h=1

∑
x,a

ωk,h(x, a)f lead
x,a (nk(x, a)) +H

K∑
k=1

H∑
h=1

∑
x,a

ωk,h(x, a)f fut(nk(x, a)).

(4)

As described in Section 3, the crucial step now is to relate the empirical conunts nk(x, a) to the
visitation probabililties. Precisely, let us aggregate

ωk(x, a) :=

H∑
h=1

ωk,h(x, a), nk(x, a) :=
k∑
j=1

ωj(x, a).

Note that if {Fk} denotes the filtration corresponding to the episodes k, then, E[nk(x, a) |
Fk−1] = nk−1(x, a) + ωk−1(x, a). In other words, nk−1(x, a) is precise the sum of the incre-
ments E[nj(x, a)−nj−1(x, a) | Fj−1] for j = 1, . . . , k−1.6. Hence, by a now-standard martingale
concentration argument, we find that nk(x, a) will be be lower bounded by nk(x, a), provided that
the latter quantity is sufficiently large. More precisely:
Lemma B.7 (Sampling Event). Define the event

Esamp(Hsample) :=

{
∀(x, a), ∀k ≥ τHsample

(x, a), nk(x, a) ≥ 1

4
nk(x, a)

}
,

where τn(x, a) := inf {k : nk(x, a) ≥ n}

Then, for some Hsample . H log M
δ , Esamp(Hsample) holds with probability at least 1− δ/2.

Lemma B.7 is proved in Appendix C.2 as a consequence of Lemma 6 in [6]. Together, the events
Aconc and Esamp account for 1 − δ probability with which our regret bounds hold. For short, we
will let Esamp denote Esamp(Hsample) when clear from context, and τ := τHsample

.

After neglecting the first τ (x, a) samples in the sum (5), we can approximately bound

RegretK /
∑
x,a

K∑
k≥τ (x,a)

H∑
h=1

ωk,h(x, a)f lead
x,a (nk(x, a)/4)

+
∑
x,a

H

K∑
k=τ (x,a)

H∑
h=1

ωk,h(x, a)f fut(nk(x, a)/4),

where / denotes an informal inequality. Now, ωk,h(x, a) and nk(x, a)/4 are directly related via
nk(x, a)/4 :=

∑k
j=1

∑H
h=1 ωj,h(x, a). Hence, we can view the above regret bounds as discrete in-

tegrals of the functions f lead
x,a and f fut(nk(x, a)/4). This argument is made precise by the following

lemma, which comprises the workhorse of out argument:
Lemma B.8 (Integral Conversion). Suppose that the event Esamp(Hsample) holds. Then, for any
collection of functions fx,a(·) non-increasing functions from N → R bounded aboved by fmax and
any εx,a,h ≥ 0 , we have that
K∑
k=1

H∑
h=1

∑
x,a

ωk,h(x, a)fx,a(nk(x, a)) ≤ 2ASHsamplefmax +
∑
x,a

I(nK(x, a) ≥ H)

∫ nK(x,a)

H

f(u/4)du

6Note that we induce nk(x, a) to include a sum up to index k; this makes the following arguments more
convenient, and will only accrue constant factors in the analysis
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Since Hsample . H log(M/δ), and the functions f fut
x,a, f lead

x,a are bounded by H3, we see that, on
Esamp ∩ Aconc, it holds that

RegretK . SAH5 log(M/δ) +
∑
x,a

I(nK(x, a) ≥ H)

∫ nK(x,a)

H

f lead
x,a (u/4)du

+
∑
x,a

I(nK(x, a) ≥ H)

∫ T

H

f fut(u/4)du, . (5)

where for the term on the second line, we have bounded nK(x, a) ≤ T and used that f fut(·) ≥ 0.

All that remains is to evaluate the above integrals. This is directly adressed by the following technical
lemma, proved in Section C.5:

Lemma B.9 (General Integration Computations). Let f(u) ≤ min {fmax, clip [g(u)|ε]} where ε ∈
[0, H] and g(u) is a non-increasing function is specified in each of two cases that follow. Further,
let M ≥ 1, and δ ∈ (0, 1/2) be problem dependent constants. Finally, let . denote inequality up to
a problem independent constant. Then, the following integral computations hold:

(a) Suppose that C > 0 is a problem depedendent constant satisfying logC . log(2M), and

that g(u) .
√

C log(Mu/δ)
u . Then,

∫ N

H

f(u/4)du . min

{√
CN log MN

δ ,
C

ε
log

(
M

δ
·min{T, Hε }

)}
.

(b) Suppose that C,C ′ > 0 are a problem depedendent constant satisfying log(CC ′) .

log 2M , and that g(u) . C

(√
C′ log(Mu/δ)

u + C′ log(Mu/δ)
u

)2

. Then,

∫ N

H

f(u/4)du . (1 + C ′) fmax log(Mδ )

+ CC ′ log
(
MN
δ

)
min

{
log MN

δ , log
(
MH
ε

)}
Note that the special case g(u) . C

log(Mu/δ)u can be obtained by setting C ′ = 1 in the
above inequality.

Lastly, the above computations hold if f(u/4) is replaced by f(u/c) for any universal constant
c > 0. Moreover, the above computations hold if f(u) . min {fmax, g(u)} by taking ε = 0 and
setting 1

ε =∞.

Remark B.5 (Integration without anytime bounds). If instead we consider functions g(u) satisfying

the looser bounds (a) g(u) .
√

C log(MT/δ)
u and (b) g(u) . C

(√
C′ log(MT/δ)

u + C′ log(MT/δ)
u

)2

for T ≥ N , then we can recover the bounds∫ N

H

f(u/4)du .

{
min

{√
CN log MT

δ , Cε log MT
δ

}
case (a)

(1 + C ′) fmax log MT
δ + CC ′ log

(
MT
δ

)
min{log MT

δ , log log(MT/δ)
ε } case (b)

These sorts of bounds arise when the confidence intervals are derived via union bounds over all time
T , rather than via anytime estimates. In particular, we see that using a naive union bounded over
all time T incurs a dependence on log T · (log log T ), and thus does not imply a strictly O (log T )
regret.

Let us conclude by applying the above lemma to the terms at hand. First, applying the Part (a)
with f = f lead

x,a , g = glead
x,a , C = Var?x,a, and H ≥ ε = εlead

x,a := minh
ˇgaph(x,a)

4 & gap(x,a)
(1∨αH) for
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(x, a) ∈ Zsub, and H ≥ εx, a & gapmin
H for (x, a) ∈ Zopt, we have that∑

x,a

I(nK(x, a) ≥ H)

∫ nK(x,a)

H

f lead
x,a (u/4)du

.
∑
x,a

Var?x,a

minh ˇgaph(x, a)
log( MH

δminh ˇgaph(x,a) )

.
∑

(x,a)∈Zsub

Var?x,a(1 ∨αH)

gap(x, a)
log MH

δgap(x,a) +
∑

(x,a)∈Zopt

Var?x,aH

gapmin(x, a)
log MH

δgapmin

≤
∑

(x,a)∈Zsub

Var?x,a(1 ∨αH)

gap(x, a)
log MH

δgap(x,a) + |Zopt|
VarH

gapmin(x, a)
log MH

δgapmin
.

Similarly, applying the Part (b) with f = f fut, g = gfut, C ′ = S and C = H3, and ε = εfut :=
ˇgapmin

8SAH & gapmin
H2 (and also satisfying εfut ≤ H), we can bound

. S2AH3 log
(
MT
δ

)
min

{
log MT

δ , log
(
MH
gapmin

)}
,

Plugging the above two displays into (5) concludes the proof of Corollary B.1.

B.4 Proof of Theorem B.2

We conclude the section by proving the regret bound of Theorem B.2, which interpolates between
the
√
T and log T regimes. Let us recall the subset Zsub(ε) := {(x, a) : gap(x, a) < ε}, as well as

HT := min
{
Var , G

2

H log T
}
.. Retracing the proof of Corollary B.1, it suffices to establish only

two points: ∑
(x,a)∈Zsub(ε)

K∑
k=1

H∑
h=1

ωk,h(x, a) clip

[
cBlead

k,h (x, a) | ˇgaph(x, a)

4

]
.
√
HT |Zsub(ε)|T log MT

δ + SAH2 log(Mδ/T )∑
(x,a)∈Zopt

K∑
k=1

H∑
h=1

ωk,h(x, a) clip

[
cBlead

k,h (x, a) | ˇgaph(x, a)

4

]

.
√
HT |Zopt|T log MT

δ + SAH2 log(Mδ/T )

For both of these inequalities, we will discard the clipping, and thus the two bounds will be syntati-
cally the same. Hence, let us simply prove the following bound:

K∑
k=1

H∑
h=1

∑
(x,a)∈Zopt

Blead
k,h (x, a) .

√
HT |Zopt|T log MT

δ .

Since HT := min
{
Var , G

2

H log T
}

, it suffices to prove the above bound first with HT replaced by

Var , and then replaced by G
2

H log T .

Bound with Var : To obtain a bound involving Var , we use the fact that Blead
k,h (x, a) .

glead(nk(x, a)), for the function glead(u) =
√
Var log(Mu/δ)/u. Hence, following the integration

arguments in the proof of Corollary B.1, clipped at ε = 0, we can bound
K∑
k=1

H∑
h=1

ωk,h(x, a)Blead
k,h (x, a) ≤ H log(M/δ) +

√
VarnK(x, a) log(nK(x, a)M/δ)

≤ H2 log(M/δ) +
√
VarnK(x, a) log(TM/δ).
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Hence, by Cauchy Schwartz, and the bound
∑

(x,a)∈Zopt
nK(x, a) ≤

∑
(x,a) nK(x, a) = T ,∑

(x,a)∈Zopt

K∑
k=1

H∑
h=1

ωk,h(x, a)Blead
k,h (x, a) . SAH log(M/δ) +

∑
x,a∈Zopt

√
VarnK(x, a) log(TM/δ)

≤ SAH log(M/δ) +

√
Var |Zopt|

∑
x,a∈Zopt

nK(x, a) log(TM/δ)

≤ SAH log(M/δ) +
√
Var |Zopt|T log(TM/δ),

as needed.

Bound with HT : This bound requires a little more subtely. Define the function f(u) =
(1/max{u, 1}). Then, using the definition of Blead

k,h (x, a) from Proposition B.4, we have∑
(x,a)∈Zopt

H∑
h=1

Blead
k,h (x, a) .

K∑
k=1

H∑
h=1

∑
(x,a)∈Zopt

ωk,h(x, a)(H ∧
√

log(Mnk(x, a)/δ)f(nk(x, a))Var?h,x,a)

≤
K∑
k=1

H∑
h=1

∑
(x,a)∈Zopt

ωk,h(x, a)(H ∧
√

log(MT/δ)f(nk(x, a))Var?h,x,a).

Applying the recipe we used for Corollary B.1 will not quite carry over in this setting. Instead, we
apply an argument based on Cauchy-Schwartz, defered to Section C.4:
Lemma B.10 (Cauchy-Schwartz Integration Lemma for G-bounds). Let {Vx,a,k,h} be a sequence of
numbers, and let f(u) be a nonnegative, non-decreasing function, fmax > 0, L a problem dependent
parameter, and let Z0 ⊂ S ×A. Then, on Esamp,∑

(x,a)∈Z0

K∑
k=1

H∑
h=1

ωk,h(x, a)fmax ∧
√

Lf(nk(x, a))Vx,a,k,h

≤ |Z0|Hsamplefmax +

√√√√L

K∑
k=1

Eπk
[
H∑
h=1

Vx,a,k,h

]
· |Z|(Hf(H) +

∫ T

1

f(u)du).

We apply the above lemma with Vx,a,k,h = Varπkx,a,h, fmax = H and f(u) = 1/max{u, 1}, and
L = log(MT/δ). It is easy to see that the term |Z0|Hsamplefmax . SAH2 log(M/δ) will already
absorbed into terms already present in the final bound. On the other hand, by a now-standard law of
total variance argument,

K∑
k=1

Eπk
[
H∑
h=1

Varπkxh,ah,h

]
≤ K max

π
Eπ
[
H∑
h=1

Varπxh,ah,h

]
≤ TG2/H, (6)

where the last inequality is from the proof of [16], Proposition 6. On the other hand, we can
bound(Hf(H) +

∫ T
1
f(u)du) ≤ 1 + log T . This finally yields

K∑
k=1

Eπk
[
H∑
h=1

Varπkxh,ah,h

]
. SAH2 log(M/δ) +

√
log(MT/δ)T · G2/H log(T ),

as needed.

C Proof of Technical Lemmas

C.1 Proof of clipping with future bounds, Lemma B.6

Since strong optimistm holds on Aconc, Theorem B.3 yields

V?
0 −Vπk

0 ≤ 2e

H∑
h=1

∑
x,a

ωk,h(x, a) clip [Ek,h(x, a) | ˇgaph(x, a)] .
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Applying Lemma B.5 with m = 2, a1 = cBlead
k,h (x, a), and

a2 = Eπk
[
H∑
t=h

cBfut
k (x, a) | (xh, ah) = (x, a)

]
,

V?
0 −Vπk

0 ≤ 4e

H∑
h=1

∑
x,a

ωk,h(x, a) clip

[
cBlead

k,h (x, a) | ˇgaph(x, a)

4

]
.

4e

H∑
h=1

∑
x,a

ωk,h(x, a) clip

[
Eπk

[
H∑
t=h

cBfut
k (xt, at) | (xh, ah) = (x, a)

]
| ˇgaph(x, a)

4

]
.

The term on the right hand side of the first line of the above display is exactly as needed. Let us turn
our attention to the term on the second line. We have that

Eπk
[
H∑
t=h

cBfut
k (xt, at) | (xh, ah) = (x, a)

]
=
∑
x′,a′

H∑
t=h

cBfut
k (x′, a′)P[(xt, at) = (x′, a′) | (xh, ah) = (x, a)].

Hence, applying Lemma B.5 with the terms ai-terms corresponding to Bfut
k (x′, a′)P[(xt, at) =

(x′, a′) | (xh, ah) = (x, a)] and the number of such terms m bounded by SAH , we have

clip

[
Eπk

[
H∑
t=h

Bfut
k (xt, at) | (xh, ah) = (x, a)

]
| ˇgaph(x, a)

4

]

≤ 2
∑
x′,a′

H∑
t=h

clip

[
cBfut

k (x′, a′)P[(xt, at) = (x′, a′) | (xh, ah) = (x, a)]| ˇgaph(x, a)

8SAH

]
.

Since clip [αx|ε] ≤ α clip [x|ε] for α ≤ 1, and since the probabilities P[(xt, at) = (x′, a′) |
(xh, ah) = (x, a)] are bounded by 1, we can bound the above by

2
∑
x′,a′

H∑
t=h

P[(xt, at) = (x′, a′) | (xh, ah) = (x, a)] clip

[
cBfut

k (x′, a′)| ˇgaph(x, a)

8SAH

]
.

