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First of all, let us introduce the following notations. The singular value decompositions ofX ,A, and
B are

X = UXSXV
T
X , A = UASAV

T
A , andB = UBSBV

T
B

respectively. Denote the singular values ofX ,A, andB by σ, δ, and θ respectively, i.e.

SX = diag(σ1, σ2, · · · , σrX ), SA = diag(δ1, δ2, · · · , δrA), and SB = diag(θ1, θ2, · · · , θrB ).

Particularly, rX , rA, and rB could be larger than the ranks of X , A, and B respectively, which
means the corresponding singular values are zeros. The `2,p norm of matrix is defined as ‖A‖2,p :=(∑d

j=1 ‖aj‖p
)1/p

, whereA = [a1,a2, · · · ,ad].

1 Proof for Theorem 1

Theorem 1 (main paper, reformulated in the form of matrix norms). For any matrix X ∈ Rm×n
with rank(X) = r ≤ d ≤ min(m,n):
(a) min

AB=X
‖A‖2,1 + ‖BT ‖2,1 = 2‖X‖1/2S1/2

;

(b) min
AB=X

‖A‖2,1 +
α

2
‖B‖2F =

3α1/3

2
‖X‖2/3S2/3

.

To prove Theorem 1, we need the following lemmas.

Lemma 1. For any matrixA, ‖A‖2,1 ≥ ‖A‖∗.
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Proof. Denote the i-th column of V T
A by vi, where vji is the j-th element of vi. Then

‖A‖2,1 =

d∑
i=1

√
vTi S

2
Avi =

d∑
i=1

√√√√ rA∑
j=1

v2
jiδ

2
j

(i) ≥
d∑
i=1

√√√√ rA∑
j=1

(vjiδj)2

rA∑
j=1

v2
ji

(ii) ≥
d∑
i=1

√√√√( rA∑
j=1

v2
jiδj

)2

(iii) =

rA∑
j=1

δj

d∑
i=1

v2
ji =

rA∑
j=1

δj = ‖A‖∗.

(1)

Inequality (i) holds because
∑rA
j=1 v

2
ji ≤ 1, i = 1, 2, · · · , d. Inequality (ii) holds due to the

Cauchy–Schwarz inequality. In (iii),
∑d
i=1 v

2
ji = 1, j = 1, 2, · · · , rA.

Lemma 2. Suppose {h1, h2, · · · , hl} are arbitrary nonnegative values and denote H =
diag(h1, h2, · · · , hl). Suppose 0 ≤ q ≤ 1 and Q ∈ Rl×l is an arbitrary unitary matrix, i.e.,
QQT = QTQ = Il. Then Tr(H�q) ≤ Tr

(
(QTHQ)�q

)
, where �q denotes element-wise power

of order q.

Proof. Denote the entry (i, j) ofQ by Qij , we have
∑
iQ

2
ij = 1. Using Jensen’s inequality for the

concave function, we have
(∑

j Q
2
ijhj

)q ≥∑j Q
2
ijh

q
j . Then

Tr
(
(QTHQ)�q

)
=
∑
i

(∑
j

Q2
ijhj

)q
≥
∑
i

∑
j

Q2
ijh

q
j =

∑
j

hqj = Tr(H�q).
(2)

Lemma 3. Let {y1, y2, · · · , yl} be arbitrary nonnegative values. Suppose P ∈ Rl×l andW ∈ Rl×l
are arbitrary unitary matrices, i.e. PP T = P TP = Il and WW T = W TW = Il. Then: (a)∑
i

∑
j yjPjiWij ≤

∑
j yj; (b)

∑
i

(∑
j yjPjiWij

)2 ≤∑j y
2
j .

Proof. (a) We have
∑
i P

2
ij =

∑
j P

2
ji = 1 and

∑
iW

2
ij =

∑
jW

2
ji = 1. Then

l∑
i=1

l∑
j=1

yjPjiWij

≤1

2

l∑
i=1

(
l∑

j=1

yjP
2
ji +

l∑
j=1

yjW
2
ij

)

=
1

2

l∑
j=1

yj

l∑
i=1

P 2
ji +

1

2

l∑
j=1

yj

l∑
i=1

W 2
ij =

l∑
j=1

yj .

(3)

2



(b)
l∑
i=1

( l∑
j=1

yjPjiWij

)2

(i) ≤
l∑
i=1

( l∑
j=1

yjP
2
ji

l∑
j=1

yjW
2
ij

)

≤1

2

l∑
i=1

(( l∑
j=1

yjP
2
ji

)2

+
( l∑
j=1

yjW
2
ij

)2
)

(ii) ≤1

2

l∑
i=1

(
l∑

j=1

y2
jP

2
ji +

l∑
j=1

y2
jW

2
ij

)

=
1

2

l∑
j=1

y2
j

l∑
i=1

P 2
ji +

1

2

l∑
j=1

y2
j

l∑
i=1

W 2
ij =

l∑
j=1

y2
j .

(4)

Inequality (i) holds due to Cauchy–Schwarz inequality. Inequality (ii) holds due to Jensen’s inequality
on the quadratic function, which is convex.

Enhanced with the lemmas, we can now prove for Theorem 1 as follows.

Proof. As X = AB, we have SX = UT
XUASAV

T
A UBSBV

T
B VX and rA = rB = rX = d ≥ r.

DenoteQ = UT
XUA, P = V T

B VXQ, andW = V T
A UB . BecauseX andA have the same column

space while X and B have the same row space, there exist unitary matrices RA ∈ Rd×d and
RB ∈ Rd×d such that

UX = UARA and VX = VBRB . (5)

ThenQQT = QTQ = Id and PP T = P TP = Id. In addition,WW T = W TW = Id because
both VA and UB are unitary matrices. It follows that QTSXQ = SAWSBP . In addition, for
1 ≤ i ≤ d,

∑d
j=1 θjPjiWij ≥ 0 because the diagonal elements ofWSBP are nonnegative.

(a) We have

‖A‖2,1 + ‖BT ‖2,1 ≥ 2
√
‖A‖2,1‖B‖2,1

(i) ≥2
√
‖A‖∗‖B‖∗ = 2

(
d∑
i=1

δi

d∑
i=1

θi

)1/2

(ii) ≥2

(
d∑
i=1

δi

d∑
i=1

d∑
j=1

θjPjiWij

)1/2

(iii) ≥2

d∑
i=1

δ
1/2
i

( d∑
j=1

θjPjiWij

)1/2

= 2

d∑
i=1

( d∑
j=1

δiWijθjPji

)1/2

=2Tr
((
SAWSBP

)�1/2
)

= 2Tr
((
QTSXQ

)�1/2
)

(iv) ≥2Tr
(
S
�1/2
X

)
= 2

∑
i

σ
1/2
i = 2‖X‖1/2S1/2

.

