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We thank the reviewers for their thorough reading of our work.

We thanks Rev 1 for pointing out the results of the preprint [3]]. Indeed [3] study a class of two sample test statistics
based on inter-point distances and they show benefits of using the /1 norm over the Euclidean distance and the Maximum
Mean Discrepancy (MMD) when the dimensionality goes to infinity. For this class of test statistics, they characterize
asymptotic power loss w.r.t the dimension and show that the ¢; norm is beneficial compared to the ¢ norm and the
MMD provided that the summation of discrepancies between marginal univariate distributions is large enough. These
results echo our message that /;-based tests outperform their /5 counterparts and we will mention them in the final
version. Our work is complementary and differs on several aspects. The population version of the /;-based statistic
(EDY) proposed in [3] does not fully characterize the difference between two distributions P, () since ED! (P,Q)=0
does not necessarily imply P = @ while the population version of our /;-based tests are metric on the space of Borel
probability measures which metrize the weak convergence. Our experiment varying the dimensionality of the problem is
the part of our work that is closest to [3], and confirms their general message, with a different test procedure. However,
the test statistics introduced in [3]] have a quadratic cost in the sample size and the tests realized are permutation based
tests, which can be very expensive when the sample size increases while our tests are linear in the sample size. With
regards to the link to [1]], our work adapts the idea of deriving (Monte Carlo) approximation to our ¢; metric, while [1]
had studied a related approximation in the Euclidean case. It also establishes many more results on the ¢;-based metric,
including the IPM formulation, the weak convergence properties, and the lower bound on the test power. Moreover we
show both theoretically and empirically the benefits of using the ¢; norm compared to the Euclidean geometry.

Following the suggestion of the Rev 2, we will explain the exact parameter settings, which is the same as in [2], that we
used for the initialization of the test locations, the Gaussian width and the value used for regularization parameter vy,  n,
to compute the optimized tests L1-opt-ME and L1-opt-SCF. The statistics presented in our paper capture differences
between distribution representatives in a RKHS at J locations. When using analytic kernels, these differences between
representatives become dense. Therefore when the sample size is large enough, these dense differences are large enough
to allow the £1-norm to reject better the null hypothesis with high probability. The most important weakness of our
study is probably the optimization of the cost functions. The lower bound that we optimize is non-convex, as in the {5
prior art [2l]. However, the use of the /;-norm makes optimization even harder, as it is no longer a smooth. Further work
should consider dedicated optimization algorithms. We will try to add a mention of this weakness in the manuscript. In
Table 1| we run the different optimized tests on the Blobs problem when the test sample size is n*¢ = 1e6.

Table 1: Higgs dataset: Table of the | L1-opt-ME  ME-full L1-opt-SCF SCF-full

running times of the optimized tests - :
when nt¢ — 1e6 and J — 2. Running Time (s) |  164.23 157.97 599.77 579.42

To answer Rev 3, in practice, the distribution I' that we use to sample the {T} } _, to compute the grid version of our
statistics, L1-grid-ME and L1-grid-SCF, is a multivariate normal dlstrlbutlon (see line 197). More specifically, for
both tests, we sample the test locations with realizations from two multivariate normal distributions fitted to samples
from P and Q; this ensures that the locations are well supported by the data. By denoting ¢ = N; + N3, for both tests
the testing cost is O(J3 + Jt + d.Jt) and the optimization costs is O(J3 + d.Jt) per gradient ascent (see line 214 - 215).
In the second panel of Figures 1 and 2, the ME lines are drawn but their reach the minimum Type-II error of 0.0 when
the dimension is between 5 and 1500 or the sample test size is between 500 and 5500. Indeed the GMD problem is
an easy problem for this test. Therefore we decide to plot in the supp. mat. an harder version of this problem where
the difference between means is smaller (see Figure 4). In Table 2, the McDo vs McDo problem corresponds to the
Type-1 errors and the other problems represent Type-II errors. We will follow the suggestion proposed by Rev 3 and
create two separate tables for the Type-I errors and Type-II error respectively. We will also add the pdf of the Nakagami
distribution in the main text. To show experimentally the results of the Proposition 3.1 and 3.4, we need to compute the
quantiles of the asymptotic null distributions of the different unnormalized tests that we have presented which require a
computationally-costly bootstrap or permutation procedure. As we do not have computational ressources available
before the end of the author response period to run a full experiment, we prefer to provide such results later but they
will be added in the final manuscript. We will also try to release the code as early as possible.
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