Hence,

4e

H∑
h=1

∑
x,a

ωk,h(x, a) clip

[
Eπk

[
H∑
t=h

cBfut
k (xt, at) | (xh, ah) = (x, a)

]
| ˇgaph(x, a)

4

]

≤ 8e

H∑
h=1

∑
x,a

∑
x′,a′

ωk,h(x, a)

H∑
t=h

P[(xt, at) = (x′, a′) | (xh, ah) = (x, a)] clip

[
cBfut

k (x′, a′)| ˇgaph(x, a)

8SAH

]

≤ 8e

H∑
h=1

∑
x,a

∑
x′,a′

ωk,h(x, a)

H∑
t=h

P[(xt, at) = (x′, a′) | (xh, ah) = (x, a)] clip

[
cBfut

k (x′, a′)| ˇgapmin

8SAH

]

= 8e

H∑
h=1

H∑
t=h

∑
x′,a′

ωk,h(x′, a′) clip

[
cBfut

k (x′, a′)| ˇgapmin

8SAH

]

≤ 8He

H∑
h=1

∑
x,a

ωk,h(x, a) clip

[
cBfut

k (x′, a′)| ˇgapmin

8SAH

]
.

Altogether,

V?
0 −Vπk

0 ≤ 4e

H∑
h=1

∑
x,a

ωk,h(x, a) clip

[
cBlead

k,h (x, a) | ˇgaph(x, a)

4

]
.

+ 8He

H∑
h=1

∑
x,a

ωk,h(x, a) clip

[
cBfut

k (x′, a′)| ˇgapmin

8SAH

]
.

Summing over k = 1, . . . ,K proves the inequality.
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C.2 Proof of sampling lemma (Lemma B.7)

Recall (Esamp)′ := {∀k, s, a : nk(x, a) ≥ 1
2nk−1(x, a) −H log 2HSA

δ }; Lemma 6 in [6] in shows
that this event occurs with probability at least 1− δ/2. We show that (Esamp)′ ⊆ Esamp(Hsample),
for Hsample = 4H log 2HSA

δ . H log M
δ .

Noting that nk ≤ nk−1 + H , (Esamp)′ implies that nk ≥ 1
2nk(x, a) − H log 2HSA

δ − H =
1
2nk(x, a) − H log 2eHSA

δ . Hence, for any k ≥ τ (x, a), we have nk ≥ 4H log 2HSA
eδ and thus

nk(x, a) ≥ nk
4 + nk

4 −H log 2eHSA
δ ≥ nk

4 . Bounding log 2HSA
eδ ≤ L̃(1) concludes the proof.

C.3 Proof of integral conversion, Lemma B.8

Recall that τ (x, a) denote inf{k : nk(x, a) ≥ Hsample}. Then,

K∑
k=1

∑
x,a

ωk(x, a)fx,a(nk(x, a)) =
∑
x,a

τ (x,a)−1∑
k=1

ωk(x, a)fx,a(nk(x, a)) +
∑
x,a

∑
k=τ (x,a)

fx,a(nk)

≤
∑
x,a

τ (x,a)−1∑
k=1

ωk(x, a)fmax +
∑
x,a

∑
k=τ (x,a)

fx,a(nk)

≤ SAHsamplefmax +
∑
x,a

∑
k=τ (x,a)

fx,a(nk(x, a))

≤ SAHsamplefmax +
∑
x,a

∑
k=τ (x,a)

fx,a(nk(x, a)/4),

since
∑τ (x,a)−1
k=1 ωk(x, a) = nτ (x,a)−1(x, a) ≤ Hsamplemadn f(·) ≤ fmax. We now appeal to the

following integration lemma, which we prove momentarily.

Lemma C.1 (Integration over ωk(x, a)). Let f : [H,∞) → R>0 be a non-increasing function.
Then,

K∑
k=τ (x,a)

ωk(x, a)f(nk(x, a)) ≤ Hf(H) +

∫ nK(x,a)

H

f(u)du. (7)

To conclude the proof of Lemma B.8, we apply the above for each (x, a) with the functions f(u)←
fx,a(u/4), and note Hfx,a(H/4) ≤ Hfmax ≤ Hsamplefmax.

Proof of Lemma C.1. The proof generalizes Lemma E.5 in [5]. For ease of notation, define k0 =

τ(x, a). We can define the step function g : [k0,K]→ R via g(t) =
∑K−1
k=k0

ωk+1(x, a)I(t ∈ [k, k+

1)]. Then, letting G(t) := nk0(x, a) +
∫ t

0
g(u)du, we see that G′(t) = g(t) almost everywhere, G

is non-decreasing, and G(k) = nk(x, a) for all k ∈ [k0,K]. We can therefore express

K∑
k>τ(x,a)

ωk(x, a)f(nk(x, a)) =

K∑
k=k0+1

ωk(x, a)f(nk(x, a)) =

K∑
k=k0+1

(∫ k

k−1

g(t)dt

)
f(G(k))·

(i)

≤
K∑

k=k0+1

(∫ k

k−1

g(t)f(G(t))dt

)
=

∫ K

k=k0

g(t)f(G(t))dt

(ii)
=

∫ G(K)

G(k0)

f(u)du
(iii)
=

∫ nK(x,a)

nk0 (x,a)

f(u)du,
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where (i) uses the fact that f ◦ G is non-increasing, (ii) is the Fundamental Theorem of Calculus,
with G′(t) = g(t), and (iii) is G(k) = nk(x, a) for k ∈ [k0,K]. Hence, we have the bound

K∑
k≥k0

ωk(x, a)f(nk(x, a)) ≤ ωk0(x, a)f(nk0(x, a)) +

∫ nK(x,a)

nk0 (x,a)

f(u)du

(i)

≤ Hf(nk0(x, a)) +

∫ nK(x,a)

nk0 (x,a)

f(u)du
(ii)

≤ Hf(H) +

∫ nK(x,a)

H

f(u)du,

where (i) uses ωk0 ≤ H , and that f(u) ≥ 0, and (ii) uses the fact that f is nonincreasing, and
nk0(x, a) ≥ Hsample ≥ H .

C.4 Proof of interal conversion for G-bounds, Lemma B.10

Let τ (x, a) = τHsample
(x, a). Then, as in the proof of Lemma B.8,

∑
(x,a)∈Z

K∑
k=1

H∑
h=1

ωk,h(x, a)(fmax ∧
√

L̃f(nk(x, a))Vx,a,k,h)

.
∑

(x,a)∈Z

K∑
k=τ (x,a)

H∑
h=1

ωk,h(x, a)

√
L̃f(nk(x, a))Vx,a,k,h + |Zopt|Hsamplefmax.

By Cauchy-Schwartz

∑
(x,a)∈Z

K∑
k=τ (x,a)

H∑
h=1

ωk,h(x, a) .

√√√√ ∑
(x,a)∈Z

K∑
k=τ (x,a)

H∑
h=1

ωk,h(x, a)Vx,a,k,h ×L1/2

√√√√ ∑
(x,a)∈Z

K∑
k=τ (x,a)

H∑
h=1

ωk,h(x, a)f(nk(x, a)).

The first term in the above product can be bounded as

∑
(x,a)∈Z

K∑
k=τ (x,a)

H∑
h=1

ωk,h(x, a)Vx,a,k,h ≤
K∑
k=1

H∑
h=1

∑
x,a

ωk,h(x, a)Vx,a,k,h =

K∑
k=1

Eπk [

H∑
h=1

Vx,a,k,h].

Using Lemma C.1, the second term can be bounded as√√√√ ∑
(x,a)∈Z

K∑
k=τ (x,a)

H∑
h=1

ωk,h(x, a)f(nk(x, a)) ≤ |Z|(Hf(H) +

∫ T

1

f(u)du).

C.5 General Integral computations (Lemma B.9)

For convenience, let us restate the lemma we are about to prove.

Lemma B.9 (General Integration Computations). Let f(u) ≤ min {fmax, clip [g(u)|ε]} where ε ∈
[0, H] and g(u) is a non-increasing function is specified in each of two cases that follow. Further,
let M ≥ 1, and δ ∈ (0, 1/2) be problem dependent constants. Finally, let . denote inequality up to
a problem independent constant. Then, the following integral computations hold:

(a) Suppose that C > 0 is a problem depedendent constant satisfying logC . log(2M), and

that g(u) .
√

C log(Mu/δ)
u . Then,∫ N

H

f(u/4)du . min

{√
CN log MN

δ ,
C

ε
log

(
M

δ
·min{T, Hε }

)}
.

25



(b) Suppose that C,C ′ > 0 are a problem depedendent constant satisfying log(CC ′) .

log 2M , and that g(u) . C

(√
C′ log(Mu/δ)

u + C′ log(Mu/δ)
u

)2

. Then,∫ N

H

f(u/4)du . (1 + C ′) fmax log(Mδ )

+ CC ′ log
(
MN
δ

)
min

{
log MN

δ , log
(
MH
ε

)}
Note that the special case g(u) . C

log(Mu/δ)u can be obtained by setting C ′ = 1 in the
above inequality.

Lastly, the above computations hold if f(u/4) is replaced by f(u/c) for any universal constant
c > 0. Moreover, the above computations hold if f(u) . min {fmax, g(u)} by taking ε = 0 and
setting 1

ε =∞.

Proof. By inflating C by a problem-independent constant if necessary, we may assume without
loss of generality that g(u) =

√
C log(Mu/δ)/u in part (a) and g(u) = C(

√
C ′ log(Mu/δ)/u +√

C ′ log(Mu/δ)/u)2, with equality rather than approximate inequality ..

Next, define

nend :=

{
max{u : g(u/4) ≥ ε}ε > 0

N ε = 0.

Throughout, we shall assume the case ε > 0, as the ε = 0 can be derived by just taking nend = N .
Note then that f(u/4) = clip [g(u/4)|ε] = 0 for all u > nend. Hence, it suffices to upper bound

I(nend ≥ H)

∫ N∧nend

H

fmax ∧ g(u/4)du.

Lastly, let us define L̃(u) := log(Mu/δ) for u ≥ H . We shall rquire the following inversion lemma,
which is standard in the multi-arm bandits literature.

Lemma C.2 (Inversion Lemma). There exists a universal constant c > 0 such that for all b ≥ 0,
L̃(u)/u ≤ b as long as u ≥ L̃(1 + b−1)/cb. Moreover, for u . L̃(b−1)/cb, it holds that L̃(u) .
L̃(1 + b−1).

Proof. Let u = L̃(1/b)/cb for a constant c to be chosen shortly. Then,

L̃(u)/u = cb
L̃( 1

cb L̃(b−1)

L̃(1 + b−1)
= cb

log 1
c + log(M/bδ) + log(log M

bδ )

log(M/bδ)

≤
cb log 1

c

log 2
+ 2cb,

where we use log log(x) ≤ x and L̃(1 + b−1) ≥ L̃(1) ≥ log 2. It is easy to see that this quantity is
less than b for a constant c sufficiently small that does not depend on M, δ, b. The second statement
follows from an analogous computation.

Proof of Part (a): Suppose g(u) =

√
CL̃(u)
u . It is straightforward to bound

I(nend ≥ H)

∫ N∧nend

H

fmax ∧ g(u/4)du . I(nend ≥ H)

√
CL̃(N ∧ nend)

∫ N∧nend

1

du√
u

.
√
CL̃(N ∧ nend) ·

√
(N ∧ nend)

. min

{√
CN L̃(N),

√
CnendL̃(nend)

}
= min

{√
CN log

MN

δ
,

√
CnendL̃(nend)

}
.
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To conclude, let us find nend(x, a). By our inversion Lemma C.2, we can see that

nend .
C

ε2
L̃(1 +

C

ε2
) .

C

ε2
L̃(1 +

C

ε
)

L̃(nend) . L̃(1 +
C

ε
).

Therefore, √
CnendL̃(nend) .

C

ε
L̃

(
1 +

C

ε

)
.

Moreover, for if logC . logM and ε ≤ H , we can bound L̃
(
1 + C

ε

)
. log MH

ε . Hence, we
haveshow ∫ N

H

f(u/4)du . min

{√
CN log MN

δ ,
C

ε
log

(
M

δ
· H
ε

)}
.

To conclude, it remains to show that we can replace H
ε with N . For this, we use a simpler argument:

∫ N

H

f(u/4)du .
∫ N

H

clip


√
CL̃(u)

u
|ε


≤
∫ N

H

clip


√
CL̃(N)

u
|ε


=

√
L̃(T )

∫ N

H

clip

[
1√
u
|ε′
]
, where ε′ =

√
L̃(T ).

Using similar arguments to above, we can bound
∫ N
H

clip
[

1√
u
|ε′
]

. 1
ε′ , yielding the bound∫ N

H
f(u/4)du . L̃1/2(T )

ε′ = L̃(T )
ε .

Proof of Part (b): A first step This proof will require slightly more care than part (b). We shall
first require the following lemma:

Claim C.3. In the setting of Lemma B.9, if g(u) =
C log

Mu
δ

u = CL̃(u)
u , then∫ N

H

f(u/4)du . fmax logM + C log (MT/δ) min

{
log(

MT

δ
), log

(
MH

ε

)}
Proof of Claim C.3. Define n0 = 2 + log(M/δ). Then, we have

I(nend ≥ H)

∫ N∧nend

H

fmax ∧ g(u/4)du ≤ fmaxn0 + I(N ∧ nend ≥ n0) ·
∫ N∧nend

n0

g(u/4)du.

≤ fmaxn0 +

∫ n0+N∧nend

n0

g(u/4)du

. fmax log(M/δ) +

∫ n0+N∧nend

n0

g(u/4)du.

Now take g(u) = CL̃(u)/u. Since L̃(u) . log(M/δ) + log(u) for u ≥ n0 ≥ 2, it it is straightfor-
ward to bound∫ n0+N∧nend

n0

g(u/4)du . C log(M/δ) log(1 +
N ∧ nend

n0
) + C log2(1 +

N ∧ nend

n0
)

. C log(MT/δ) log(1 +
N ∧ nend

n0
),
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where in the final inequality, we use N ≤ T , M/δ ≥ 2, and n0 ≥ 1. By the same token, we can
crudely bound the above by C . log2(MT/δ).

Let us now develop a more refined bound by taking advantage of nend. By our inversion lemma, we
have

nend .
C

ε
L̃

(
1 +

C

ε

)
=
C

ε

(
log 1 +

C

ε
) + log

M

δ

)
.

Since n0 = 1 + log M
δ ,

nend

n0
.
C

ε
log(1 +

C

ε
) +

C

ε

log M
δ

log M
δ

.
C

ε
log

(
1 +

C

ε

)
.