(6)

Inequality (i) holds due to Lemma 1. Inequality (ii) holds according to Lemma 3(a). Inequality (iii)
holds according to Cauchy–Schwarz inequality. Equality (iv) holds according to Lemma 2. When
A = UXS

1/2
X andB = S

1/2
X V T

X , the equality holds.

3



(b) We have

‖A‖2,1 +
α

2
‖BT ‖2F

(i) ≥1

2
‖A‖∗ +

1

2
‖A‖∗ +

α

2
‖BT ‖2F

≥3α1/3

2

(
‖A‖∗‖A‖∗‖BT ‖2F

)1/3
=

3α1/3

2

(
d∑
i=1

δi

d∑
i=1

δi

d∑
i=1

θ2
i

)1/3

(ii) ≥3α1/3

2

(
d∑
i=1

δi

d∑
i=1

δi

d∑
i=1

( d∑
j=1

θjPjiWij

)2
)1/3

(iii) ≥3α1/3

2

d∑
i=1

δ
1/3
i δ

1/3
i

( d∑
j=1

θjPjiWij

)2/3

=
3α1/3

2

d∑
i=1

( d∑
j=1

δiWijθjPji

)2/3

=
3α1/3

2
Tr
((
SAWSBP

)�2/3
)

=
3α1/3

2
Tr
((
QTSXQ

)�2/3
)

(iv) ≥3α1/3

2
Tr
(
S
�2/3
X

)
=

3α1/3

2

∑
i

σ
2/3
i =

3α1/3

2
‖X‖2/3S2/3

.

(7)

Inequality (i) holds due to Lemma 1. Inequality (ii) holds according to Lemma 3(b). Inequality
(iii) holds according to generalized Hölder’s inequality. Equality (iv) holds according to Lemma 2.
When A = α1/3UXS

2/3
X and B = α−1/3S

1/3
X V T

X , we have ‖A‖2,1 = α‖B‖2F and {P , W , Q}
are indentity matrices. Then all equalities holds simultaneously.

2 Proof for Theorem 2

Theorem 2 (main paper, reformulated in the form of matrix norms). Fix α > 0 and choose
q ∈ {1, 1

2 ,
1
4 , · · · }. For any matrix X ∈ Rm×n with rank(X) = r ≤ d ≤ min(m,n),

(a) min
AB=X

1

q
‖A‖q2,q + α‖BT ‖2,1 = (1 + 1/q)αq/(q+1)‖X‖q/(q+1)

Sq/(q+1)
;

(b) min
AB=X

1

q
‖A‖q2,q +

α

2
‖BT ‖2F = (1/2 + 1/q)αq/(q+2)‖X‖2q/(2+q)

S2q/(2+q)
.

Before prove Theorem 2, we give the following lemma.

Lemma 4. For any matrixA and 0 < p ≤ 1, ‖A‖p2,p ≥ ‖A‖
p
Sp

.
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Proof. LetA = UASAV
T
A be the SVD ofA. Denote the i-th column of V T

A by vi, where vji is the
j-th element of vi. Then

‖A‖p2,p =

d∑
i=1

(
vTi S

2
Avi

)p/2
=

d∑
i=1

( rA∑
j=1

v2
jiδ

2
j

)p/2
(i) ≥

d∑
i=1

( rA∑
j=1

(vjiδj)
2
rA∑
j=1

v2
ji

)p/2
(ii) ≥

d∑
i=1

( rA∑
j=1

v2
jiδj

)p
(iii) ≥

d∑
i=1

rA∑
j=1

v2
jiδ

p
j

(iv) =

rA∑
j=1

δpj

d∑
i=1

v2
ji =

rA∑
j=1

δpj = ‖A‖pSp
.

(8)

Inequality (i) holds because
∑rA
j=1 v

2
ji ≤ 1, i = 1, 2, · · · , d. Inequality (ii) holds due to the

Cauchy–Schwarz inequality. Inequality (iii) holds due to the Jensen’s inequality for concave function
xp (0 < p ≤ 1). In (iv),

∑d
i=1 v

2
ji = 1, j = 1, 2, · · · , rA.

Then let’s prove Theorem 2.
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Proof. (a) We have

1
q‖A‖

q
2,q + ‖BT ‖2,1

(i) ≥‖A‖qSq
+ · · ·+ ‖A‖qSq︸ ︷︷ ︸
1/q terms

+α‖BT ‖2,1

≥(1 + 1/q)αq/(q+1)
(
‖A‖qSq

· · · ‖A‖qSq︸ ︷︷ ︸
1/q terms

‖BT ‖2,1
)q/(q+1)

=(1 + 1/q)αq/(q+1)

(
d∑
i=1

δqi · · ·
d∑
i=1

δqi︸ ︷︷ ︸
1/q terms

d∑
i=1

θi

)q/(q+1)

(ii) ≥(1 + 1/q)αq/(q+1)

(
d∑
i=1

δqi · · ·
d∑
i=1

δqi︸ ︷︷ ︸
1/q terms

d∑
i=1

( d∑
j=1

θjPjiWij

))q/(q+1)

(iii) ≥(1 + 1/q)αq/(q+1)
d∑
i=1

δ
q/(q−1+1)
i · · · δq/(q

−1+1)
i︸ ︷︷ ︸

1/q terms

( d∑
j=1

θjPjiWij

)1/(q−1+1)

=(1 + 1/q)αq/(q+1)
d∑
i=1

( d∑
j=1

δiWijθjPji

)1/(q−1+1)

=(1 + 1/q)αq/(q+1)Tr
((
SAWSBP

)�1/(q−1+1)
)

=(1 + 1/q)αq/(q+1)Tr
((
QTSXQ

)�q/(q+1)
)

(iv) ≥(1 + 1/q)αq/(q+1)Tr
(
S
�q/(q+1)
X

)
=(1 + 1/q)αq/(q+1)

∑
i

σ
q/(q+1)
i = (1 + 1/q)αq/(q+1)‖X‖q/(q+1)

Sq/(q+1)
.

