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A Additional Results

A.1 Reconstruction from Compressive Measurements

We include additional results for the case where the compressive measurements are corrupted
by additive white Gaussian noise. When training with full supervision, we generate the noisy
measurement on the fly resulting in many noisy compressed measurements for each image. But for
unsupervised training with our approach, we keep the noise values (along with the measurement
parameters) for each image fixed across all training epochs. We show results for Gaussian noise with
different standard deviations in Table 3 for the 10% compression ratio. Again, our unsupervised
training approach comes close to matching the accuracy of the fully supervised baseline. Figure 5
shows example reconstructions for this case.

Table 3: Performance (in PSNR dB) of our supervised baseline and proposed unsupervised method
for noisy compressive measurement reconstruction, on BSD68 and Set11 images for different noise
levels and compression ratio 10%.

Method BSD68 Set11
σε=0 σε=0.1 σε=0.2 σε=0.3 σε=0 σε=0.1 σε=0.2 σε=0.3

Supervised Baseline 25.57 24.60 23.49 22.57 26.74 25.24 23.67 22.30
Unsupervised Training 25.40 24.41 23.12 21.99 26.33 24.94 23.21 21.79

A.2 Blind Face Image Deblurring

We begin by using visualizations of the Fourier magnitude spectra of blur kernels in deblurring to
provide further intuition about the source of supervision in our method. In Fig. 6, we consider two
example kernels used to obtain measurements during training. We see that their magnitude spectra
have “zeros” (i.e., values that are equal or very close to 0)—which implies that their corresponding
linear measurement parameters θ are low-rank and thus non-invertible. But note that their zeros are
at different frequency components. We also see that pairs of measurements by these kernels are also
non-invertible because their average spectrum (i.e., the average of their individual magnitude spectra)
also has zeros—since even though the kernels individually have zeros at different frequencies, a pair
of kernels can still have some common frequencies where both have zero response. However, the
average magnitude spectrum of kernels across the entire training set is more homogeneous and has
no zeros—indicating that every frequency component is well observed by at least some reasonable
fraction of kernels in the training set. Consequently, the matrix Q =

∑
θT θ is full-rank, and the

swap-loss is able to provide complete supervision during training.

Next, we show additional face deblurring results from [3]’s test set in Fig. 7. Moreover, [3] also
provides a dataset of real blurred images that are aligned, cropped, and scaled. While there is
no ground-truth image data available for this set, we include example results from it in Fig. 8 for
qualitative evaluation. We again find that results from models trained using our unsupervised approach
are close in visual quality to those from our supervised baseline.

B Network Architectures and Details of Training

Both of our compressive measurement reconstruction and face deblurring networks are based on
U-Net [2], featuring encoder-decoder architectures with skip connections. We use convolutional
layers with stride larger than 1 for downsampling, and transpose convolutional layers for upsampling.
Except for the last layer of each network, all layers are followed by batch normalization and ReLU.
We use L2 distance as ρ(·) for all losses for compressive measurement reconstruction, and the L1

distance (again, for all losses) in blind face deblurring. All networks are trained with Adam [1]
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Figure 5: Example reconstructions from noisy compressive measurements, with supervised and
unsupervised models.
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Figure 6: Visualization of Fourier magnitude spectrum of individual kernels, pairs of kernels, and the
average over the entire training set. The Fourier magnitude spectrum of a blur kernel represents the
inner-product θT θ of the corresponding measurement parameter, with zeros or very low values in the
spectrum indicating that the measurement parameter induced by the kernel is low rank. Here, we see
that individual kernels, and even pairs of kernels, have zeros in their individual and average spectra
and are low-rank. But the average spectrum across the full training set (equivalent to Q) is full rank.

Table 4: Detailed architecture of the U-Net used for compressive measurement reconstruction. We
stack two such networks together, and the final image estimate is the sum of their outputs. All
“upconv” layers correspond to transpose convolution, ⊕ implies concatenation, and unless indicated
with “VALID”, all layers use “SAME” padding.

Input Output Kernel Size # input
channels

# output
channels Stride Output Size

θT y or
θT y⊕ U-Net-1 out conv1 2 1 or 2 32 1 32 (VALID)

conv1 conv2 4 32 64 2 16
conv2 conv3 4 64 128 2 8
conv3 conv4 4 128 256 2 4
conv4 conv5 4 256 256 2 2
conv5 conv6 4 256 256 2 1

conv6 upconv1 4 256 256 1/2 2
conv5 ⊕ upconv1 upconv2 4 512 256 1/2 4
conv4 ⊕ upconv2 upconv3 4 512 128 1/2 8
conv3 ⊕ upconv3 upconv4 4 256 64 1/2 16
conv2 ⊕ upconv4 upconv5 4 128 32 1/2 32
conv1 ⊕ upconv5 upconv6 2 64 32 1 33 (VALID)

upconv6 end1 3 32 32 1 33
end1 end2 1 32 1 1 33

optimizer and a learning rate of 10−3. We drop the learning rate twice by
√
10 when the loss on the

validation set flattens out. Training takes about one to two days on a 1080 Ti GPU.