Hence, with some algebra we can bound

log(1 +
nend

n0
) . log(1 +

C

ε
)

This leads to the more refined bound
∫ n0+N∧nend

n0
g(u/4)du . C log(1 + C

ε ) log(M̃T ). Again,
since logC . logM and ε ≤ H , we bound again bound log(1 + C

ε ) . log MH
ε .

Concluding the proof of Part (b) Define

n0 := {inf u :

√
C ′L̃(u)

u
≤ 1}.

Then, we have ∫ N

H

f(u/4)du ≤ fmaxn0 +

∫ N

n0

fmax ∧ clip [g(u/4)|ε] du.

Note that for u ≥ n0, g(u/4) . h(u/4), where h(u) ≤ CC′

u L̃(u). Hence, applying the bound from
Lemma C.3 with C ← CC ′, we have∫ N

H

f(u/4)du . fmax log M̃ + CC ′ log(M̃T ) min

{
log(

MT

δ
), log(

MH

ε
)

}
On the otherhand, by our inversion lemma and using C ′ ≤ M̃O(1), we can bound

n0 ≤ C ′L̃(C ′) . C ′ log(
M

δ
).

Combining these two pieces yields the bound.
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D Proof of ‘clipping’ bound: Proposition 3.1 / Theorem B.3

In this section, we prove Theorem B.3 (of which Proposition 3.1 in the body is a direct conse-
quence), which allows us to clip the surpluses when they are below a certain value. The center of
our analysis is the following lemma, which tells us that if gaph(x, a) > 0 for a pair (x, a, h), then
either the surplus Ek,h(x, a) is large, or expected difference in value functions at the next stage,
p(x, a)>(Vk,h+1 −Vπk

h+1), is large:
Lemma D.1 (Fundamental Gap Bound). Then suppose that Alg is strongly optimistic, and consider
a pair (x, a, h) with gaph(x, a) > 0 which is is α-transition optimal. Then

gaph(x, a) ≤ Ek,h(x, a) +α · p(x, a)>(Vk,h+1 −Vπk
h+1).

If Alg is possibly not strongly optimistic, then the above holds still holds α = 1.

Lemma D.1 is established in Section D.2. Notice that as α gets close to zero, the above bound
implies that when Ek,h(x, a) is much smaller than the gaph(x, a), the difference in value functions
at the next stage, p(x, a)>(Vk,h+1−Vπk

h+1), must become even larger to compensate. The extreme
case is α = 0, e.g. in contextual bandits, where the gap always lower bounds the surplus.

Continuing with the proof of Theorem B.3, we begin with the “half-clipping” which clips the sur-
pluses at at most gapmin:

Definition D.1 (Half Clipped Value Function). We define the half-clipped surplus Ëk,h(x, a) :=

clip [Ek,h(x, a) | εclip], where εclip := gapmin/(2H). We set V̈πk
k,H+1(x) = 0 for all x ∈ S, and

recursively define

Q̈πk
h (x, a) = r(x, a) + Ëk,h(x, a) + p(x, a)>V̈πk

k,h+1, V̈πk
k,h(x) := Q̈πk

h (x, πk,h(x)),

denote the value and Q-functions of under πk associated with MDP whose transitions are transitions
p(·, ·) and non-stationary rewards r(x, a) + Ëk,h(x, a) at stage h.

After the half-clipping has been introduced, it is no longer the case that πk is optimal for this half
clipped MDP. As a result, it is not certain that the half-clipped Q-function for πk is optimistic in the
sense that Q̈πk

k,h(x, a) ≥ Q?
h(x, a). We shall instead show that if V̈πk,h is approximately optimistic,

in the sense that its excess relative to Vπk , V̈
πk,h
0 −Vπk

0 is at least a constant factor of the regret
V?

0 −Vπk
0 :

Lemma D.2 (Lower Bound on Half-Clipped Surplus). For εclip = gapmin/2H , it holds that

V̈πk
0 −Vπk

0 = Eπk
[
H∑
h=1

Ëk,h(xh, ah)

]
≥ 1

2
(V?

0 −Vπk
0 ),

The above bound is established in Section D.1. Hence, to establish the bound of Theorem B.3, it
suffices to bound the gap V̈

πk,h
0 −Vπk

0 . For a given h, and an x : πk,h(x) /∈ π?h(x), let us consider
the difference

V̈πk
h (x)−Vπk

h (x) = Ëk,h(x, πk,h(x)) + p(x, πk,h(x))>
(
V̈πk
h+1 −Vπk

h+1

)
.

We now introduce the following lemma, proven Section D.3, which allows us to further clip the
bonus for suboptimal actions a /∈ π?h(x), i.e. , actions with gaph(x, a) > 0:
Lemma D.3 (Gap Clipping). Suppose either Alg is strongly optimistic and each tuple is αx,a,h-
transition suboptimal. Then the fully-clipped surpluses

Ěk,h(x, a) := clip

[
Ek,h(x, a) | εclip ∨

gaph(x, a))

4(αx,a,hH ∨ 1)

]
satisfy the bound

V̈πk
h (x)−Vπk

h (x) ≤ Ěk,h (x, πk,h(x)) +

(
1 +

1

H

)
p(x, πk,h(x))>

(
V̈πk
h+1 −Vπk

h+1

)
If Alg is just optimistic, then the above bound holds with αx,a,h = 1.
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Unfolding the above lemma, and noting that even when Alg is not strongly optimistic, the clipping
ensures that Ěk,h(x, a) ≥ 0, so that we can bound

V̈πk
k,0 −Vπk

0 = Eπk [V̈πk
1 (x1)−Vπk

1 (x1)]

≤ Eπk [Ěk,h (x1, a1) +

(
1 +

1

H

)
p(x, πk,h(x))>

(
V̈πk

2 −Vπk
2

)
]

= Eπk [Ěk,h (x1, a1) +

(
1 +

1

H

)(
V̈
πk,h
2 (x2)−Vπk

2 (x2)
)

]

≤ Eπk
[
H∑
h=1

(
h∏

h′=2

(
1 +

1

H

))
Ěk,h(xh, ah)

]
≤
(

1 +
1

H

)H
Eπk

[
H∑
h=1

Ěk,h(xh, ah)

]

≤ eEπk
[
H∑
h=1

Ěk,h(xh, ah)

]
= e

∑
x,a

H∑
h=1

ωk,h(x, a)Ěk,h(x, a),

where we recall ωk,h(x, a) = Pπk [(xh, ah) = (x, a)]. Combining with our earlier bound
V?

0 − Vπk
0 ≤ 2(V̈πk

k,0(x) − Vπk
0 (x)) from Lemma D.2, we find that V?

0 − Vπk
0 ≤

2e
∑
x,a

∑H
h=1 ωk,h(x, a)Ěk,h(x, a), thereby demonstrating Theorem B.3.

D.1 Proof of Lemma D.2

We can with a crude comparison between the clipped and optimistic value functions.

Lemma D.4. We have that Ëk,h(x, πk,h(x)) ≥ Ek,h(x, πk,h(x))− εclip, which implies

V̈πk
k,h(x) + (H − h+ 1)εclip ≥ Vk,h(x) ≥ Vπk

h (x). (8)

Proof. The bound Ëk,h(x, πk,h(x)) ≥ Ek,h(x, πk,h(x))− εclip follows directly from

Ëk,h(x, a) = Ek,h(x, a)I(Ek,h(x, a) ≥ εclip) ≥ Ek,h(x, a)− εclip.

Hence,

V̈πk
k,h(x)−Vπk

h (x)
(i.a)
= Eπk

[
H∑
t=h

Ëk,t(xt, πk,h(xt)) | xh = x

]

≥ Eπk
[
H∑
t=h

Ek,t(xt, πk,h(xt)))− εclip | xh = x

]

= Eπk
[
H∑
t=h

Ek,t(xt, πk,h(xt)))

]
− (H − h+ 1)εclip

(i.b)
= Vk,h(x)−Vπk

h (x)− (H − h+ 1)εclip,

where (i.a) and (i.b) follow by recursively unfolding the identities V̈πk
k,h(x)−Vπk

h (x) = Ëk,h(x, a)

+p(x, a)>(V̈πk
k,h+1(x)−Vπk

h (x)) and Vk,h(x)−Vπk
h (x) = Ek,h(x, a) + p(x, a)>(Vk,h+1(x)−

Vπk
h (x)).

We now turn to proving Lemma D.2.

Proof. The strategy is as follows. We shall introduce the events over Pπk , Eh := {πk,h(xh) /∈
π?h(xh)}, which is the event that the policy πk,h does not prescribe an optimal action xh. We further
define the events

Ah = Eh ∩
⋂
h′<h

Ech′ ,
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which is the event that the policy πk agrees with an optimal action on x1, . . . , xh−1, and disagrees
on xh. Below, our goal will be to establish the following two formulae for the suboptimality gap
V?

0 −Vπk
0 and V̈πk

0 −Vπk
0 :

V̈πk
0 −Vπk

0 ≥
H∑
h=1

Eπk [I(Ah) {gap(xh, πk,h(xh))−Hεclip + Q?
h(xh, πk,h(xh))−Vπk

h (xh)}]

(9)

and

V?
0 −Vπk

0 =

H∑
h=1

Eπk [I(Ah) {gap(xh, πk,h(xh)) + Q?
h(xh, πk,h(xh))−Vπk

h (xh)}] (10)

Note that on Ah, Eh = {πk,h(xh) /∈ π?h(xh)} also occurs, and therefore gap(xh, πk,h(xh)) ≥
gapmin. In particular, displays (9) and (10) both imply

V̈
πk,h
0 −Vπk

0

(i)

≥
H∑
h=1

Eπk [I(Ah)

{
1

2
gap(xh, πk,h(xh)) + Q?

h(xh, πk,h(x1))−Vπk
h (x)

}
]

(ii)

≥ 1

2

H∑
h=1

Eπk [I(Ah) {gap(xh, πk,h(xj)) + Q?
h(xh, πk,h(xh))−Vπk

h (x)}]

(iii)

≥ 1

2
(V?

0 −Vπk
0 ),

where (i) uses εclip =
gapmin
2H and display (9), (ii) uses that Q?

h(xh, πk,h(xh)) −Vπk
h (x) ≥ 0, and

(iii) uses display (10).

Let us start with proving (9). First, consider a stage h, state x, and suppose that πk,h(x) /∈ π?h(x).
Observe that by Lemma D.4, optimism, and the definition of gaph(x, a), we have that for any
a? ∈ π?h(x),

Hεclip + V̈πk
k,h(x) ≥ Vk,h(x) = Qk,h(x, πk,h(x)) ≥ Qk,h(x, a?)

≥ Q?
h(x, a?) = gap(x, πk,h(x)) + Q?

h(x, πk,h(x)).

Subtracting, we find that for πk,h(x) /∈ π?h(x),

V̈πk
k,h(x)−Vπk

h (x) ≥ gap(x, πk,h(x))−Hεclip + Q?
h(x, πk,h(x))−Vπk

h (x). (11)

Now, on the other hand, if πk,h(x) ∈ π?h(x), then,

V̈πk
k,h(x)−Vπk

h (x) = Ëk,h(x, πk,h(x)) + r(x, πk,h(x)) + p(x, πk,h(x))>V̈
πk,h
k,h+1

− r(x, πk,h(x))− p(x, πk,h(x))>Vπk
h

= Ëk,h(x, πk,h(x)) + p(x, πk,h(x))>(V̈
πk,h
k,h+1 −Vπk

h+1) (12)
(i)
= Ëk,h(x, πk,h(x)) + p(x, πk,h(x))>∂V̈h+1

(ii)

≥ p(x, πk,h(x))>∂V̈h+1, (13)

where in (i) we have defined the increment ∂V̈h := V̈
πk,h
k,h −Vπk

h with ∂V̈H+1 = 0, and (ii) holds
since Ëk,h(x, πk,h(x)) = Ek,h(x, πk,h(x))I(Ek,h(x, πk,h(x)) ≥ εclip) ≥ 0.

Now, recalling that Eh denotes the event that πk,h(x) /∈ π?h(x), we have

Eπk [∂V̈1] ≥ Eπk [I(E1) {gap(x1, πk,1(x1))−Hεclip + Q?
h(x1, πk,1(x1))−Vπk

h (x)}]
(by Eq. (11))

+ Eπk
[
I(Ec1)p(x1, πk,1(x1))>∂V̈2

]
. (by Eq. (13))
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We continue with

Eπk
[
I(Ec1)p(x1, πk,1(x1))>∂V̈2

]
≥Eπk [I(Ec1)I(E2) {gap(x2, πk,2(x2))−Hεclip + Q?

2(x2, πk,2(x2))−Vπk
2 (x)}]

+ Eπk
[
I(Ec1)I(Ec2)p(x2, πk,h(x2))>∂V̈3

]
.

Recalling the event Ah = Eh ∩
⋂
h′<h Ech′ , we can continue the above induction to find that,

Eπk [∂V̈1] ≥
H∑
h=1

Eπk [I(Ah) {gap(xh, πk,h(xh))−Hεclip + Q?
h(xh, πk,h(xh))−Vπk

h (x)}]

+ Eπk [I(
H⋂
h=1

Ech)p(xh, πk,h(xh))>∂V̈H+1]︸ ︷︷ ︸
=0

,

as needed. Now let’s prove (10). We can always write

V?
h(x)−Vπk

h (x) = gaph(x, a) + Q?
h(x, πk,h(x))−Vπk

h (x),

where gaph(x, a) = 0 when π?h(x) ∈ πk,h(x), that is, on Ec. Hence, the same line of reasoning
used to prove Eq. (9) (omitting the subtracted εclipH), verifies Eq. (10).

D.2 Proof of Lemma D.1

Proof. For simplicity, set a = πk,h(x), and let a? ∈ π?h(x) be an action which witnesses the α
transition-suboptimality condition. We then have

Vk,h(x)
(i)
= Qk,h(x, a)

(ii)

≥ Qk,h(x, a?)

= Q?
h(x, a?) +

(
Qk,h(x, a?)−Q?

h(x, a?)
)

(iii)
= gaph(x, a) + Q?

h(x, a) +
(
Qk,h(x, a?)−Q?

h(x, a?
)
,

where (i) is by definition of Vk,h(x), (ii) is since a = πk,h(x) = arg maxa′ Qk,h(x, a′), and (iii)
is the definition of gaph(x, a). Rearranging, we have

gaph ≤ Vk,h(x)−Q?
h(x, a)−

(
Qk,h(x, a?)−Q?(x, a?

)
(14)

If Alg is not necessarily strongly optimistic then we bound Qk,h(x, a?) − Q?(x, a?) ≥ 0 and
Q?
h(x, a) ≥ Vπk

h (x), yielding

gaph(x, a) ≤ Vk,h(x)−Vπk
h (x)

= Qk,h(x, a)−Vπk
h (x)

= Ek,h(x, a) + r(x, a) + p(x, a)>Vk,h+1 −Vπk
h (x)

= Ek,h(x, a) + p(x, a)>(Vk,h+1 −Vπk
h+1)

which corresponds to the desired bound for α = 1.