(9)

Inequality (i) holds due to Lemma 4. Inequality (ii) holds according to Lemma 3(a). Inequality (iii)
holds according to generalized Hölder’s inequality. Equality (iv) holds according to Lemma 2. When
A = α1/(q+1)UXS

1/(q+1)
X and B = α−1/(q+1)S

q/(q+1)
X V T

X , we have ‖A‖qSq
= α‖BT ‖2,1 and

{P ,W ,Q} are indentity matrices. Then all equalities holds simultaneously.
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(b) We have
1

q
‖A‖q2,q +

α

2
‖BT ‖2F

(i) ≥ 1

2
‖A‖qSq

+ · · ·+ 1

2
‖A‖qSq︸ ︷︷ ︸

2/q terms

+
α

2
‖BT ‖2F

≥(1/2 + 1/q)αq/(q+2)
(
‖A‖qSq

· · · ‖A‖qSq︸ ︷︷ ︸
2/q terms

‖BT ‖2F
)q/(q+2)

=(1/2 + 1/q)αq/(q+2)

(
d∑
i=1

δqi · · ·
d∑
i=1

δqi︸ ︷︷ ︸
2/q terms

d∑
i=1

θ2
i

)q/(q+2)

(ii) ≥(1/2 + 1/q)αq/(q+2)

(
d∑
i=1

δqi · · ·
d∑
i=1

δqi︸ ︷︷ ︸
2/q terms

d∑
i=1

( d∑
j=1

θjPjiWij

)2
)q/(q+2)

(iii) ≥(1/2 + 1/q)αq/(q+2)
d∑
i=1

δ
q/(2q−1+1)
i · · · δq/(2q

−1+1)
i︸ ︷︷ ︸

2/q terms

( d∑
j=1

θjPjiWij

)2/(2q−1+1)

=(1/2 + 1/q)αq/(q+2)
d∑
i=1

( d∑
j=1

δiWijθjPji

)2q/(q+2)

=(1/2 + 1/q)αq/(q+2)Tr
((
SAWSBP

)�2q/(q+2)
)

=(1/2 + 1/q)αq/(q+2)Tr
((
QTSXQ

)�2q/(q+2)
)

(iv) ≥(1/2 + 1/q)αq/(q+2)Tr
(
S
�2q/(q+2)
X

)
=(1/2 + 1/q)αq/(q+2)

∑
i

σ
2q/(q+2)
i = (1/2 + 1/q)αq/(q+2)‖X‖2q/(2+q)

S2q/(2+q)
.

(10)

Inequality (i) holds due to Lemma 4. Inequality (ii) holds according to Lemma 3(b). Inequality (iii)
holds according to generalized Hölder’s inequality. Equality (iv) holds according to Lemma 2. When
A = α1/(q+2)UXS

2/(2+q)
X and B = α−1/(q+2)S

q/(2+q)
X V T

X , we have ‖A‖qSq
= α‖B‖2F and {P ,

W ,Q} are indentity matrices. Then all equalities holds simultaneously.

3 Proof for Theorem 3

Theorem 3. Suppose ‖M‖pSp
≤ Rp, M̂ is the optimal solution of (20), and |Ω| ≥ 32

3 n log2 n.

Denote ζ := max{‖M‖∞, ‖M̂‖∞}. Then there exist numerical constants c1 and c2 such that the
following inequality holds with probability at least 1− 5n−2

‖M − M̂‖2F ≤ max

c1ζ2n log n

|Ω|
, (5.5 +

√
10)Rp

(
(4
√

3ε0 + c2ζ)2n log n

|Ω|

)1−p/2
 . (11)

Before prove the above theorem, we introduce a restricted strong convexity (RSC) result:
Lemma 5. Let PΩ be the random sampling operator. Then there are universal positive constants
(c′1, c

′
2) such that∣∣∣∣mn|Ω| ‖PΩ(∆)‖2F − ‖∆‖2F

∣∣∣∣ ≤ c′1√mn‖∆‖∞‖∆‖∗
√
n log n

|Ω|
+ c′2mn‖∆‖2∞

n log n

|Ω|
(12)

7



for all ∆ ∈ Rm×n(m ≤ n), uniformly with probability at least 1− 2e−
1
2n logn.

Our RSC is similar to the one in [1]. One major difference compared to [1] is that here Ω is sampled
without replacement from [m]× [n].

We define the set

Sp(Rp) =

Y ∈ Rm×n |
min{m,n}∑

i=1

|σi(Y )|p ≤ Rp

 , (13)

where σi(Y ) denotes the i-th singular value of Y and 0 ≤ p ≤ 1. Then we have the following
lemma:
Lemma 6. For any matrix ∆ ∈ Sp(2Rp) and any positive number τ , the following inequality holds

‖∆‖∗ ≤
√

2Rpτ
−p/2‖∆‖F + 2Rpτ

1−p. (14)

Lemma 7. Suppose the entries of E ∈ Rm×n (m ≤ n) are drawn from N (0, ε2) and |Ω| ≥
32
3 n log2 n. Then

P
(
‖PΩ(E)‖2 ≤ 2

√
3ε

√
|Ω| log n

m

)
≥ 1− 4n−2. (15)

Now we prove Theorem 3.

Proof. The optimal M̂ indicates

‖PΩ(Me − M̂)‖2F ≤ ‖PΩ(Me −M)‖2F , (16)

and
‖PΩ(M − M̂)‖2F + 2〈PΩ(M − M̂),PΩ(E)〉 ≤ 0. (17)

Denote ∆ := M − M̂ . Then ∆ ∈ Sp(2Rp). We have

‖PΩ(∆)‖2F ≤ 2|〈PΩ(∆),PΩ(E)〉| ≤ 2‖∆‖∗‖PΩ(E)‖2 (18)

In addition, we have
‖∆‖∞ ≤ 2ζ/

√
mn. (19)

Then according to Lemma 5, the following inequality holds with probability at least 1− 2e−
1
2n logn

‖∆‖2F ≤
mn

|Ω|
‖PΩ(∆)‖2F + 2c′1ζ‖∆‖∗

√
n log n

|Ω|
+ 4c′2ζ

2n log n

|Ω|
. (20)

Using (18), (20), Lemma 7, and Lemma 6, we obtain

‖∆‖2F ≤
(2mn

|Ω|
‖PΩ(E)‖2 + 2c′1ζ

√
n log n

|Ω|

)
‖∆‖∗ + 4c′2ζ

2n log n

|Ω|

≤
(

4
√

3nε

√
m log n

|Ω|
+ 2c′1ζ

√
n log n

|Ω|

)
‖∆‖∗ + 4c′2ζ

2n log n

|Ω|

≤
√

2Rpzτ
−p/2‖∆‖F + 2Rpzτ

1−p + 4c′2ζ
2n log n

|Ω|
,

(21)

where z = 4
√

3nε

√
m log n

|Ω|
+ 2c′1ζ

√
n log n

|Ω|
. Let τ = z, we have

‖∆‖2F −
√

2Rpτ
1−p/2‖∆‖F − 2Rpτ

2−p − 4c′2ζ
2n log n

|Ω|
≤ 0. (22)

Solving the inequality yields

‖∆‖F ≤
1

2

(√
2Rpτ

1−p/2 +

√
10Rpτ2−p + 16c′2ζ

2
n log n

|Ω|

)
. (23)

8



Note that ε = ε0/
√
mn, we have τ = (4

√
3ε0 + 2c′1ζ)

√
n log n

|Ω|
. It follows from (23) that

‖∆‖2F ≤
1

4

(√
2Rp

(
(4
√

3ε0 + 2c′1ζ)

√
n log n

|Ω|

)1−p/2

+

√√√√10Rp

(
(4
√

3ε0 + 2c′1ζ)

√
n log n

|Ω|

)2−p
+ 16c′2ζ

2
n log n

|Ω|

)2

.