Compressive Reconstruction. Our compressive measurement reconstruction network is a stack of
two U-Nets, with the detailed configuration of each U-Net shown in Table 4. Given a compressed
vector y for a single patch and the sensing matrix θ, we first compute θT y and reshape it to the
original size of the patch (i.e., 33× 33) and input this to the first U-Net. The second U-Net then takes
as input the concatenation of θT y and the output from the first U-Net. Finally, we add the outputs of
these two U-Nets to derive the final estimate of the image.

Our approach to deriving measurement pairs during training is visualized in Fig. 9.

Face deblurring. Our face deblurring network is also a U-Net that maps the blurred observation to
a sharp image estimate of the same size. For blind training, we have an auxiliary decoder path to
produce the kernel estimate (i.e., to act as g(·)). The kernel decoder path has the same number of
transpose convolution layers, but only the first few upsample by two and have skip connections, since
the kernel is smaller. The remaining transpose convolution layers have stride 1, but increase spatial
size (as they represent transpose of a ’VALID’ convolution). The final output of the kernel decoder
path is passed through a “softmax” that is normalized across spatial locations. This yields a kernel
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Ground truth Blurred input Shen et al. [3] Supervised (Ours) Non-blind (Ours) Blind (Ours)

PSNR: 25.28 dB 27.01 dB 26.35 dB 26.21 dB

PSNR: 22.06 dB 23.76 dB 23.77 dB 23.96 dB

PSNR: 24.34 dB 26.38 dB 26.06 dB 25.88 dB

PSNR: 24.84 dB 26.20 dB 27.05 dB 26.77 dB

PSNR: 25.87 dB 27.14 dB 26.87 dB 26.67 dB

PSNR: 29.04 dB 30.10 dB 29.61 dB 29.05 dB

PSNR: 27.59 dB 29.82 dB 30.62 dB 30.66 dB

Figure 7: Additional face deblurring results from the test set from [3].
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Blurred input Shen et al. [3] Supervised (Ours) Non-blind (Ours) Blind (Ours)

Figure 8: Face deblurring results on real blurry face images as provided by [3].

Figure 9: Forming pairs of compressive mesaurements with shifted partitions. We form our measure-
ments by dividing the image into two shifted sets of overlapping patches, where the shifts for are
sampled randomly for each training image, but kept fixed through all epochs of training. All patches,
in both partitions, are measured with a common measurement matrix. This provides the required
diversity of our method since each pixel in the image (except those near boundaries) are measured
twice, differently within two different overlapping patches.

with elements that sum to 1 (which matches the constraint that the blur kernel doesn’t change the
average intensity, or DC value, of the image). The detailed architecture is presented in Table 5.
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Table 5: Architecture of the U-Net used for blind face deblurring. The second decoder path that
produces a kernel estimate (koutput) is only used for blind training.

Input Output Kernel Size # input
channels

# output
channels Stride Output Size

RGB conv1 4 3 64 2 64
conv1 conv2 4 64 128 2 32
conv2 conv3 4 128 256 2 16
conv3 conv4 4 256 512 2 8
conv4 conv5 4 512 512 2 4
conv5 conv6 4 512 512 2 2
conv6 conv7 4 512 512 2 1

conv7 upconv1 4 512 512 1/2 2
conv6 ⊕ upconv1 upconv2 4 1024 512 1/2 4
conv5 ⊕ upconv2 upconv3 4 1024 512 1/2 8
conv4 ⊕ upconv3 upconv4 4 1024 256 1/2 16
conv3 ⊕ upconv4 upconv5 4 512 128 1/2 32
conv2 ⊕ upconv5 upconv6 4 256 64 1/2 64
conv1 ⊕ upconv6 output 4 128 3 1/2 128

conv7 kupconv1 4 512 512 1/2 2
conv6 ⊕ kupconv1 kupconv2 4 1024 512 1/2 4
conv5 ⊕ kupconv2 kupconv3 4 1024 512 1/2 8
conv4 ⊕ kupconv3 kupconv4 4 1024 256 1/2 16
conv3 ⊕ kupconv4 kupconv5 4 512 128 1 19 (VALID)

kupconv5 kupconv6 4 128 64 1 22(VALID)
kupconv6 kupconv7 4 128 64 1 25(VALID)
kupconv7 koutput 3 128 64 1 27(VALID)
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