When Alg is strongly optimistic, we handle (14) more carefully. Specifically, we compute

Vk,h(x)−Q?
h(x, a) = Ek,h(x, a) + r(x, a) + p(x, a)>Vk,h+1 −

(
r(x, a) + p(x, a)>V?

h+1

)
= Ek,h(x, a) + p(x, a)>(Vk,h+1 −V?

h+1).

Moreover, recalling that a∗ ∈ π?h(x), we have

Qk,h(x, a∗)−Q?(x, a∗) = r(x, a∗) + Ek,h(x, a∗) + p(x, a∗)>Vk,h+1 − r(x, a∗)− p(x, a∗)>V?
h+1

= Ek,h(x, a∗) + p(x, a∗)>(Vk,h+1 −V?
h+1).
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where the last inequality uses strong optimism of Alg. Hence,

gaph(x, a) ≤ Vk,h(x)−Q?
h(x, a)−

(
Qk,h(x, a?)−Q?(x, a?)

)
= Ek,h(x, a) + p(x, a)>(Vk,h+1 −V?

h+1)−
(
Ek,h(x, a∗) + p(x, a∗)>(Vk,h+1 −V?

h+1)
)

= Ek,h(x, a)−Ek,h(x, a∗) + (p(x, a)− p(x, a∗))>(Vk,h −V?
h+1)

≤ Ek,h(x, a) + (p(x, a)− p(x, a∗))>(Vk,h −V?
h+1) (Strong Optimism)

≤ Ek,h(x, a) +αp(x, a)>(Vk,h −V?
h+1),

where the lastar line uses the component-wise inequalityes p(x, a)−p(x, a?) ≤ αp(x, a) due to the
fact that a? witnesses the α transition-suboptimality, and Vk,h −V?

h+1 ≥ 0 due to optimism.

D.3 Proof of Lemma D.3

Proof. For ease, we suppress the dependence of α on (x, a, h). By our fundamental gap bound
(Lemma D.1) and then Lemma D.4, we have that

gaph(x, a) ≤ Ek,h(x, a) +α · p(x, a)>(Vk,h+1 −Vπk
h+1)

≤ Ëk,h(x, a) +α · p(x, a)>(V̈πk
k,h+1 −Vπk

h+1) + (H − h+ 1)αεclip

≤ Ëk,h(x, a) +α · p(x, a)>(V̈πk
k,h+1 −Vπk

h+1) + gaph(x, a)/2,

where the inequality bounds α(H−h+ 1)εclip ≤ αgapmin/2 ≤ α ·gaph(x, a)/2 ≤ gaph(x, a)/2.
This yields

1
2gaph(x, a) ≤ Ëk,h(x, a) +α · p(x, a)>(V̈πk

k,h+1 −Vπk
h+1).

Now, fix a constant c ∈ (0, 1] to be chosen later. Either we have that Ëk,h(x, a) ≥ c
2gaph(x, a), or

otherwise,

α · p(x, a)>(V̈πk
k,h+1 −Vπk

h+1) ≥ (1− c)1

2
gaph(x, a) ≥ 1− c

c
Ëk,h(x, a),

which can be rearranged into

Ëk,h(x, a) ≤ cα

1− c
p(x, a)>(V̈πk

k,h+1 −Vπk
h+1).

Hence, we have

Ëk,h(x, a) ≤ Ëk,h(x, a)I
{

Ëk,h(x, a) ≥ c
2gaph(x, a)

}
+

cα

1− c
p(x, a)>(V̈πk

k,h+1 −Vπk
h+1)I

{
Ëk,h(x, a) < c

2gaph(x, a)
}

≤ Ëk,h(x, a)I
{

Ëk,h(x, a) ≥ c
2gaph(x, a)

}
+

cα

1− c
p(x, a)>(V̈πk

k,h+1 −Vπk
h+1),

and thus,

Ëk,h(x, a) + p(x, a)>(V̈πk
k,h+1 −Vπk

h+1) ≤ Ëk,h(x, a)I
{

Ëk,h(x, a) ≥ c
2gaph(x, a)

}
+ (1 +

cα

1− c
)p(x, a)>(V̈πk

k,h+1 −Vπk
h+1).

In particular, choosing c = 1
2 min{1, (αH)−1)}, we have (1 + cα

1−c ) ≤ 1 + 1
H , and

1
2 =

(1 ∧ (αH)−1)

4
=

1

4(αH ∨ 1)
,

so that Ëk,h(x, a)I
{

Ëk,h(x, a) ≥ c
2gaph(x, a)

}
= Ěk,h(x, a). This concludes the proof.
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Part II

StrongEuler and its surpluses
E The StrongEuler Algorithm

Before continuing, let us define a logarithmic factor we shall use throughout:

L(u) :=
√

2 log(10M2 max{u, 1}/δ), (15)
where we recall that M = SAH ≥ 2. This section formally presents StrongEuler, which makes
two subtle modification of the EULER algorithm of [16].

First, similar to [5, 6], StrongEuler refines the log factors in the bonuses to depend on the number of
samples nk(x, a) via L(nk(x, a)) ∝ log(Mnk(x, a)/δ), rather than the overall time T = KH via
L(nk(x, a)) ∝ log(MT/δ), which is necessary to ensure the optimal log T regret. Following [5,
6], our confidence bounds can be slightly refined using law-of-iterated logarithm bounds, but for
simplicity we do not pursue this direction here.

Second, StrongEuler satisfies strong optimism. We remind the reader that strong optimism is not
necessary to achieve gap dependent bounds, but can achieve sharper bounds for settings with simple
transition dynamics like contextual bandits. The EULER algorithm, or its predecessors (e.g. [1]),
would also achieve-gap dependent bounds due to our analysis. Moreover, running these algorithms
with the refined log(Mnk(x, a)/δ) log factors would also yield log T - asymptotic regret, whereas
implementing log(MT/δ) confidence intervals may yield asymptotic regret that scales as log2 T
(see Remark B.5).

The EULER algorithm proceeds by standard optimistic value iteration, with carefully chosen explo-
ration bonuses, and keeps track of various variance-related quantities:

Algorithm 1: StrongEuler
1 Input:
2 Initialized: For each a ∈ A x, x′ ∈ S, n1(x, a) = 0, n1(x′ | x, a) = 0, rsum1 = 0, rsumsq1 = 0,

p̂1(x, a) = 0, V̂ar1[R(x, a)] = 0
3 for k = 1, 2, . . . do
4 Vk,H+1 ← 0
5 for h = H,H − 1, . . . , 1 do
6 for x ∈ S do
7 for a ∈ A do
8 Call ConstructBonuses.
9 Qk,h(x, a)← min{H − h+ 1, r̂(x, a) + p̂k,h(x, a)>Vk,h+1+

10 bprob
k,h (x, a) + brw

k (x, a) + bstr
k,h(x, a)}

11 end
12 πk,h(x) := arg maxa Qk,h(x, a), â← πk,h(x)

13 Vk,h(x) := Qk,h(x, â)
14 Vk,h(x) =

max{0, r̂(x, â)− brw
k,h(x, â) + p̂k,h(x, â)>Vk,h+1 − bprob

k,h (x, â)− bstr
k,h(x, â)}.

15 end
16 end
17 Call RolloutAndUpdate(k).
18 end

The RolloutAndUpdate function (Algorithm 2 below) executes one trajectory according to the pol-
icy πk, and records all count- and variance- data regarding the relevant rewards and transition prob-
abilities. Finally, the bonuses are are defined in Algorithm 3.
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Algorithm 2: RolloutAndUpdate(k)

1 Input: Global current episode k, global counts and empirical probabilities. Initialize k + 1-th
episode counts: nk+1(·, ·)← nk(·, ·), nk+1(· | ·, ·)← nk(· | ·, ·), rsumk+1(·, ·)← rsumk(·, ·),
rsumsqk+1(·, ·)← rsumsqk(·, ·).

2 for h = 1, . . . ,H do
3 Observe state xh, play ah = πk,h(xh), recieve reward R and view next state xh+1.
4 nk(xh, ah) += 1, nk(xh′ |xh, ah) += 1, rsum(x, a) += R, rsum(x, a) += R2

5 end
6 for a ∈ A, x ∈ S do
7 for x′ ∈ S do
8 p̂k+1(x′|x, a) = nk(xh′ |xh,ah)

nk(xh,ah)

9 end
10 rk+1(x, a) = rsumk+1

nk(xh,ah) , V̂ark+1[R(x, a)] =
rsumsqk+1

nk(xh,ah) − rk+1(x, a)2.
11 end
12 ,

Algorithm 3: ConstructBonuses
1 Bonuses:

brw
k (x, a) := 1 ∧

√2V̂ark[R(x, a)]L(nk(x, a))

nk(x, a)
+

8L(nk(x, a))

3(nk(x, a)− 1)

 (16)

bprob
k,h (x, a) := H ∧

(√
2Varp̂k(x,a)[Vk,h+1]L(nk(x, a))

nk(x, a)
+

8HL(nk(x, a))

3(nk(x, a)− 1)

+

√
2L(nk(x, a))‖Vk,h+1 −Vk,h+1‖22,p̂k(x,a)

nk(x, a)

)
. (17)

bstr
k,h(x, a) := ‖Vk,h+1 −Vk,h+1‖2,p̂k(x,a)

√
SL(nk(x, a))

nk(x, a)
+

8

3

SHL(nk(x, a))

nk(x, a)
(18)

F Analysis of StrongEuler: Proof of Proposition B.4

Proposition B.4 requires demonstrating a lower bound on the surplus, 0 ≤ Ek,h(x, a), thereby
establishing strong optimism, as well as an upper bound on the surplus, which we shall use to
analyze the same complexity. We address strong optimism first in the next subsection, and then the
upper bound in the following subsection. Throughout, we will assume that a good eventAconc holds.
To keep the proofs modular, the event Aconc will only appear as an assumption in the supporting
lemmas used in Sections F.1 and F.2. Then, in Section F.3, we formally define Aconc in terms of 6
constituent events, establish P[Aconc] ≥ 1− δ

2 , and conclude with proofs of the supporting lemmas
which rely onAconc. We remark that many of the arguments in this section are similar to those from
[16], with the main differences being strong optimism and the additional care paid to log-factors,
necessary for log T regret. Again, recall the definition L(u) :=

√
2 log(10M2 max{u, 1}/δ).

F.1 Proof of Optimism

Here we establish the optimism of StrongEuler, and in particular, the bound Ek,h(x, a) ≥ 0.
Proposition F.1. Under the good event Aconc,

(a) StrongEuler is optimistic: πk,h(x) = arg maxa Qk,h(x, a), where Qk,h(x, a) ≥ Q?
h(x, a)

for all h, x, a. In particular, Vk,h(x) ≥ V?
h(x) for h ∈ [0 : H].
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(b) StrongEuler is strongly optimistic Ek,h(x, a) := Qk,h(x, a) − r(x, a) −
p(x, a)>Vk,h+1(x) ≥ 0.

(c) Vk,h ≤ Vπk
h ≤ V?

h ≤ Vk,h

Proof. The policy choice πk,h(x) = arg maxa Qk,h(x, a) holds by definition of the algorithm. We
now give the remainder of the argument by inducting backwards on h. For h = H + 1, Vk,H+1 =

Vk,H+1 = V?
k,H+1 = Vπk

h+1 = 0. Now, suppose as an inductive hypothesis that Vk,h+1 ≥
V?
h+1 ≥ Vπk

h+1 ≥ Vk,h+1, and Ek,h+1(x, a) ≥ 0 for all x, a.

First, we shall show that Ek,h(x, a) ≥ 0 for all x, a. This will establish the induction for point
b. It also establishes (a), since then Qk,h(x, a) ≥ r(x, a) + p(x, a)>Vk,h+1(x) ≥ r(x, a) +

p(x, a)>V?
h+1 = Q?

h(x, a), proving optimism. To this end, note that

Ek,h(x, a) := Qk,h(x, a)− r(x, a)− p(x, a)>Vk,h+1(x)

:= min{H − h+ 1, r̂(x, a) + p̂k,h(x, a)>Vk,h+1 + bprob
k,h (x, a) + brw

k (x, a) + bstr
k,h(x, a)}

− r(x, a)− p(x, a)>Vk,h+1(x).

Since r(x, a) + p(x, a)>Vk,h+1(x) ≤ H − h+ 1, it suffices to show that

r̂(x, a) + p̂k,h(x, a)>Vk,h+1 + bprob
k,h (x, a) + brw

k (x, a) + bstr
k,h(x, a)− r(x, a)− p(x, a)>Vk,h+1(x) ≥ 0.

Grouping the terms, it suffices to show that r̂(x, a)− r(x, a) + brw
k (x, a) ≥ 0, and that

0 ≤ (p̂k,h(x, a)> − p(x, a))>Vk,h+1(x) + bprob
k,h (x, a) + bstr

k,h(x, a)

=
{

(p̂k,h(x, a)> − p(x, a))>V?
h+1(x) + bprob

k,h (x, a)
}

+
{
p̂k,h(x, a)> − p(x, a))>(Vk,h+1(x)−V?

h+1(x)) + bstr
k,h(x, a)

}
.

We lower bound r̂(x, a)− r(x, a) +brw
k (x, a) and (p̂k,h(x, a)>−p(x, a))>V?

h+1(x) +bprob
k,h (x, a)

by zero with the following lemma:

Lemma F.2. On the good concentration event Aconc, it holds that

|r̂(x, a)− r(x, a)| ≤ brw
k (x, a),

|(p̂(x, a)− p(x, a))>V?
h+1| ≤ bprob

k,h (x, a) if Vk,h+1 ≤ V?
h+1 ≤ Vk,h+1

We conclude the proof of (b) with the following lemma, which lets us bound

(p̂k,h(x, a)> − p(x, a))>(Vk,h+1(x)−V?
h+1(x)) + bstr

k,h(x, a) ≥ 0

Precisely we apply the following lemma with V2 = Vk,h+1 and V1 = V?
h+1:

Lemma F.3. Suppose that Aprob ⊃ Aconc holds, and suppose that V1, V2 : S → R satisfies
Vk,h+1 ≤ V1 ≤ V2 ≤ Vk,h+1. Then,∣∣(p̂(x, a)− p(x, a))>(V1 − V2)

∣∣ ≤ bstr
k,h(x, a)

This finally establishes (b). We conclude by establishing (c). Here, we note that by definition
Vπk
h ≤ V?

h, and V?
h ≤ Vk,h as show above. Hence, it suffices to show Vk,h ≤ Vπk

h . We begin
with the inequality

Vπk
h (x) = p(x, a?)>Vπk

h+1 + r(x, a?)