(24)

It indicates that for sufficiently large |Ω|, smaller p leads to smaller upper bound of ‖M − M̂‖2F but
the decreasing may not be significant when p approaches to zero.

To make a simpler formulation, we consider the following cases. If 2Rpτ
2−p ≤ 16

5
c′2ζ

2n log n

|Ω|
, we

have
‖∆‖2F ≤ (8.8 + 8

√
2/5)c′2ζ

2n log n

|Ω|
. (25)

Otherwise, we have
‖∆‖2F ≤ (5.5 +

√
10)Rpτ

2−p. (26)
Putting above results together, with probability at least 1− 5n−2, we obtain

‖∆‖2F ≤ max

c1ζ2n log n

|Ω|
, (5.5 +

√
10)Rp

(
4
√

3nε

√
m log n

|Ω|
+ c2ζ

√
n log n

|Ω|

)2−p
 , (27)

where c1 = (8.8 + 8
√

2/5)c′2 and c2 = 2c′1. We have

‖M − M̂‖2F ≤ max

c1ζ2n log n

|Ω|
, (5.5 +

√
10)Rp

(
(4
√

3ε0 + c2ζ)2n log n

|Ω|

)1−p/2
 . (28)

4 Proof for Theorem 4

Theorem 4. Suppose Me = M + E. For any Â and B̂, let M̂ = ÂB̂ and d be the number of
nonzero columns of Â. Define ζ := max{‖M‖∞, ‖M̂‖∞}. Then there exists a numerical constant
C0, such that with probability at least 1− 2 exp(−n), the following inequality holds:

‖M − M̂‖F√
mn

≤ ‖PΩ(Me − M̂)‖F√
|Ω|

+
‖E‖F√
mn

+ C0ζ
(nd log n

|Ω|

)1/4

.

First, we reformulate the Theorem 2 of [2] as
Lemma 8. Let LΩ(X̂) = 1√

|Ω|
‖PΩ(Me−X̂)‖F and L(X̂) = 1√

mn
‖Me−X̂‖F be the empirical

and actual loss function respectively. Furthermore, assume entry-wise constraint maxij |X̂ij | ≤ CX .
Then for all rank-r matrices X̂ , with probability greater than 1 − 2 exp(−n), there exists a fixed
constant C0 such that

sup
X̂∈Sr

∣∣∣LΩ(X̂)− L(X̂)
∣∣∣ ≤ C0CX

(nr log n

|Ω|

)1/4

.

We have
‖Me − ÂB̂‖F√

mn

≤

∣∣∣∣∣‖Me − ÂB̂‖F√
mn

− ‖PΩ(Me − ÂB̂)‖F√
|Ω|

∣∣∣∣∣+
‖PΩ(Me − ÂB̂)‖F√

|Ω|

:=R(Â, B̂,Ω) +
‖PΩ(Me − ÂB̂)‖F√

|Ω|
.

(29)
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According to Lemma 8, then with probability at least 1− 2 exp(−n), there exists a fixed constant C0

such that

sup
ÂB̂∈Sd

R(Â, B̂,Ω) ≤ C0ζ
(nd log n

|Ω|

)1/4

. (30)

Using (29) and (30), we have

‖M − ÂB̂‖F√
mn

≤‖E‖F√
mn

+
‖Me − ÂB̂‖F√

mn

≤‖E‖F√
mn

+ C0ζ
(nd log n

|Ω|

)1/4

+
‖PΩ(Me − ÂB̂)‖F√

|Ω|
.

(31)

This finished the proof.

5 Proof for Lemmas 5, 6, and 7

5.1 Proof for Lemma 5

Before prove Lemma 5, we introduce
Lemma 9 (Theorem 1.1 in [3]). Let X1, X2, · · · , Xs be independent random variables with values
in a measurable space (S,B) and letF be a countable class of measurable functions f : S → [−a, a],
such that for all i, E[f(Xi)] = 0. Consider the random variable Z = supf∈F

∑s
i=1 f(Xi). Then

for all t ≥ 0,

P(Z ≥ E[Z] + t) ≤ exp(− t2

2(σ2 + 2aE[Z]) + 3at
)),

where σ2 = supf∈F
∑s
i=1 E[f2(Xi)].

The above lemma indicates that there are universal positive constants c1 and c2 such that for any
ε > 0

P(Z ≥ (1 + ε)E[Z] + c1σ
√
t′ + (c2 + c21/ε)at

′) ≤ e−t
′
. (32)

Now we prove Theorem 3. Without loss of generality, we assume ‖∆‖2F = 1. Then for given
constants ζ and θ, we define the set

S(ζ, θ) :=

{
∆ ∈ Rm×n | ‖∆‖2F = 1, ‖∆‖∞ ≤

ζ√
mn

, ‖∆‖∗ ≤ θ
}

(33)

and random variable

Z(ζ, θ) := sup
∆∈S(ζ,θ)

∣∣∣∣mn|Ω| ‖PΩ(∆)‖2F − 1

∣∣∣∣ . (34)

According to PΩ, we define f∆(Sk) =
mn

|Ω|
〈∆,Sk〉2, where Sk = eike

T
jk

and k = 1, 2, · · · , |Ω|.

{f∆(Sk)} are independently but not identically distributed. Then we write

Z(ζ, θ) = sup
∆∈S(ζ,θ)

∣∣∣∣∣∣
|Ω|∑
k=1

f∆(Sk)− E[f∆(Sk)]

∣∣∣∣∣∣ . (35)

Denote f̄∆(Sk) := f∆(Sk) − E[f∆(Sk)]. Since 0 ≤ f∆(S) ≤ ζ2/|Ω|, we have E[f̄2
∆(Sk)] ≤

E[f2
∆(Sk)] ≤ ζ2/|Ω|E[f∆(Sk)] = ζ2/|Ω|2. Then put Z(ζ, θ) into (32) and let ε = 1 and t′ =

n log n, where σ2 ← ζ2/|Ω|, s ← |Ω|, and a ← ζ2/|Ω|. We conclude that there are universal
constant c′1 and c′2 such that

P
(
Z(ζ, θ) ≥ 2E[Z(ζ, θ)] +

c′1
8
ζ

√
n log n

|Ω|
+
c′2
4
ζ2n log n

|Ω|

)
≤ e−n logn. (36)
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Let ε be Rademacher variable, we have

E[Z(ζ, θ)] ≤ 2E

 sup
∆∈S(ζ,θ)

∣∣∣∣∣∣
|Ω|∑
k=1

εk
mn

|Ω|
〈∆,Sk〉2

∣∣∣∣∣∣
 ≤ 4ζE

 sup
∆∈S(ζ,θ)

∣∣∣∣∣∣
√
mn

|Ω|

|Ω|∑
k=1

εk 〈∆,Sk〉

∣∣∣∣∣∣
 ,
(37)

where the first and second inequalities follow from the Proposition 4.11 and inequality 5.61 of [4].
Using Hölder’s inequality and the fact ‖∆‖∗ ≤ θ, we have

E

 sup
∆∈S(ζ,θ)

∣∣∣∣∣∣
√
mn

|Ω|

|Ω|∑
k=1

εk 〈∆,Sk〉

∣∣∣∣∣∣
 ≤ θE

‖√mn
|Ω|

|Ω|∑
k=1

εkSk‖2

 . (38)

Note that E[εkSk] = 0, ‖εkSk‖2 = 1, and max{‖
∑|Ω|
k=1 E[ε2kSkS

T
k ]‖2, ‖

∑|Ω|
k=1 E[ε2kS

T
k Sk]‖2} =

|Ω|
m , where we have assumed m ≤ n. Then use matrix Bernstein inequality, we obtain

P
(
‖
|Ω|∑
k=1

εkSk‖2 ≥ t
)
≤ 2n exp

( −t2

2( |Ω|m + t/3)

)
.

It follows that

E

‖ |Ω|∑
k=1

εkSk‖2

 ≤ 2

√
|Ω|
m

(
√
π +

√
log 2n) + 4/3(1 + log 2n) ≤ ct

√
|Ω| log n

m
, (39)

where we have used the fact |Ω| > n log n and ct is some constant. Combining (37), (38), and (39),
we obtain

E[Z(ζ, θ)] ≤ 4ζθ

√
mn

|Ω|
ct

√
|Ω| log n

m
≤ c′1

16
ζθ

√
n log n

|Ω|
, (40)

where c′1 is an appropriate constant. Invoking (40) into (36) and using θ ≥ 1, we have

P
(
Z(ζ, θ) ≥ c′1

4
ζθ

√
n log n

|Ω|
+
c′2
4
ζ2n log n

|Ω|

)
≤ e−n logn. (41)

Note that (41) involves the fixed ζ and θ. We need to extend it to arbitrary
√
mn‖∆‖∞ and

‖∆‖∗. The remaining proof is nearly the same as that in Chapter 10 of [4]. We include it here for
completeness.

Let BF (1) denote the Frobenius ball of norm one in Rm×n, and let E be the event that the bound in
Lemma 4 is violated for some ∆ ∈ BF (1). For u, v = 1, 2, · · · , we define

Su,v :=
{
∆ ∈ BF (1) | 2u−1 ≤

√
mn‖∆‖∞ ≤ 2u, 2v−1 ≤ ‖∆‖∗ ≤ 2v

}
, (42)

and let Eu,v be the event that the bound in Lemma 4 is violated for some ∆ ∈ Su,v. We first show
that

E ⊆
w⋃

u,v=1

Eu,v, where w = dlog2 ne. (43)

For any matrix ∆ ∈ S(ζ, θ), we have

‖∆‖∗ ≥ ‖∆‖F = 1 and ‖∆‖∗ ≤
√
mn‖∆‖F ≤ n.

Similarly we have
n‖∆‖∞ ≥

√
mn‖∆‖∞ ≥ 1 and n‖∆‖∞ ≤ n.

Then without loss of generality, we assume ‖∆‖∗ ∈ [1, n] and n‖∆‖∞ ∈ [1, n]. Therefore, if there
exists a matrix ∆ of Frobenius norm one that violates the bound in Lemma 4, it must belong to some
set Su,v for some u, v = 1, 2, · · · , w, where w = dlog2 ne.
For ζ = 2u and θ = 2v , we define the event

Ẽu,v :=

{
Z(ζ, θ) ≥ c′1

4
ζθ

√
n log n

|Ω|
+
c′2
4
ζ2n log n

|Ω|

}
. (44)
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If event Eu,v occurs, there must exist some ∆ ∈ Su,v such that∣∣∣∣mn|Ω| ‖PΩ(∆)‖2F − 1

∣∣∣∣ ≥ c′1√mn‖∆‖∞‖∆‖∗
√
n log n

|Ω|
+ c′2mn‖∆‖2∞

n log n

|Ω|

≥ c′12u−12v−1

√
n log n

|Ω|
+ c′222(u−1)n log n

|Ω|

≥ c′1
4

2u2v

√
n log n

|Ω|
+
c′2
4

(2u)2n log n

|Ω|
.

(45)

It means Ẽu,v occurs. Therefore, Eu,v ⊆ Ẽu,v .

Finally, we obtain

P(E) ≤
w∑

u,v=1

P(Ẽu,v) ≤ w2e−n logn ≤ e−
1
2n logn, (46)

where the first inequality holds due to the union bound and the third inequality holds due to logw2 ≤
1
2n log n. This finished the proof.

5.2 Proof for Lemma 6

Proof. For any matrix ∆ ∈ Rm×n, denote its singular values by σ = [σ1, σ2, · · · , σmax{m,n}]
T .

Define set S = {j | σj > τ}. We have

‖∆‖∗ = ‖σ‖1 = ‖σS‖1 +
∑
j /∈S

σj ≤
√
|S|‖σ‖2 + τ

∑
j /∈S

σj
τ
. (47)

Since
σj
τ
≤ 1 for all j /∈ S, we obtain

‖σ‖1 ≤
√
|S|‖σ‖2 + τ

∑
j /∈S

(
σj
τ

)p

≤
√
|S|‖σ‖2 + 2Rqτ

1−p
(48)

Since |S|τp ≤
∑
j∈S σ

p
j ≤ 2Rp, we get

‖σ‖1 ≤
√

2Rpτ
−p/2‖σ‖2 + 2Rpτ

1−P . (49)

Finally, we obtain ‖∆‖∗ ≤
√

2Rpτ
−p/2‖∆‖F + 2Rpτ

1−p.