= p̂(x, a?)>Vπk
h+1 + r̂(x, a?) + (r(x, a?)− r̂(x, a?)) + (p(x, a?)> − p̂(x, a?)>)Vπk

h+1

= p̂(x, a?)>Vπk
h+1 + r̂(x, a?) + (r(x, a?)− r̂(x, a?)) + (p(x, a?)> − p̂(x, a?)>)V?

h+1

+ (p(x, a?)− p̂(x, a?))>(Vπk
h+1 −V?

h+1)

≥ p̂(x, a?)>Vπk
h+1 + r̂(x, a?)− brw

k,h(x, a)− bprob
k,h (x, a)− bstr

k,h(x, a),
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where the last inequality uses the bounds (r(x, a?) − r̂(x, a?)) ≥ −brw
k,h(x, a) and (p(x, a?)> −

p̂(x, a?)>)V?
h+1 ≥ −bprob

k,h (x, a) on Aconc due to Lemma F.2, and bounds (p(x, a?) −
p̂(x, a?))>(Vπk

h+1 − V?
h+1) ≥ −bstr

k,h(x, a) by applying Lemma F.3 with V1 = Vπk
h+1 and

V2 = V?
h+1, which satisfy Vk,h+1 ≤ V1 ≤ V2 ≤ Vk,h+1 by our inductive hypothesis (namely,

Vk,h+1 ≥ V?
h+1 ≥ Vπk

h+1 ≥ Vk,h+1). Since Vπk
h (x) ≥ 0 as well, and since Vπk

h+1 ≥ Vk,h+1 by
our inductive hypothesis, we therefore have

Vπk
h (x) ≥ 0 ∨ p̂(x, a?)>Vk,h+1 + r̂(x, a?)− brw

k,h(x, a)− bprob
k,h (x, a)− bstr

k,h(x, a) = Vk,h(x),

This completes the induction.

F.2 Proof of Surplus Bound Upper Bound

Throughout, we assume the round k is fixed, and suppress the dependence of p̂, V̂ar, and r̂ on k. We
use the shorthand p = p(x, a) and p̂ = p̂(x, a), where the pair (x, a) are clear from context.

Ek,h(x, a) = Vk,h(x, a)− r(x, a)− p(x, a)>Vk,h+1

≤ brw
k (x, a) + r̂(x, a) + p̂(x, a)>Vk,h+1 + bprob

k,h (x, a)− r(x, a)− p(x, a)>Vk,h+1

= (r̂(x, a)− r(x, a) + (p̂(x, a)− p(x, a))>V?
h+1

+ brw
k (x, a) + bprob

k,h (x, a) + (p̂− p)>(Vk,t+1 −V?
h+1)

≤ 2brw
k (x, a) + 2bprob

k,h (x, a) + bstr
k,h(x, a).

where the last line is by Lemmas F.2 and F.3. Next, we state a standard lemma that lets us swap out
the empirical variance for the true variance in upper bounding brw

k (x, a):

Lemma F.4. Under the event Aconc, brw
k (x, a) .

√
Var[R(x,a)]L(nk(x,a))

nk(x,a) + L(nk(x,a))
nk(x,a) .

Next, we recall from the definition of bprob,

bprob
k,h (x, a) .

√
Varp(x,a)[V

?
h+1]L(nk(x, a))

nk(x, a)
+
HL(nk(x, a))

nk(x, a)
+

√
L(nk(x, a))‖Vk,h+1 −Vk,h+1‖22,p̂

nk(x, a)
.

where we replaced nk(x, a)−1 by nk(x, a) in the deminator of one of the terms by taking advantage
of the ‘H∧’. Furthermore, we can bound√

Varp(x,a)[V
?
h+1]L(nk(x, a))

nk(x, a)
≤

√
min{Varp(x,a)[V

?
h+1],Varp(x,a)[V

πk
h+1]}L(nk(x, a))

nk(x, a)

+
∣∣∣√|Varp(x,a)[V

?
h+1]−

√
Varp(x,a)[V

πk
h+1]

∣∣∣√L(nk(x, a))

nk(x, a)
.

We can control the difference |
√
|Varp(x,a)[V

?
h+1] −

√
Varp(x,a)[V

πk
h+1]| using the following

lemma:

Lemma F.5. Let X,Y be two real valued random variables, and let ‖·‖p,2:=
√
E[(·)2]. Then

|
√

Var[X]−
√

Var[Y ]|≤
√

Var[X − Y ] ≤ ‖X − Y ‖2,p.

Proof. The inequality Var[X − Y ] ≤ E[(X − Y )2] = ‖X − Y ‖22,p follows since Var[Z] ≤ E[Z2]
for any random variable Z. For the first inequality, we can assume WLOG that X,Y are mean zero,
in which case

√
Var[X] = ‖X‖2,p, and similarly for Y and X − Y . The result now follows from

the fact that the norm ‖·‖p,2 satisfies the triangle inequality.

We shall also need the following simple fact:

Fact F.6. If V1(x) ≤ V2(x) ≤ V3(x) ≤ V4(x) for all x ∈ S, then ‖V2 − V3‖2,p≤ ‖V1 − V4‖2,p.
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Since Vk,h+1 ≤ Vπk
h+1 ≤ V?

h+1 ≤ Vk,h+1 by Proposition F.1, Lemma F.5 and Fact F.6 above yield

|
√

Varp(x,a)[V
?
h+1]−

√
Varp(x,a)[V

πk
h+1]|≤ ‖V?

h+1 −Vπk
h+1‖2,p≤ ‖Vk,h+1 −Vk,h+1‖2,p.

Together the with the elementary inequality,
√
a+ b ≤

√
a+
√
b .
√
a+ b, this in turn yields

bprob
k,h (x, a) + brw

k,h(x, a)

. brw
k,h(x, a) +

√
min{Varp(x,a)[V

?
h+1],Varp(x,a)[V

πk
h+1]}L(nk(x, a))

nk(x, a)
+
HL(nk(x, a))

nk(x, a)

+

√
L(nk(x, a))‖Vk,h+1 −Vk,h+1‖22,p̂+p

nk(x, a)

.

√
Var[R(x, a)] + min{Varp(x,a)[V

?
h+1],Varp(x,a)[V

πk
h+1]}L(nk(x, a))

nk(x, a)
+
HL(nk(x, a))

nk(x, a)

+

√
L(nk(x, a))‖Vk,h+1 −Vk,h+1‖22,p̂+p

nk(x, a)
,

.

√
Var

(k)
h,x,aL(nk(x, a))

nk(x, a)
+
HL(nk(x, a))

nk(x, a)
+

√
L(nk(x, a))‖Vk,h+1 −Vk,h+1‖22,p̂+p

nk(x, a)
,

where we use the shorthand ‖V ‖2,p̂+p=
√
‖V ‖22,p+‖V ‖22,p̂, and where in the last, we recall that

Var
(k)
h,x,a = min{Varπkh,x,a, Var?h,x,a} = Var[R(x, a)] + min{Varp(x,a)[V

?
h+1],Varp(x,a)[V

πk
h+1]}.

Next, substituing in bstr
k,h(x, a) := ‖Vk,h+1 −Vk,h+1‖2,p̂(x,a)

√
SL(nk(x,a))
nk(x,a) + 8

3
SHL(nk(x,a))

nk(x,a) , we
obtain

brw
k (x, a) + bprob

k,h (x, a) + bstr
k,h(x, a)

.

√
Var

(k)
h,x,aL(nk(x, a))

nk(x, a)
+
HL(nk(x, a))

nk(x, a)

+

√
L(nk(x, a))‖Vk,h+1 −Vk,h+1‖22,p̂+p

nk(x, a)
+

√
S‖Vk,h+1 −Vk,h+1‖22,p̂L(nk(x, a))

nk(x, a)
+
SHL(nk(x, a))

nk(x, a)

.

√
Var

(k)
h,x,aL(nk(x, a))

nk(x, a)
+
SHL(nk(x, a))

nk(x, a)
+

√
S‖Vk,h+1 −Vk,h+1‖22,p+p̂L(nk(x, a))

nk(x, a)
(19)

(i)

≤

√
Var

(k)
h,x,aL(nk(x, a))

nk(x, a)
+
SHL(nk(x, a))

nk(x, a)
+
SL(nk(x, a))

nk(x, a)
+ ‖Vk,h+1 −Vk,h+1‖22,p̂+p

(ii)
=

√
Var

(k)
h,x,aL(nk(x, a))

nk(x, a)
+
SHL(nk(x, a))

nk(x, a)
+ 2‖Vk,h+1 −Vk,h+1‖22,p+(p̂− p)(Vk,h+1 −Vk,h+1)2

(iii)

≤

√
Var

(k)
h,x,aL(nk(x, a))

nk(x, a)
+
SHL(nk(x, a))

nk(x, a)
+ 2‖Vk,h+1 −Vk,h+1‖22,p+H(p− p̂)>(Vk,h+1 −Vk,h+1),

where (i) uses the inequality a/b ≤ a2+ 1
b2 , and (ii) uses the facts that ‖V ‖22,p̂+p= ‖V ‖22,p+‖V ‖22,p̂

and ‖V ‖22,p̂= 〈p̂, V 2〉 = 〈p̂, V 2〉+ 〈p̂− p, V 2〉 = ‖V ‖22,p̂+〈p̂− p, V 2〉. Lastly, inequality (iii) uses
0 ≤ Vk,h+1 ≤ Vk,h+1 ≤ H .

We continue bounding H(p− p̂)>(Vk,h+1 −Vk,h+1) in much the same way that we bounded the
term in Lemma F.3 in terms of bstr, with the exception that we seek a term which depends on the
true transition probability p(x, a), and not the empirical p̂(x, a):
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Lemma F.7. Under Aconc,∣∣(p̂(x, a)− p(x, a))>(Vk,h+1 −Vk,h+1)
∣∣ . ‖Vk,h+1 −Vk,h+1‖2,p(x,a)

√
SL(nk(x, a))

nk(x, a)
+
SHL(nk(x, a))

nk(x, a)
.

The proof of the above lemma is ommitted for the sake of brevity, and follows from a simplified
version of the proof of Lemma F.3 where we need not pass through an empirical variance. Applying
the bound in Lemma F.7, we have

H(p− p̂)>(Vk,h+1 −Vk,h+1) . H‖Vk,h+1 −Vk,h+1‖2,p

√
SL(nk(x, a))

nk(x, a)
+
SH2L(nk(x, a))

nk(x, a)

. ‖Vk,h+1 −Vk,h+1‖22,p+
H2SL(nk(x, a))

nk(x, a)
+
SH2L(nk(x, a))

nk(x, a)
,

where the last line uses the inequality ab ≤ (a2 + b2)/2. Finally, combining the above with our
previous bound, we arrive at

Ek,h(x, a) . brw
k (x, a) + bprob

k,h (x, a) + bstr
k,h(x, a)

.

√
Var

(k)
h,x,aL(nk(x, a))

nk(x, a)
+
SH2L(nk(x, a))

nk(x, a)
+ ‖Vk,h+1 −Vk,h+1‖22,p(x,a).

From first principles, it is straightforward to show that Ek,h(x, a) . H , which implies that

Ek,h(x, a) . H ∧

√
Var

(k)
h,x,aL(nk(x, a))

nk(x, a)
(20)

+

(
H ∧ SH

2L(nk(x, a))

nk(x, a)

)
+ ‖Vk,h+1 −Vk,h+1‖22,p(x,a). (21)

To conclude the proof, it remains to unravel the term ‖Vk,h+1 −Vk,h+1‖22,p(x,a).

Lemma F.8. Define the term

Zk(x, a) = H2 ∧H2

(√
SL(nk(x, a))

nk(x, a)
+
SL(nk(x, a))

nk(x, a)

)2

,

Then, we have the bound

Vk,h(x)−Vk,h(x) . Eπk
[
H∑
t=h

√
Z(xt, at) | xh = x

]
. (22)

As a consequence, we can compute

(Vk,h(x)−Vk,h(x))2 . Eπk

( H∑
t=h

√
Zk(xt, at)

)2

| xh = x

 ≤ HEπk
[
H∑
t=h

Zk(xt, at) | xh = x

]
.

Hence, we have

‖Vk,h+1 −Vk,h+1‖22,p = Ex′∼p(x,a)(Vk,h+1(x)−Vk,h+1(x))2

. HEπk
[

H∑
t=h+1

Zk(xt, at) | (xh, ah) = (x, a)

]
.

Since HZk(x, a) ≥ H ∧ SH2L(nk(x,a))
nk(x,a) . Hence, we can bound via (20)

Ek,h(x, a) . H ∧

√
Var

(k)
h,x,aL(nk(x, a))

nk(x, a)︸ ︷︷ ︸
:=Blead

k,h (x,a)

+Eπk

 H∑
t=h

HZk(xt, at)︸ ︷︷ ︸
:=Bfut

k (xt,at)

| (xh, ah) = (x, a)


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where we note that the summation in the expectation now begins at t = h to account for the term
H ∧ SH2L(nk(x,a))

nk(x,a) in (20), and recal that

Bfut
k (x, a) := H3 ∧H3

(√
SL(nk(x, a))

nk(x, a)
+
SL(nk(x, a))

nk(x, a)

)2

= HZk(x, a)

To conclude, we recall the definitions,

L(u) :=
√

2 log(10M2 max{u, 1}/δ).

so that, for u ≥ 1, L(u) . log Mu
δ .

F.3 Definition of Aconc, and proofs of supporting lemmas

Before proving the lemmas above, we formally express the good event Aconc as a list of constituent
concentration events, and verify that it occurs with probability at least 1− δ/2:

Proposition F.9. The eventAconc := Arw∩Aprob∩Aval∩Avar,val∩Avar,rw occurs with probability
1− δ/2, where each of the constituent events occurs with probability at least 1− δ/12:

Arw :=

{
∀k, x, a, h : |r̂k(x, a)− r(x, a)|≤

√
Var[R(x, a)]

2L(nk(x, a))

nk(x, a)
+

2L(nk(x, a))

3nk(x, a)

}

Aprob :=

{
∀k, x, x′, a, h : |p̂(x′ | x, a)− p(x′ | x, a)|≤

√
p(x′ | x, a)(1− p(x′ | x, a))

2L(nk(x, a))

nk(x, a)
+

2L(nk(x, a))

3nk(x, a)

}

Aval :=

{
∀k, x, a, h : |(p̂(x, a)− p(x, a))>V?

h+1|≤

√
Varp(x,a)[V

?
h+1]

2L(nk(x, a))

nk(x, a)
+

2HL(nk(x, a))

3nk(x, a)

}

Avar,prob :=

{
∀k, h, x, a : |p̂(x′ | x, a)− p(x′ | x, a)|≤

√
2L(nk(x, a))

nk(x, a)

}
.