5.3 Proof for Lemma 7

Proof. Denote Eij the (i, j) entry of E.

P(|Eij | ≥ tε) ≤ 2 exp(− t
2

2 ). (50)
Using Boole’s inequality, we obtain

P(‖E‖∞ ≥ tε) ≤ mnP(|Eij | ≥ tε) ≤ 2mn exp(− t
2

2 ) ≤ 2n2 exp(− t
2

2 ). (51)
It follows that

P(‖E‖∞ ≤ ε
√

2(c+ 2) log n) ≥ 1− 2n−c. (52)
Suppose {Sij} are independent Bernoulli(|Ω|/(mn)) random variables. DenoteGij = EijSijeie

T
j .

Then E [Gij ] = 0, ‖Gij‖2 ≤ ‖E‖∞, and PΩ(E) =
∑
ijGij .

‖
∑
ij

E
[
GijG

T
ij

]
‖2 = ‖

∑
ij

E
[
E2
ijS

2
ijeie

T
i

]
‖2

=‖
∑
ij

E
[
E2
ij

]
E [Sij ]E

[
eie

T
i

]
‖2

≤‖ε
2|Ω|
mn

∑
ij

E
[
eie

T
i

]
‖2 =

ε2|Ω|
m

.

(53)
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Similarly, we obtain

‖
∑
ij

E
[
GT
ijGij

]
‖2 ≤

ε2|Ω|
n

. (54)

As m ≤ n, using matrix Bernstein, we have

P
(
‖
∑
ij

Gij‖2 ≥ t
)
≤ (m+ n) exp(− t2

2(ε2|Ω|m−1 + tε
√

2(c+ 2) log n/3)
). (55)

Suppose ε2|Ω|m−1 ≥ tε
√

2(c+ 2) log n/3, namely, t ≤ ε|Ω|
m
√

2(c+ 2) log n/3
, inequality (55)

becomes

P
(
‖
∑
ij

Gij‖2 ≥ t
)
≤ (m+ n) exp(− t2

4ε2|Ω|m−1
). (56)

Then we have

P
(
‖
∑
ij

Gij‖2 ≤ 2ε

√
c′|Ω| log n

m

)
≥ 1− 2

nc′−1
. (57)

Because we have assumed that t ≤ ε|Ω|
m
√

2(c+ 2) log n/3
, the above inequality holds when |Ω| ≥

8
9c
′(c+ 2)n log2 n. Letting c′ = 3 and c = 2 and considering the probability in (52) and (57), the

following inequality holds with probability at least 1− 4n−2

‖PΩ(E)‖2 ≤ 2
√

3ε

√
|Ω| log n

m
, (58)

provided that |Ω| ≥ 32
3 n log2 n.

6 Optimization for low-rank matrix completion

In this section, first, we detail the ADMM [5, 6, 7] (with linearization) optimization for the following
matrix completion problem:

minimize
X,A,B,E

‖A‖2,1 +
α

2
‖B‖2F +

β

2
‖E‖2F ,

subject toX = AB +E, PΩ(X) = PΩ(Me).

(59)

We construct the augmented Lagrange function

L(X,A,B,E,Y ) , ‖A‖2,1 +
α

2
‖B‖2F +

β

2
‖E‖2F + 〈X−AB−E,Y 〉+ µ

2
‖X−AB−E‖2F ,

(60)
where Y ∈ Rm×n denotes the multipliers and µ is a parameter. Here we have implicitly include
the constraint PΩ(X) = PΩ(Me) in L by requiringX satisfies PΩ(X) = PΩ(Me). The alternate
updating steps are 

Xt = argmin
PΩ(X)=PΩ(Me)

L(X,At−1,Bt−1,Et−1,Yt−1)

At = argmin
A
L̂(Xt,A,Bt−1,Et−1,Yt−1)

Bt = argmin
B
L(Xt,At,B,Et−1,Yt−1)

Et = argmin
E
L(Xt,At,Bt,E,Yt−1)

Yt = Yt−1 + µ(Xt −AtBt −Et),

(61)
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where t denotes the iteration number. In (61), L̂ denotes the linearization for L and will be detailed
later. We now explain how to updateX,A,B, and E in the first four lines of (61). Specifically, we
updateX via solving

Xt = argmin
PΩ(X)=PΩ(Me)

µ

2
‖X −At−1Bt−1 −Et−1 + µ−1Yt−1‖2F . (62)

The solution is
Xt = PΩ̄(At−1Bt−1 +Et−1 − µ−1Yt−1) + PΩ(Me), (63)

where Ω̄ denotes the locations of unknown entries. We updateA via solving

At = argmin
A
‖A‖2,1 +

µ

2
‖Xt −ABt−1 −Et−1 + µ−1Yt−1‖2F , (64)

which, however, has no closed-form solution. We can linearize
µ

2
‖Xt−ABt−1−Et−1+µ−1Yt−1‖2F

atAt−1 and have

At = argmin
A
‖A‖2,1 +

µ

2
‖Xt−1 −At−1Bt−1 −Et−1 + µ−1Yt−1‖2F

+ 〈Q,A−At−1〉+
Lt
2
‖A−At−1‖2F

= argmin
A
‖A‖2,1 +

Lt
2
‖A−At−1 + L−1

t Q‖2F ,

(65)

whereQ = µ(Xt−At−1Bt−1−Et−1+µ−1Yt−1)(−BT
t−1) andLt ≥ µ‖Bt−1‖22. The closed-form

solution of (65) is
At = ΦL−1

t
(At−1 − L−1

t Q), (66)

where Φτ (·) is the column-wise soft-thresholding [8] operator defined as

Φτ (u) =


(‖u‖ − τ)u

‖u‖
, if ‖u‖ > τ ;

0, otherwise.
(67)

We then updateB as

Bt = argmin
B

α

2
‖B‖2F +

µ

2
‖Xt −AtB −Et−1 + µ−1Yt−1‖2F

=(µAT
t At + αId)

−1(AT
t (Xt −Et−1 + µ−1Yt−1)).

(68)

It is easy to show that, when one column ofAt is zero, the corresponding row ofBt given by (68) is
also zero. Finally, we update E as

Et = argmin
E

β

2
‖E‖2F +

µ

2
‖Xt −AtBt −E + µ−1Yt−1‖2F

=
µ

β + µ
(Xt −AtBt + µ−1Yt−1).

(69)

The optimization steps are summarized in Algorithm 1.

Consider the general problem

minimize
A,B

1

2
‖PΩ(Me −AB)‖2F + γ

(
‖A‖q2,q +

α

2
‖BT ‖2F

)
, (70)

where q = 1, 1
2 ,

1
4 , · · · . When q = 1, the corresponding PALM optimization is shown in Algorithm 2,

in which C is a binary matrix with 1 and 0 corresponding to the observed and missing entries ofMe

respectively.

When q 6= 1, we propose to solve (70) via PALM coupled with iteratively reweighted minimization
[9]. For instance, the subproblem of the termA during the iterations of PALM is of the form

minimize
A

f(A) + ‖A‖q2,q, (71)
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Algorithm 1 FGSR2/3 for LRMC (59) solved by ADMM

Input: Me, Ω, d ≥ r, α, β, µ, tmax, t = 0, Y0 = E0 = 0,X0,A0,B0

1: repeat
2: t← t+ 1
3: Xt = PΩ̄(At−1Bt−1 +Et−1 − µ−1Yt−1) + PΩ(Me)
4: Q = µ(Xt −At−1Bt−1 −Et−1 + µ−1Yt−1)(−BT

t−1)

5: Lt = 1.01µ‖Bt−1B
T
t−1‖2

6: At = ΦL−1
t

(At−1 − L−1
t Q)

7: Bt = (µAT
t At + αId)

−1(AT
t (Xt −Et−1 + 1

µYt−1))

8: Et =
µ

β + µ
(Xt −AtBt + µ−1Yt−1)

9: Yt = Yt−1 + µ(Xt −AtBt −Et)
10: d← nnzc(At)
11: Remove the zero columns ofAt andBT

t
12: until converged or t = tmax
Output: M = Xt

Algorithm 2 FGSR2/3 for LRMC (70) (q = 1) solved by PALM

Input: Me, Ω, d ≥ r, α, γ, 0.1 ≤ η ≤ 1, tmax, t = 0,A0,B0

1: repeat
2: t← t+ 1
3: Q =

(
C � (Me −At−1Bt−1)

)
(−BT

t−1)

4: Lt = 1.01η‖Bt−1B
T
t−1‖2

5: At = Φγ/Lt
(At−1 − L−1

t Q)

6: Lt = 1.01η‖AT
t At‖2

7: Bt = 1
αγ+Lt

(
AT
t (C � (Me −AtBt−1)) + LtBt−1

)
;

8: d← nnzc(At)
9: Remove the zero columns ofAt andBT

t
10: until converged or t = tmax
Output: M = AtBt

for some function f . At iteration t, we solve

minimize
A

f(A) +
∑
j

wj‖A:j‖22, (72)

where wj = (‖A(t−1)
:j ‖2 +ξ)q−2, ξ is a small number, andA(t−1) denotes theA obtained at iteration

t− 1.

In addition, when we use FGSR1/2, the optimizations are similar to those of (59) and (70).

7 Optimization for robust PCA

In this section, we first detail the ADMM with linearization for the following FGSR2/3 based RPCA
problem:

minimize
A,B,E

‖A‖2,1 +
α

2
‖B‖2F + λ‖E‖1,

subject toMe = AB +E.
(73)

Here λ is a regularization parameter and ‖ · ‖1 is the `1 norm of matrix enforcing sparsity. We
minimize the augmented Lagrange function alternately

L(E,A,B,Y ) := ‖A‖2,1 +
α

2
‖B‖2F + λ‖E‖1

+ 〈Me −AB −E,Y 〉+
µ

2
‖Me −AB −E‖2F ,

(74)
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The optimization of RPCA is similar to that of LRMC detailed in the previous section. One major
difference is the presence of E, which results in the following subproblem

minimize
E

λ‖E‖1 +
µ

2
‖Me −AB −E + µ−1Z‖2F . (75)

The solution of (75) is
E = Ψλ/µ(Me −AB + µ−1Z), (76)

where Ψτ (·) is the element-wise soft-thresholding operator [8] defined as

Ψτ (u) =
u

|u|
max(|u| − τ, 0). (77)

The optimization is shown in Algorithm 3.

Algorithm 3 FGSR2/3 for RPCA solved by ADMM

Input: Me, Ω, d ≥ r, α, λ, µ, tmax, t = 0, Y0 = 0, E0 = 0,A0,B0

1: repeat
2: t← t+ 1
3: Et = Ψλ/µ(Me −At−1Bt−1 + µ−1Yt−1)

4: Q = µ(Me −At−1Bt−1 −Et + µ−1Yt−1)(−BT
t−1)

5: Lt = 1.01µ‖Bt−1B
T
t−1‖2

6: At = ΦL−1
t

(At−1 − L−1
t Q)

7: Bt = (µAT
t At + αId)

−1(AT
t (Me −Et + 1

µYt−1))

8: Yt = Yt−1 + µ(Me −AtBt −Et)
9: d← nnzc(At)

10: Remove the zero columns ofAt andBT
t

11: until converged or t = tmax
Output: M = AtBt, E = Et

Consider the following model
Mef = M +E + F , (78)

where F denotes small Gaussian noises. We then have the following general problem

minimize
A,B,E

‖A‖q2,q +
α

2
‖B‖2F + λ‖E‖1 +

β

2
‖AB +E −Mef‖2F , (79)

where q ∈ {1, 1
2 ,

1
4 , · · · }. The optimization can be solved via PALM plus iteratively reweighted

minimization when q 6= 1, shown in (72). In addition, the optimization of FGSR1/2 based RPCA are
similar to those of (73) and (79). Empirically, we found that λ = (max(m,n))−0.5/p works well for
(73) and (79), where p is the p in the Schatten-p norm induced by FGSR.

8 On the convergence

The convergence of PALM for general nonconvex and nonsmooth problems have been analyzed
in [10, 11, 12]. The convergence of ADMM for general nonconvex and nonsmooth problems [6]
gains increasing attention in recent years. For example, Wang et al. [5] proved the convergence
of ADMM on a class of nonconvex problems with linear constraints. Gao et al. [7] proved the
convergence of nonconvex ADMM with multiaffine (nonlinear and nonconvex) constraints. However,
the convergence of ADMM for solving (59) with small ‖E‖2F and (73) is still an open problem
[13]. The high difficulty in convergence analysis arises from that the dual variable is associated with
a separable primary variable (e.g. E in (73)) that has a nonsmooth function or the dual variable
is associated with two nonlinearly coupled primary variables (e.g. A and B in (59)) even if their
functions are strongly convex and have Lipschitz-continuous gradients. Proving the convergence
of ADMM for these cases is out of the scope of our paper. In practice, even if without theoretical
convergence guarantee, ADMM for (59) and (73) often converge to a stationary point (or even global
minimum), provided that µ is not too small.
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9 More about the numerical results

All experiments are conducted on a computer with Inter-i7-3.4GHz Core and 16GB RAM. All results
we report are the average of ten repeated trials.