Avar,val :=

{
∀k, h, x, a :

∣∣‖V?
h‖2,p̂(x,a)−‖V?

h‖2,p(x,a)

∣∣ ≤ H√ 2Lnk(x, a))

nk(x, a)− 1

}

Avar,rw :=

{
∀k, h, x, a :

∣∣∣∣√V̂ar(R(x, a))−
√

Var(R(x, a))

∣∣∣∣ ≤
√

2L(nk(x, a))

nk(x, a)− 1

}

Proof. The proof of these the first four events follows from standard applications of Bernstein’s
and Hoeffding’s inequality, and the last two from Theorem 10 in [10]. Similar proofs can be found
in [16, 1, 5]. As in those works, the only subtlety is to use the appropriate concentration inequality
with respect to an appropriate filtration to attain bounds that depend on L(nk(x, a)), rather than on
L(T ).

Let’s prove Arw as an example. We it suffices to only consider rounds for which nk(x, a) ≥ 1,
for otherwise the bound is vacuous. Fix an action (x, a), and let τi ∈ {1, 2, . . . } ∪ {∞} denote
the round k + 1 immediately after the i-th round k at which a pair (x, a) is observed at least once
during the rollout, and define a sub-filtration {Gi} via Gi = Fτi . Then, for any given i, a martingale
analogue of Bernstein’s inequality yields

P

[
|r̂τi(x, a)− r(x, a)|I(τn <∞) ≥

√
2Var[R(x, a)] log(2/η)

nτi(x,a)
+

2 log(2/η)

3nτi(x,a)

]
≤ η.

Now fix an i ≥ 1. Since r̂k(x, a) and nk(x, a) are constant for k ∈ {τi, . . . , τi+1 − 1}, we have

∀n, P

[
∃k ∈ {τi, . . . , τi+1 − 1} : |r̂k(x, a)− r(x, a)|≥

√
2Var[R(x, a)] log(2/η)

nk(x, a)
+

2 log(2/η)

3nk(x, a)

]
≤ η,
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Applying the above with η ← 2η/i2 and union bounding over n, we have

P

[
∃i, k : k ∈ {τi, . . . , τi+1 − 1}, |r̂k(x, a)− r(x, a)|≥

√
2Var[R(x, a)] log(4i2/η)

nk(x, a)
+

2 log(4i2/η)

3nk(x, a)

]
≤ η.

Since nk(x, a) increments by at least one for each τi, we have i ≤ nk(x, a) for k ∈ {τi, . . . , τi+1 −
1}. Thus,

P

[
∃i, k : k ∈ {τi, . . . , τi+1 − 1}, |r̂k(x, a)− r(x, a)|≥

√
2Var[R(x, a)] log(4nk(x, a)2/η)

nk(x, a)
+

2 log(4nk(x, a)2/η)

3nk(x, a)

]
≤ η.

Lastly, since for any k, there always exist some i for which k ∈ {τi, . . . , τi+1 − 1}, we have

P

[
k : |r̂k(x, a)− r(x, a)|≥

√
2Var[R(x, a)] log(4nk(x, a)2/η)

nk(x, a)
+

2 log(4nk(x, a)2/η)

3nk(x, a)

]
≤ η.

We then conclude by union bounding over SA, and letting η = δ/12SA, yielding the
following log factor: log(48SAnk(x, a)2/δ) ≤ L(nk(x, a)), where we recall L(u) =√

2 log(10M2 max{u, 1}/δ) for M = SAH . The proof for Aprob is analogous, the proof
for Aval requires union bounding over states x′, incuring a log factor log(4S2Ank(x, a)2/δ) ≤
L(nk(x, a)).

Proof of Lemma F.2. We prove the bound |(p̂(x, a)− p(x, a))>V?
h+1|≤ bprob

k,h (x, a); the analogous
bounds for rewards is similar. Note that since p̂(x, a)>V?

h+1 ∈ [0, H] and p(x, a)>V?
h+1 ∈ [0, H],

|(p̂(x, a)− p(x, a))>V?
h+1|∈ [0, H]. This takes care of the first ’H∧’ in bprob

k,h (x, a). Next, onAval

and Avar,val,

|(p̂(x, a)− p(x, a))>V?
h+1|

≤

√
2Varp(x,a)[V

?
h+1]L(nk(x, a))

nk(x, a)
+

2HL(nk(x, a))

3nk(x, a)
(on Aval)

≤

√
2Varp̂(x,a)[V

?
h+1]L(nk(x, a))

nk(x, a)
+

8HL(nk(x, a))

3(nk(x, a)− 1)
(on Avar,val)

=

√
2Varp̂(x,a)[Vk,h+1]L(nk(x, a))

nk(x, a)
+

8HL(nk(x, a))

3(nk(x, a)− 1)

+ (
√

Varp̂(x,a)[V
?
h+1]−

√
Varp̂(x,a)[p̂(x, a)>Vk,h+1])

√
2L(nk(x, a))

nk(x, a)
.

Lastly, by Lemma F.5, we have the bound

∣∣∣∣√Varp̂(x,a)[V
?
h+1]−

√
Varp̂(x,a)[Vk,h+1]

∣∣∣∣ ≤ ‖Vk,h+1 −Vk,h+1‖2,p̂(x,a).
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Proof of Lemma F.3. Summing up the condition of event Aprob over states x′ ∈ S , and then apply-
ing event Avar,prob to control |p(x′|x, a)− p̂(x′|x, a)|:

(p̂(x, a)− p(x, a))>(Vk,h+1 −V?
h+1) ≤

∑
x′

√
2
L(nk(x, a))p(x′|x, a)(1− p(x′|x, a))

nk(x, a)
|V2(x′)− V1(x′)|

+
2

3

∑
x′

L(nk(x, a))

nk(x, a)
|V2(x′)− V1(x′)|,

(i)

≤
∑
x′

√
2
L(nk(x, a))p(x′|x, a)

nk(x, a)
|V2(x′)− V1(x′)|

+
2

3

∑
x′

L(nk(x, a))

nk(x, a)
|V2(x′)− V1(x′)|,

(ii)

≤
∑
x′

√
2
L(nk(x, a))p̂(x′|x, a)

nk(x, a)
|V2(x′)− V1(x′)|

+
8

3

∑
x′

L(nk(x, a))

nk(x, a)
|V2(x′)− V1(x′)|︸ ︷︷ ︸

≤ 8
3

HSL(nk(x,a))

nk(x,a)

,

where (i) uses p(x′|x, a)(1 − p(x′|x, a)) ≤ p(x′|x, a), (ii) uses event Avar,prob, and where bound
in the bracket is because there |Vk,t+1(x′)−V?

h+1(x′)|≤ H by Proposition F.1 part (b), and there
are at most S terms in the summation. To bound the first term, we have∑

x′

√
2L(nk(x, a))

p̂(x′|x, a)

nk(x, a)
|V2(x′)− V1(x′)|

=

√
2
L(nk(x, a))

nk(x, a)

∑
x′

√
p̂(x′|x, a)|V2(x′)− V1(x′)|

(i)

≤

√
2
L(nk(x, a))

nk(x, a)

√
S‖V2 − V1‖22,p̂

(ii)

≤ ‖Vk,h+1 −Vk,h+1‖2,p̂

√
2
SL(nk(x, a))

nk(x, a)

(i) bounds uses Cauchy-Schwartz, and (ii) uses Proposition F.1 part (c) to bound ‖V2 − V1‖2,p≤
‖Vk,h+1 −Vk,h+1‖2,p̂ for Vk,h+1 ≤ V1 ≤ V2 ≤ Vk,h+1, in light of Fact F.6.

Proof of Lemma F.4. Under the event Aconc we have
brw
k (x, a)

. 1 ∧

√ V̂ar[R(x, a)]L(nk(x, a))

nk(x, a)
+

L(nk(x, a))

nk(x, a)− 1

 (definition)

≤ 1 ∧

(√
Var[R(x, a)]L(nk(x, a))

nk(x, a)
+

∣∣∣∣√Var[R(x, a)]−
√

V̂ar[R(x, a)]

∣∣∣∣
√

L(nk(x, a))

nk(x, a)
+

L(nk(x, a))

nk(x, a)− 1

)

. 1 ∧

(√
Var[R(x, a)]L(nk(x, a))

nk(x, a)
+

L(nk(x, a))

nk(x, a)− 1

)
.

√
Var[R(x, a)]L(nk(x, a))

nk(x, a)
+

L(nk(x, a))

nk(x, a)
,

where in the second-to-last inequality, we used the event Avar,rw to control∣∣∣∣√Var[R(x, a)]−
√

V̂ar[R(x, a)]

∣∣∣∣ .√L(nk(x,a))
nk(x,a)−1 .
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Proof of Lemma F.8. Let a = πk,h(x). Then, by definition of Vk,h(x),Vk,h(x)

Vk,h(x)−Vk,h(x) = (H − h+ 1) ∧ (p̂k,h(x, a)>Vk,h+1 + brw
k (x, a) + bprob

k,h (x, a) + bstr
k,h(x, a))

− 0 ∨ (p̂k,h(x, a)>Vk,h+1 − brw
k (x, a)− bprob

k,h (x, a))

≤ H ∧
{
p̂k,h(x, a)>(Vk,h+1 −Vk,h+1) + 2brw

k (x, a) + 2bprob
k,h (x, a) + bstr

k,h(x, a)
}

= H ∧

{
p(x, a)>(Vk,h+1 −Vk,h+1) + (p̂(x, a)− p(x, a))>(Vk,h+1 −Vk,h+1)

+ 2brw
k (x, a) + 2bprob

k,h (x, a) + bstr
k,h(x, a)

}
≤ H ∧

{
p(x, a)>(Vk,h+1 −Vk,h+1) + 2brw

k (x, a) + 2bprob
k,h (x, a) + 2bstr

k,h(x, a)
}
,

(Lemma F.3)

≤ p(x, a)>(Vk,h+1 −Vk,h+1) +H ∧
{

2brw
k (x, a) + 2bprob

k,h (x, a) + 2bstr
k,h(x, a)

}
,

where the last line uses the fact that p(x, a)>(Vk,h+1 − Vk,h+1) ≥ 0 on Aconc (Proposition F.1,
part (c)). Unfolding the above expression inductively, we then find that

Vk,h(x)−Vk,h(x) ≤ Eπk
[
H∑
t=h

H ∧
{

2brw
k (xt, at) + 2bprob

k,h (xt, at) + 2bstr
k,h(xt, at)

}
| xt = x

]
.

To conclude, it suffices to check that H ∧
{

2brw
k (x, a) + 2bprob

k,h (x, a) + 2bstr
k,h(x, a)

}
.√

Zk(x, a), for any triple x, a, h. To check that this bound holds, we have from (19) that

2brw
k (xt, at) + 2bprob

k,t (xt, at) + 2bstr
k,t(xt, at)

.

√
Var?t,x,aL(nk(xt, at))

nk(xt, at)
+
SHL(nk(xt, at))

nk(xt, at)
+

√
S‖Vk,t+1 −Vk,t+1‖22,(p̂k+p)(xt,at)

L(nk(xt, at))

nk(xt, at)

.

√
HL(nk(xt, at))

nk(xt, at)
+
SHL(nk(xt, at))

nk(xt, at)
+H

√
SL(nk(xt, at))

nk(xt, at)
,

where we recall the notation ‖V ‖2,p̂+p=
√
‖V ‖22,p+‖V ‖22,p̂, and thus the final bound holds since

Var?t,x,a ≤ H implying that ‖Vk,t+1 −Vk,t+1‖22,(p̂k+p)(xt,at)
≤ 4H for 0 ≤ Vk,t+1 ≤ Vk,t+1 ≤

H . Consolidating the terms, we have 2brw
k (xt, at) + 2bprob

k,t (xt, at) + 2bstr
k,t(xt, at) is at most

.
(
H
√

SL(nk(x,a))
nk(x,a) + SHL(nk(x,a))

nk(x,a)

)
, and thus H ∧ 2brw

k (xt, at) + 2bprob
k,t (xt, at) + 2bstr

k,t(xt, at)

is . H ∧
(
H
√

SL(nk(x,a))
nk(x,a) + SHL(nk(x,a))

nk(x,a)

)
:=
√

Zk(x, a).
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Part III

Lower Bounds
G Min-Gap Lower Bound for Optimistic Algorithms (Theorem 2.3)

G.1 Formal Statement

We begin a formal version of the lower bound, Theorem 2.3.

Theorem G.1. Let c1, c2, c3 be absolute constants that may depend on the constants defined in
Section G.2. Let Alg denote an algorithm in the class described in Section G.2 run with confidence
parameter δ ∈ (0, 1/8). For any S ≥ 1 and ε ≤ 1/dc1S log(S/δ))e, fix any MDP in the class
described in Section G.3 so that |S|= 2S + 1, |A|= 2, H = 2, and exactly one state has a sub-
optimality gap of gapmin = ε and all other states have a minimum sub-optimality gap of at least
1/2. Then

∑
h,x,a:gaph(x,a)>0

1
gaph(x,a) . S + 1

gapmin
but Alg for all sufficiently large K suffers a

regret

RegretK ≥
c2S

gapmin
log(1/δ) &

∑
h,x,a:gaph(x,a)>0

1

gaph(x, a)
+

S

gapmin

with probability at least 1− c2Sε−2 log(1/δ)e−c3S − 3δ.

In particular, for any ε ∈ (0, c) for some constant c, if log(ε−1/δ) . S . ε−1/log(ε−1/δ) then the
above regret lower bound holds with probability 1−O(δ).

G.2 Algorithm Class

Optimistic Q-functions: We consider algorithms where the optimistic Q-function is constructed
as follows: given a reward bonus function brw

k (x, a) ≥ 0 and an additional nonnegative stage-
dependent bonus bk,h(x, a), and empirical estimates r̂k(x, a) of the reward and p̂k(x, a) =

(p̂(x′|x, a)) of the transition probabilities. We set the Q-function at stage H as Qk,H(x, a) =
r̂k(x, a) + brw

k (x, a), where r̂k(x, a), and for h ∈ {1, . . . ,H − 1},

Vk,h+1(x) := max
a

Qk,h+1(x′, a)

Qk,h(x, a) := r̂k(x, a) + brw
k (x, a) + p̂k(x, a)>Vk,h+1 + bk,h(x, a) (23)

Lastly, suppose that brw
k (x, a) depends only on rewards collected when the state (x, a) is visited.