9.1 Matrix completion

Optimization, codes, and hyper-parameters For the nuclear norm minimization (solved by in-
exact augmented Lagrange multiplier method) [14], truncated nuclear norm minimization [17], and
Riemannian pursuit [18], we utilize the codes provided by the authors of the corresponding papers.
We implement the weighted nuclear norm minimization [19], Schatten-p norm minimization (solved
by iteratively reweighted minimization [9]), max norm minimization (solved by alternating projected
gradient method) [15], Bi-Nuclear norm minimization [16], and F2+nuclear norm minimization [20]
via MATLAB according to the algorithms described in the corresponding papers.

In noiseless matrix completion, we solve the minimization of F-nuclear norm, FGSR2/3 (α = 1), and
FGSR1/2 by ADMM with linearization. The Lagrange parameter µ in all related methods is selected
from {0.0001, 0.001, 0.01, 0.1, 1}.
In noisy matrix completion, the minimizations of F-nuclear norm, FGSR2/3 (α = 1), and FGSR1/2

by PALM. In all methods, the hyper-parameters (e.g. γ−1 in (70)) corresponding to the noise term
are carefully determined to provide the best performances. In all cases excluding those studying the
effect of rank initialization, we set d = 1.5r for F-nuclear norm, max norm, and FGSR.

Clean synthetic data We generate low-rank matrices via

M = LWRT , (80)

where the entries of L ∈ Rm×r andR ∈ Rn×r are randomly drawn from N (0, 1). W = diag([1 +
0.1(r−1), 1+0.1(r−2), · · · , 1.1, 1]), which simulates that real data matrices often have degenerated
singular values. In this paper, we set m = n = 500. The performance of matrix completion is
evaluated by

Relative recovery error :=
‖PΩ̄(M − M̂)‖F
‖PΩ̄(M)‖F

, (81)

where M̂ denotes the recovered matrix and Ω̄ denotes the locations of missing entries.

Figure 1 shows the recovery error of some methods in the cases of different rank and different missing
rate. Our FGSR2/3 and FGSR1/2 outperformed other methods when the rank or/and missing rate are
relatively high.
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Figure 1: Matrix completion on clean synthetic data: the relative recovery error in the cases of
different rank and different missing rate

Noisy synthetic data Suppose the observed entries of M are corrupted by Gaussian noise, i.e.
[Me]ij = Mij + eij , (i, j) ∈ Ω, where M is given by (80) and eij ∼ N (0, ε2). Then the signal
noise ratio is SNR = σ/σe, where σ denotes the standard deviation of the entries ofM .

Real data The MovieLens-1M dataset1 consists of 1 million ratings (1 ∼ 5) for 3900 movies by
6040 users. The movies rated by less than 5 users are deleted in this study because the corresponding

1https://grouplens.org/datasets/movielens/
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ratings may never be recovered when the matrix rank is higher than 5. Then the size of the processed
matrix is 3416× 6040. Since the original matrix is highly incomplete, we randomly sample 70% or
50% of the known ratings of each user and perform matrix completion. The performance is evaluated
by the normalized mean absolute error (NMAE) [21, 22] and normalized root-mean-squared-error
(RMSE) [22]. They are defined by

NMAE :=
1

(Mmax −Mmin)|Υ \ Ω|
∑

(i,j)∈Υ\Ω

|Mij − M̂ij |, (82)

and

RMSE :=

√√√√∑(i,j)∈Υ\Ω(Xij − X̂ij)
2∑

(i,j)∈Υ\ΩX
2
ij

, (83)

where Υ denotes the entries known originally and Ω denotes the entries we sampled from Υ.

9.2 RPCA

Synthetic data The corrupted matrix is Me = M + E, where M is generated by (80) and E
is a sparse matrix. The nonzero entries of E are drawn from N (0, ε2). Then the signal noise ratio
in terms of the corrupted entries is SNRc := σ/σe, where σ denotes the standard deviation of the
entries ofM . We call the fraction of nonzero entries of E noise density. The performance of RPCA
is evaluated by

Relative recovery error :=
‖M − M̂‖F
‖M‖F

, (84)

where M̂ denotes the recovered matrix.

Figure 2 shows the performance of nuclear norm, F-nuclear norm, FGSR2/3, and FGSR1/2 in the
cases of different noise density and different rank. FGSR2/3 and FGSR1/2 outperformed nuclear
norm and F-nuclear norm.
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Figure 2: RPCA on synthetic data: the relative recovery error in the case of different rank and noise
density (SNRc = 1).

Natural images The pixel matrices2 of many natural images are of low-rank approximately, which
enables us to use RPCA to remove sparse noises in the images. We consider two images of size
796× 834 and 768× 1024 respectively. We reconstructed each image via preserving the largest 50
singular values to form exactly low-rank matrices in the 3 color channels. Then we added salt-and-
pepper noise of density 40% to the two images and perform RPCA in each color channel individually.
The clean images, corrupted images, and recovery results are shown in Figure 3 and Figure 4. Both
numerically and visually, the performance of our FGSR2/3 is better than those of nuclear norm and
F-nuclear norm. The results of FGSR1/2 are nearly the sane as those of FGSR2/3 and are omitted in
this paper.

2If the pixel matrix of an image can not be well approximated by a low-rank matrix, we can extract small
patches of the image as vectors to form a matrix (approximately low-rank) and then perform RPCA.
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Clean image

ground truth

Corrupted image

40% salt&pepper noise

RPCA(nuclear norm)

relative recovery error=0.033

RPCA(F-nuclear norm)

relative recovery error=0.022

RPCA(FGSR-2/3)

relative recovery error=0.005

Figure 3: RPCA in image denoising (example 1)

Clean image

ground truth

Corrupted image

40% salt&pepper noise

RPCA(nuclear norm)

relative recovery error=0.04

RPCA(F-nuclear norm)

relative recovery error=0.034

RPCA(FGSR-2/3)

relative recovery error=0.007

Figure 4: RPCA in image denoising (example 2)
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