Note that this template subsumes the model-based approaches of [1, 16, 6], and if brw(x, a) is made
to be time dependent, captures the approach of [5] as well. For the specific lower bound instance
we consider, each stage x ∈ S can only be visited at a single stages h ∈ [2], so brw may be chosen
to be time dependent without loss of generality. In order to capture the “model-free” methods based
on Q-learning due to [9], we can instead mandate that

Qk,h(x, a) := r̂k(x, a) + brw
k (x, a) + ̂(

p(x, a)>V?
h+1

)
+ bk,h(x, a),

where ̂(
p(x, a)>V?

h+1

)
is a generalized estimate of p(x, a)>V?

h+1, and such that ̂(
p(x, a)>V?

h+1

)
is nonnegative. In Lemma 4.2 in [9], one can see that we can take

̂(
p(x, a)>V?

h+1

)
=

nk(x,a)∑
s=1

αsP̂ks,h(x, a)>Vks,h+1(x, a),

where ks is the round at which (x, a) was selected for the s-th time, αs is an appropriate weight,
P̂ks,h(x, a) is the empirical probability estimate P̂ks(x, a)[x′] = I(x′ = xks,h+1) equal to indicator
at the state xks,h+1 visited after playing a at x at round ks, and where Vks,h+1 is an optimistic
estimate of V?

h+1 at round ks.
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For simplicity, we shall work with the model based formulation (23), though the lower bound can
be extended to this more general class.

Confidence Interval Assumptions: Our class of algorithms takes in a confidence parameter δ ∈
(0, 1/8). We shall also assume that there exists consants cbon, cbon such that, when the algorithm is
run with parameter δ, the bonuses brw and brw

k satisfy7

bk,h(x, a) ≥ cbon

1 ∨ nk(x, a)
, cbon

√
Var[R(x, a)] log(1/δ)

1 ∨ nk(x, a)
≤ brw

k (x, a) ≤ cbon

√
log(M(1 ∨ nk(x, a))/δ)

1 ∨ nk(x, a)

We further assume that brw(x, a) is δ-correct, in the sense that,

P[∀x, a, k : brw
k (x, a) + r̂k(x, a) ≥ r(x, a)] ≥ 1− δ.

Lastly, we shall assume that the optimistic overestimate is consistent in the sense that for any MDP
M with optimal value V∗,M0 , for any ε, δ > 0 there exists a function fM such that

P[∀k ≥ fM(ε, δ), Vk,0 −V∗,M0 ≤ ε] ≥ 1− δ.
Intuitively, this condition states that with high probability, the optimistic over-estimate of the value
estimate approaches the expected reward under the optimal policy. Note that this does not assume
uniform convergence of the entire value function itself, just the expected reward with respect to the
initial state distribution p0 on the optimal policy.
Remark G.1. Note that we do not require that our algorithm’s confidence intervals are “inflated”,
in the sense that, with high probability, r̂k(x, a) + brw

k (x, a)− r(x, a) ≥ cbrw
k (x, a), for a universal

constant c. With this stronger assumption, we note that the proof of the lower bound can be sim-
plified, and some restrictions on S, ε removed. In the interest of generality, we refrain from making
this assumption.

G.3 Formal Lower Bound Instance

Consider the following simple game with H = 2, A = {−1,+1} and S =
{−S, . . . ,−1, 0, 1, . . . , S} = S− ∪{0}∪S+, where S− = −[S] and S+ = [S] (note |S|= 2S+ 1).
The game always begins at state x1 = 0 with two available actions, a ∈ {−1,+1}. Then,

x2|(x1 = 0, a1 = +1)
unif∼ S+, and x2|(x1 = 0, a1 = −1)

unif∼ S−. Lastly, let D denote
any symmetric distribution on [−1, 1] with Ω(1) variance. For ε ∈ (0, 1/8), we formally define the
reward distributions

R(x, a) ∼


0 x = 0 or a = −1
1
2 + ε+ 1

4D (x, a) = (s, 1), s ∈ [S]
1
2 + 1

4D (x, a) = (−s, 1), s ∈ [S]

.

It is straightforward to verify the following fact
Fact G.2. The optimal action is always a = 1. Moreover, gap1(0,−1) = gapmin = ε, whereas
gap2(x,−1) ≥ 1

2 for x 6= 0.

In other words, all the gaps for suboptimal arms are Ω(1), except for the gap at state x = 0, which
means for this instance with H = 2 and A = 2 we have

∑
x,a,h

1
gaph(x,a) h S + 1

ε . Nevertheless,
we shall show that any algorithm in the class above suffers regret

&
S

ε
log(1/δ) =

S

gapmin
log(1/δ).

G.4 The Lower Bound:

The Lower Bound: We first show that the optimistic Q-function relative to the optimal value at
(0, 1) decays at a rate of at least

√
S log(1/δ)/nk(0, 1). This will ultimately lead to incurring a

regret of S log(1/δ)
ε , despite the fact that all but one of the Q-function gaps are Ω(1).

7The quantity Var[R(x, a)] below can also be replaced with an empirical variance, but we choose the true
variance for simplicity.
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Proposition G.3. Let Alg denote an algorithm in the class described in Section G.2 run with confi-
dence parameter δ ∈ (0, 1/8). Then there exists constants c1, c2, c3, depending only on the constants
described in Section G.2, such that the following holds. For any ε ≤ 1/dc1S log(S/δ))e and for
N = bc2S log(1/δ)/ε2c,

P
[
∀k : nk(0,−1) ≤ N, Qk,1(0,−1)−V?

1(0) ≥ ε
]
≥ 1−Ne−c3S − 2δ

We now use Proposition G.3 to prove Theorem G.1. Note that V?
1(0) = V?

0 . By assumption, with
probability 1− δ, V0 ≤ V?

0 + η after f(η, δ) rounds. Fix an appropriate ε and N in Proposition G.3
and let K ≥ fM(ε/2, δ) +N . If nK(0,−1) > N times, then we have

RegretK > εN &
S log(1/δ)

ε

and the theorem is proved. Thus, suppose not so that nK(0,−1) ≤ N . Then by Proposition G.3 we
have with high probability that

V0 −V?
1(0) = max

a∈{−1,1}
Qk,1(0, a)−V?

1(0) ≥ Qk,1(0,−1)−V?
1(0) ≥ ε

However, by assumption K ≥ fM(ε/2, δ) which means that on an event that holds with probability
at least 1− δ, we have V0 −V?

1(0) = maxa∈{−1,1}Qk,1(0, a)−V?
1(0) ≤ ε/2, a contradiction.

G.4.1 Proof of Proposition G.3

Throughout, we will use upper case C1, C2, . . . to do denote possibly changing numerical constants
that depend on the the constants in the definition of Alg, as set in Section G.2. The lower cast
constants c1, c2 will be coincide with those in Proposition G.3.

Since Q?
1(0, 1) = 1

2 + ε, it suffices to show that

P
[
∀k : nk(0,−1) ≤ N, Qk,1(0,−1)− 1

2
≥ 2ε

]
≥ 1−Ne−C3S − δ

Fix an n0 = dc1S/log(S/δ)e for a constant c1 be specified later, and let

Eopt :=

{
∀k ≥ 1, x ∈ S−, r̂k(x, 1) + brw

k (x, a) ≥ r(x, 1) =
1

2

}
.

By the optimism assumption, Eopt holds with probability at least 1 − δ. First we verify that
Qk,1(0,−1)− 1

2 ≥ 2ε for 0 ≤ nk(0,−1) ≤ n0, provided that ε is sufficiently small:

Claim G.4. Suppose that ε ≤ cbon

2n0
. Then, with probability 1− δ, Qk,1(0,−1)− 1

2 ≥ 2ε whenever
0 ≤ nk(0,−1) ≤ n0:

Proof. We have that

Qk,1(0,−1) = bk,1(x, a) +
∑
x′∈S

p̂k(x′|0,−1)Vk,2(x′).

Since p(x|0,−1) = 0 for x /∈ S−, the empirical probability p̂(x|0,−1) is also 0, and thus

Qk,1(0,−1)− 1

2
= bk,1(x, a) +

∑
x′∈S−

p̂k(x′|0,−1)(Vk,2(x′)− 1

2
) (24)

≥ bk,1(x, a) + min
x′∈S−

(Vk,2(x′)− 1

2
) ≥ bk,1(x, a),

where the first equality and first inequality use
∑
x′∈S− p̂(x|0,−1) = 1, and the second uses the

optimistic event Eopt to show that Vk,2(x′) ≥ r̂k(x′, 1) + brw
k (x′, 1) ≥ r(x′, 1) = 1

2 for x′ ∈ S−.
Using the assumption that bk,1(x, a) ≥ cbon

1∨nk(x,a) , we see that if nk(x, a) ≤ n0 and ε ≤ cbon

2n0
, then

bk,1(x, a) ≥ cbon

n0
≥ 2ε, as needed.
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Now, we turn to the case where nk(x, a) ∈ {n0, . . . , N} for some N = bc2S log(1/δ)/ε2c. It light
of (24), it suffices to show that for nk ≤ N ,∑

x′∈S−

p̂k(x′|0,−1)(Vk,2(x′)− 1

2
) ≥ 2ε. (25)

By the definition of our algorithm class, the optimistic Q-function at stage h = 2 and pair (x, a)
depend only at rewards collected at (x, a), and the construction of our MDP, pairs (x, a) for x ∈ S−
are only accessible by playing (0,−1). Hence, to analyze Qk,1(0,−1), for n0 ≤ nk(0,−1) ≤ N ,
it suffices to prove our described lower bound on Qk,1(0,−1) in the simplified game, where at each
round k = 1, 2, . . . , the algorithm always selects (0,−1), and show that for this algorithm

∆0(k) :=
∑
x∈S−

p̂k(x|0,−1)(Vk,2(x)− 1

2
) ≥ 2ε, ∀k ∈ {n0, . . . , N}.

Turning our attention to this simplified game,for x ∈ S− let nk(x) denote the number of times x
has been visited up to round k, and recall nk(x, a) is the number of times action a is played at stage
s. Further, set

∆(x, k) := Vk,2(x)− 1

2

We now make a couple of observations

(a) The vector (nk(x))x∈S− is a uniform multinomial on the states in S−.

(b) Conditioned on (nk(x))x∈S− , we can see that the values of Vk,2(x) are independent, be-
cause for each x ∈ S−, the game decouples into nk(x) rounds of a two arm bandit game
on actions a ∈ {−1, 1}.

Using these observations, we prove the following claim:

Claim G.5. There exists constants C1, C2 such that for any x ∈ S−, if δ ≤ 1/8 and nk(x) ≥
C1 log(M/δ), then conditioned on the history (nj(x

′))x′∈S−,j≥1, the following event holds with
probability at least 1/4:

E∆
k (x) :=

{
∆(k, x) := Vk,2(x)− 1

2
≥ C2

√
log(1/δ)/nk(x)

}
,

and the events {E∆
j (x) : x ∈ S−} are mutually independent (again, given (nj(x

′))x′∈S−,j≥1).

Therefore, on the optimistic event Eopt, where {∆(k, x) ≥ 0}, we can lower bound (again, in the
simplified game where we always select action (0,−1)),

∆0(k) ≥
∑
x∈S−

p̂(x′|0,−1)∆(x, k)

≥
∑
x∈S−

p̂(x′|0,−1)I(E∆
k (x))C2

√
log(1/δ)

nk(x)

(i)
=
∑
x∈S−

nk(x)

k
I(E∆

k (x))C2

√
log(1/δ)

nk(x)

=
C2

√
log(1/δ)

k

∑
x∈S−

I(E∆
k (x))

√
nk(x)

where (i) uses the fact that for x ∈ S− is only accessible through (0,−1), and that (0,−1) is always
selected in the simplified game. Next, observe that in the simplified game, nk(x) = k/S, so that if
n0/S ≥ C3 log(1/δ) for some constant C3, it holds by an argument similar to Lemma B.7 that with
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probability 1− δ, the event E1 := {∀x ∈ S−,∀k ≥ n0, nk(x) ≥ nk(x)/4 = k/4S} holds, yielding

∆0(k) ≥
C2

√
log(1/δ)

2k

√
k/S ·

∑
x∈S−

I(E∆
k )

=
C2

2

√
S log(1/δ)/k ·

 1

S

∑
x∈S−

I(E∆
k )

 .

Finally, if in addition n0/4S ≥ C1 log(1/δ), where C1 is the constant from claim G.5, then on
E1, it holds that for k ≥ n0, nk(x) ≥ C1 log(1/δ). We then set the constant c1 so that n0/S ≥
C3 log(1/δ) and n0/4S ≥ C1 log(1/δ) hold.

Lastly, since (a) E1 is measurable with respect to the counts (nj(x
′))x′∈S−,j≥1, (b) since E∆

k (x) are
independent given these counts, and (c) E[I(E∆

k )] ≥ 1/4, a Chernoff bound shows that for k ≥ n0,

the event E2(k) := {
(

1
S

∑
x∈S− I(E∆

k )
)
≥ 1/8} holds with probability at least e−C5S conditioned

on E1. Hence, on Eopt ∩ E1 ∩
⋃N
k=n0

E2(k), we have

∆0(k) ≥ C2

16

√
S log(1/δ)/k ≥ C2

16

√
S log(1/δ)/N, ∀k ∈ {n0, . . . , N}.

Hence, if N ≤ c2
S log(1/δ)

ε2 for some constant c2, we see that ∆0(k) ≥ 2ε for all k ∈ {n0, . . . , N}.
Lastly, we see that

P[(Eopt ∩ E1 ∩
N⋃

k=n0

E2(k))c] ≤ P[(Eopt)c] + P[Ec1 ] + P[(

N⋃
k=n0

E2(k))c ∧ E1]

≤ P[(Eopt)c] + P[Ec1 ] +N max
k≥n0

P[E2(k)c | E1] ≤ 2δ +Ne−C4S .

Translating to the non-simplified game, we have therefore established that

P[∀k : n0 ≤ nk(0,−1) ≤ N,Qk,1(−1, 1)− 1

2
≥ 2ε] ≥ 1− 2δ +Ne−C4S .

Combining with the additional probability of error δ for the case nk(0,−1) ≤ n0 concludes the
proof.

G.5 Proof of Claim G.5

We observe that conditioned on the vector (nj(x
′))x′∈S−,j≥1, the games at states x and round k

are equivalent to S independent two-arm bandit games with nk(x) rounds. Note moreover that
∆(x, k) = Vk,2(x) − 1

2 ≥ brw
k (x, 1) + r̂k(x, 1) − 1

2 . Hence, restricting to a single state x (and
dropping the dependence on x for simplicity), it suffices to show that for k rounds of an appropriate
two-arm bandit game with a ∈ {−1, 1}with empirical rewards r̂k(a) and bonuses brw

k (a),R(−1) =
0 and R(1) ∼ 1

2 + 1
4D, that

∀k ≥ C1 log(S/δ), P[brw
k (1) + r̂k(1)− 1

2
≥
√

log(1/δ)/k] ≥ 1

4
where we have dropped the dependence on x for simplicity. Throughout, we will also use the
notation C1,C2,C3 to denote constants specific to the proof of Claim G.5, and reserve C1, C2 for
the constants in the claim statement.

If δ ≤ 1/8, then a standard argument shows that for some constant C1 (depending on cbon),
nk(−1) ≤ C1 log(S/δ). Indeed, define the event E0 := {∀k ≥ 1 : brw

k (1) + r̂k(1) ≥ r(1) = 1
2}; by

assumption on our confidence intervals, complement of this event occurs with probability at most
δ ≤ 1/8. Note also that on E0, since R(−1) = 0 with probability 1, it holds that for any j ≤ k with
nj(−1) ≥ C1 log(S/δ)

r̂j(−1) + brw
j (x, a) = brw

j (x, a)
(i)

≤ cbon

√
log(Snj(−1)/δ)

nj(−1)

(ii)

≤ 1

2
= r(1) ≤ r̂j(1) + brw

j (1),
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where in (i) we used the definition of the confidence interval with M . S, and in (ii) we used
nj(−1) ≥ C1 log(S/δ) for an appropriately tuned constant C1. Since aj := arg maxa r̂j(a) +
brw
j (a), we have aj = 1. This implies that nk(−1) ≤ maxj≥1 nj(−1) ≤ C1 log(M/δ).

Next, set k0 = C1 log(M/δ). We wish to show that for k ≥ k0,

r̂k(1) + brw
k (1) &

log(1/δ)

k

There are two technical challenges: first, the confidence interval brw
k (1) might be nearly tight, so

that we cannot show that with high probability, r̂k(1) + brw
k (1) & brw

k (1). Second, because the
algorithm adaptively chooses to sample actions a ∈ {−1, 1}, r̂k(1) does not have the distribution of
nk(1) i.i.d. samples from R(1).

We can get around this as follows. We can imagine all rewards sampled from action 1 as being
drawn at the start of the game, and constituting a sequence R(1)(1), R(2)(1), . . . and so on. Then,
r̂k(1) is the average of the samples 1, . . . , nk(1), where nk(1) ≤ k. Therefore

nk(1)(r̂k(1)− 1

2
) =

nk(1)∑
i=1

(R(i)(1)− 1

2
) =

k∑
i=1

(R(i)(1)− 1

2
)−

k∑
i=nk(1)+1

(R(i)(1)− 1

2
).

=

k∑
i=1

(R(i)(1)− 1

2
)−

k∑
i=k−nk(−1)+1

(R(i)(1)− 1

2
),

where the last line uses nk(1) + nk(−1) = k.

Now consider the event E1(δ) := {nk(−1) ≤ k0}, where we recall k0 = C1 log(M/δ) was our
1− δ-probability upper bound on nk(−1). On E1(δ), nk(−1) = j for some j ∈ {0, 1, . . . , k0}, and
we can lower bound the above expression by

≥
k∑
i=1

(R(i)(1)− 1

2
)− max

j=0,...,k0

k∑
i=k−j+1

(R(i)(1)− 1

2
).

Observe now that we have lower bounded nk(1)(r̂k(1) − 1
2 ) in terms of quantities depending only

on the i.i.d. reward sequence (R(i)(1)), and not on the quantities nk(−1), nk(1).

Moreover, a standard maximal inequality implies that the following event E2(δ) holds for an appro-
priate constant C2 with probability 1− δ:

E2(δ) :=

 max
j=0,...,k0

k∑
i=k−j+1

(R(i)(1)− 1

2
) ≤ C2

√
k0 log(1/δ)

 (26)

Lastly, since R(i) is symmetric, we have that the following event E3 holds with probability 1/2:

E3 :=

{
k∑
i=1

(R(i)(1)− 1

2
) ≥ 0

}
.

Hence, on E1(δ) ∩ E2(δ) ∩ E3,

nk(1)(r̂k(1)− 1

2
) ≥

k∑
i=1

(R(i)(1)− 1

2
)︸ ︷︷ ︸

≥0

− max
j=0,...,k0

k∑
i=k−j+1

(R(i)(1)− 1

2
)

≥ −C2

√
log(1/δ)k0.

If we further assume that k ≥ 2C1 log(M/δ), then nk(−1) ≤ k0 ≤ k/2, so that E1(δ) implies
nk(1) ≥ k/2. Dividing both sides of the above by k and bringing 1/k into the square root yields
(again on E1(δ) ∩ E2(δ) ∩ E3)

(r̂k(1)− 1

2
) ≥ −C2

2

√
log(1/η)

k
· k0

k
. (27)
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Moreover, by the lower bound assumption on brw and the fact that R(1) has Ω(1) variance, there
exists some constant C3 such that

brw(nk(1)) ≥ cbon

√
Var[R(x, a)] log(1/δ)

nk(1)
≥ C3

√
log(1/δ)

k
,

where again we use nk(1) ≤ k. Combining with (27), we have on E1(δ) ∩ E2(δ) ∩ E3 that

(r̂k(1)− 1

2
) + brw(nk(1)) ≥ C3

√
log(1/δ)

k
− C2

2

√
log(1/δ)

k
· k0

k
.

Hence, if k0/k ≤ (C3/C2)2, or equivalently if k ≥ C1(C3/C2)−2 log(M/δ), then

(r̂k(1)− 1

2
) + brw(nk(1)) ≥ C3

2

√
log(1/δ)

k
≥ C3

2

√
log(1/δ)

2nk(1)

on the event E1(δ)∩E2(δ)∩E3. Lastly, for δ ≤ 1/8, we note P[E1(δ)∩E2(δ)∩E3] ≥ 1
2 −2δ ≥ 1/4.

Recalling our earlier condition k ≥ 2C1 log(M/δ), the claim now holds with by setting the constant
C1 in the claim statement to be C1 max

{
2, (C3/C2)−2

}
, and C2 to be C3

2
√

2
.
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H Information Theoretic Lower Bound (Proposition 2.2)

In this section we construct give a proof of the information theoretic lower bound Proposition 2.2,
as well as a non-asymptotic bound that holds even for non-uniformly good algorithms.

H.1 Construction of the hard instance

Our construction mirrors the lower bounds due to [4], but with specific and non-uniform gaps. We
defineM as an MDP on state space S = [S + 2], with actions A = [A], and horizon [H]. We will
first state the construction for H ≥ 2, and then remark on the modification for H = 1 at the end of
the section. For a ∈ [A], x ∈ [S], we set

p(x′ = S + 1|x, a) =
3

4
− 2

H − 1
∆x,a, p(x′ = S + 2|x, a) = 1− p(x′ = S + 1|x, a).

Furthermore, we set the initial state to have the distribution x1
unif∼ [S], and set

p(x′ = S + 1|x = S + 1, a) = 1, p(x′ = S + 2|x = S + 2, a) = 1∀a ∈ [A].

Finally, the rewards are set deterministically as

R(x, a) :=


0 x ∈ [S]

0 x ∈ {S + 1, S + 2}, a > 1

1 (x, a) = (S + 1, 1)
1
2 (x, a) = (S + 2, 1)

We may then verify that V?
h(S+1) = (H−h+1) and V?

h(S+1) = (h−H+1)/2, which implies
that that for x ∈ [S],

gaph(x, a) =

(
max
a′

∑
x′

p(x′|x, a′)V?
h+1(x′)

)

= max
a′

(p(S + 1|x, a′)− p(S + 1|x, a))(H − h) + (p(S + 2|x, a′)− p(S + 2|x, a))
(H − h)

2

= max
a′

(p(S + 1|x, a′)− p(S + 1|x, a))(H − h)− (p(S + 1|x, a′)− p(S + 1|x, a))
(H − h)

2

= max
a′

(p(S + 1|x, a′)− p(S + 1|x, a))
H − h

2

=
2∆x,a

(H − 1)
· H − h

2
,

and in particular that gap1(x, a) = ∆x,a. For H = 1, the construction is modified so that S = [S],
and

R(x, a) ∼ Bernoulli(
3

4
−∆x,a), and x1

unif∼ [S].

Then, we see that gap1(x, a) = ∆x,a. In what follows, we will adress the H ≥ 2 case; the case
H = 1 will follow from similar, but simpler arguments.
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H.2 Regret Lower Bound Decomposition

We can now lower bound the expected regret as

EM[RegretK ] := EM[

K∑
k=1

V?
0 −Vπk

0 ]

:= E[

K∑
k=1

∑
x

p(x1 = x){V?
1(x)−Vπk

1 (x)}]

(i)

≥ EM
[
K∑
k=1

∑
x

p(x1 = x){V?
1(x)−Q?

1(x, πk,1(x))}

]

= EM
[
K∑
k=1

∑
x

p(x1 = x)gap1(x, πk,1(x))

]

= EM
[
K∑
k=1

∑
x,a

p(x1 = x)I(πk,1(x) = a)gap1(x, a)

]
=
∑
x,a

EM[nK(x, a)]gap1(x, a), (28)

where inequality (i) follows since Vπk
1 (x) = Qπk

1 (x, πk,1(x)) ≤ Q?
1(x, πk,1(x)). We now show

that for all sufficiently large K ≥ K0(M), any uniformly correct algorithm must have

∀(x, a) : x ∈ [S], gap1(x, a) > 0,∀K ≥ K0(M)

EM[nK((x, a)] & (
2

H − 1
∆x,a)−2 logK &

H2

∆−2
x,a

logK =
H2

gap1(x, a)2
logK, (29)

which concludes the proof since

EM[RegretK ] &
∑

x,a:gap1(x,a)>0

H2

gap1(x, a)2
logK, ·gap1(x, a) =

∑
x,a:gap1(x,a)>0

H2

gap1(x, a)
logK.

We further note that this argument can also show that, for allK sufficiently large and all h ∈ [H−1]

EM[RegretK ] &
∑

x,a:gaph(x,a)>0

(H − h)2

gaph(x, a)
logK. (30)

as well.

H.3 Proof of Equation (29)

Throughout, we fix a state x ∈ [S], and an action a : gap1(x, a) > 0. We shall further introduce the
shorhand

∆x,a :=
2∆x,a

H − 1
∈ (0, 1/2), (31)

where the bound on ∆x,a follows from ∆x,a ∈ (0, H/8).

To lower bound Equation (29), we follow steps analogues to standard information theoretic lower
bounds. Our exposition will follow [7]. First, we state a lemma which is the MDP analogue of
Equation (6) in [7]. Its proof is analogous, and omitted for the sake of brevity:

Lemma H.1. LetM = (S,A, H, r, pM, p0, R
M) andM′ = (S,A, H, r, pM′ , p0, R

M′) denote
two episodic MDPs with the same state space S , action space A and horizon h, and initial state
distribution p0. For any (x, a) ∈ S × A, let νM(x, a) denote the law of the joint distribution
of (X ′, R) where X ′ ∼ pM(·|x, a) and R ∼ RM(x, a); define the law νM(x, a) analogously.
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Finally, fix a horizon K ≥ 1, and let FK denote the filtration generated by all rollouts up to episode
K. Then, for any FK-measurable random variable Z ∈ [0, 1],

kl(EM[Z],EM
′
[Z]) ≤

∑
x,a

EM[nK(x, a)]KL(νM(x, a), νM
′
(x, a)),

where kl(x, y) = x log x
y + (1−x) log 1−x

1−y denotes the binary KL-divergence, and KL(·, ·) denotes
the KL-divergence between two probability laws.

We apply the above lemma as follows. For our fixed pair (x, a), define an alternateM′ to be the
MDP which coincides withM except that

p(x′|x, a) =
3

4
+ η, η = min{7/8, 3

4
+ ∆x,a}

By construction,M andM′ differ only at their law at (x, a). Thus,

kl(EM[Z],EM
′
[Z]) ≤ EM[nK(x, a)]KL(νM(x, a), νM

′
(x, a)).

We the following lower bound controls the KL divergence between the laws νM(x, a), νM
′
(x, a):

Claim H.2. There exists a universal constant c such that

KL(νM(x, a), νM
′
(x, a)) . c∆2

x,a.

Proof. At (x, a), R(x, a) = 0 with probability under bothM,M′. Moreover, recall that underM,
(x, a) transition to state S+1 with probability 3

4−∆x,a, and to S+2 with probability 1−( 3
4−∆x,a, ).

On the other hand,M′ transtion to S+1 with probability 3
4 +η, and S+2 with probability 1−( 3

4 +η).
Consequently both laws are equivalent to Bernoulli distributions with parameters 3

4−∆x,a and 3
4 +η,

respectively. Since kl(x, y) is precisely KL(Bernoulli(x),Bernoulli(y)) for x, y ∈ (0, 1),

KL(νM(x, a), νM
′
(x, a)) = kl

(
3

4
−∆x,a,

3

4
+ η

)
.

Lastly, set x = 3
4 −∆x,a and y = 3

4 + min{ 7
8 ,∆x,a}.We y − x ≤ 2∆x,a, and by assumption on

∆x,a ≤ 1/2, Thus, 1/4 ≤ x ≤ y ≤ 7/8. Hence, a standard Taylor expansion (e.g. (author?) [13,
Lemma E.1]) shows that there exists a universal constant c such that kl(x, y) ≤ c

(x−y)2 ≤
4c

∆2
x,a

, as
needed.

As a consequence, we see that for any FK-measurable Z ∈ [0, 1], we find

EM[nK(x, a)] & ∆−2
x,akl(EM[Z],EM

′
[Z]) &

H2

∆2
x,a

kl(EM[Z],EM
′
[Z]),

where the last inequality uses that ∆x,a . ∆x,a/H .

To conclude, it suffices to exhibit a random variable ZK such that, for K sufficiently large,

kl(EM[Z],EM
′
[Z]) & (1− α) logK.

To this end, consider ZK = SnK(x,a)
K . Note that since x is only visited with probability at most 1/S

at stage h = 1, and with probability 0 for stages h ≥ 2, we have

nK(x, a) =

K∑
k=1

EM[P(x1 = x)I(πk,1(x1) = 1)] =
1

S

K∑
k=1

EM[I(πk,1(x1) = 1)] ≤ K/S,

which implies that, ZK ∈ [0, 1] with probability one. Moreover, note that by an argument similar to
that of (28), that under the MDPM′,

EM
′
[RegretK ] ≥ ηEM

′
[
∑
a′ 6=a

nK(x, a′)] = η(
K

S
− EM

′
nK(x, a′)]) =

ηK

S
(1− EM

′
[ZK ]).
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Hence, if Alg is α-uniformly good, then there existsa constant CM′ such that

1− EM
′
[ZK ] ≤ CM′η

S
Kα−1.

By the same token, there exists a constant CM such that

CMK
α ≥ EM[RegretK ] ≥ gap1(x, a)EM[nK(x, a)] =

Kgap1(x, a)

S
EM[ZK ]gap1(x, a)/S.

which implies that EM[ZK ] ≤ SCMKα−1

gap1(x,a) . Furthermore, by Inequality (11) in [7], it holds that

kl(x, y) ≥ (1− x) log
1

1− y
− log 2

which implies that for K sufficiently large,

kl(EM[ZK ],EM
′
[ZK ]) ≥ (1− SCMK

α−1

gap1(x, a)
)

{
(1− α) logK − log

CM′η

2S

}
& (1− α) logK.
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