
Appendix: Variational Mixture-of-Experts Autoencoders
for Multi-Modal Deep Generative Models

A Tighter lower bound

With the MOE joint posterior, an alternative way of extending the LIWAE in (2) to M -modalities
is by employing stratified sampling (Robert and Casella, 2013)—to take K samples from the joint
posterior, we first sample a modality m, then take L = K/M samples from the corresponding
marginal variational posterior qφm(z | xm), and repeat the process M times. Formally,
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Applying Jensen’s inequality, we see that (5) is a tighter lower bound than (3); that is, LMOE
IWAE(x1:M ) ≤

LMOE
IWAE(x1:M ) ≤ log pΘ(x1:M ); however, it can adversely affect the ability to perform cross-modal

generation. To see this, consider the form of the gradient estimator of this objective with respect to
the variational posterior parameters Φ (Burda et al., 2015; Cremer et al., 2017),

∇ΦLMOE
IWAE(x1:M ) = Eε1:K ∼ p(ε)

[∑
k

w̄k∇Φ logwk

]
, (6)

where K = ML, zk = g(εk,Φ) (reparameterised), wk =
pΘ(zk,x1:M)
qΦ(zk|x1:M )

, and w̄k = wk∑K
j=1 w

j , indicat-

ing that the gradient weights samples by their relative importance w̄k. Two different samples zk1 ,
and zk2 coming from different modalities (encoders) can have their gradients weighed differently
from one another, leading to situations where the joint variational posterior collapses to one of the
experts in the mixture. Figure 8 shows empirical evidence of this happening, comparing performance
under Equations (3) and (5) for the same data.
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Figure 8: Comparing performance for MNIST-SVHN between the LMOE
IWAE(x1:M ) and LMOE

IWAE(x1:M ) objectives.

Compared to the original objective (LHS), the cross generation of L̂MOE
IWAE(x1:M ) struggles to match

digits between the modalities, especially in the SVHN→MNIST case. Coherence for joint generation
is also worse, with no recognisable matching-up of digits between the two modalities. Similar to
Table 2, we evaluate the coherence of cross and joint generation by computing the accuracy of digit
predictions between the two modalities in Table 5. Note the drop in performance for the LMOE

IWAE(x1:M )
objective reflecting the qualitative results.

Objective Joint Cross (M →S) Cross (S →M)

LMOE
IWAE(x1:M ) 42.1 86.4 69.1

LMOE
IWAE(x1:M ) 24.2 74.6 15.6

Table 5: Probability of digit matching (%) for joint and cross generation.
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B Multi-Modal Importance-Sampled ELBO

Consider the ELBO, with the basic MOE variational posterior,
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The term corresponding to a particular modality i is given as
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where q̄ does not propagate gradients (effectively issuing a stop_gradient), since all the likelihoods
in the second term only have gradients with respect to φi, θj , j 6= i . Each term Aj can be seen
as an importance-sampled estimate of Ezi∼qφi (z|xi)

[
log pθj (xj | zi)

]
using that modality j’s own

encoding distribution qφj (zj | xj). This has two major benefits:

i) it allows the total objective to be computed with just a single pass over each encoder and decoder
to make computation linear in M . To see this is true, note that one can effectively precompute
the likelihoods of modality j using samples from its own encoder, and simply weigh them by the
appropriate ratio of variational posteriors where necessary.

ii) estimating the likelihood of modality j using samples from modality i, where i 6= j, is a difficult
ask—since observation xi only carries partial information applicable for the reconstruction
of xj . This multi-modal importance sampling sidesteps the issue by using samples from same
modality j, with appropriate weighting. We would expect this to generally thus produce a
lower-variance estimator, as it avoids potentially evaluating log pθj (xj | zi) for values zi which
yield very low likelihoods on xj . Moreover, since the denominators of the importance ratios
cannot propagate gradients, the only way to improve the estimate is by maximising the density of
samples from modality j in the variational posterior for i as qφi(zj | xi), bringing the different
components closer to each other.

C The DReG Estimator

The standard gradient estimator of IWAE can have undesirably high variance (Rainforth et al., 2018;
Roeder et al., 2017). To see this, we can expand (6) as:
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Roeder et al. (2017) find that when K > 1, the first term within paranthesis in (7) need not be zero
even when the approximate posterior matches true posterior everywhere, which can contribute to
significant variance in the gradient estimator. To alleviate this, Tucker et al. (2019) re-apply the
reparametrisation trick on it, yielding a doubly reparametrised gradient estimator (DReG):

∇ΦEz1:K

[
log

(
1

K

K∑
k=1

wk

)]
= Eε1:K

 K∑
k=1

(
wk∑K
j=1 w

j

)2
∂ logwk

∂zk
dzk)

dΦ

 (8)

We implement the estimator specified in (8) when performing gradient updates for any experiment
involving the IWAE objective.
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D Higher entropy of IWAE variational posteriors

To see why the variational posteriors estimated by IWAE tend to have higher entropy than those by
ELBO, it is beneficial to consider the objectives from a different perspective.

First, let’s take a look at ELBO: maximising the standard ELBO indirectly minimises the KL
between the variational and true posteriors, since

log pΘ(x1:M ) = LELBO(x1:M ) + KL(qΦ(z | x1:M ) ‖ pΘ(z | x1:M )).

Maximising the IWAE objective however, indirectly minimises the KL between implicit posteri-
ors (Le et al., 2018) as

log pΘ(x1:M ) = LIWAE(x1:M ) + KL(qΦIS (z | x1:M ) ‖ pΘIS (z | x1:M )),

where
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leading to higher-entropy estimates of the variational posterior.

This suits the learning of multi-modal data as each modality’s posterior attempts to explain more than
just its own modality.

E Qualitative results of MVAE implementation with MOE posterior
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Figure 9: A comparison of POE vs. MOE in the MVAE codebae.

Here we show a qualitative evaluation in the MVAE codebase, minimally altered to use a MOE
joint approximate posterior, with the results of the original POE-MVAE model as a comparison. We
can see that MOE is able to generate recognisable MNIST digits from SVHN inputs (bottom row,
column 3), while the original model fails completely at cross-modal generation. Although, do note
that neither model performs well at coherence joint generation (top row).
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F Encoder and decoder architectures
Encoder Decoder

Input ∈ R1x28x28 Input ∈ RL
FC. 400 ReLU FC. 400 ReLU
FC. L, FC. L FC. 1 x 28 x 28 Sigmoid

(a) MNIST dataset.

Encoder

Input ∈ R1x28x28

4x4 conv. 32 stride 2 pad 1 & ReLU
4x4 conv. 64 stride 2 pad 1 & ReLU
4x4 conv. 128 stride 2 pad 1 & ReLU
4x4 conv. L stride 1 pad 0, 4x4 conv. L stride 1 pad 0

Decoder

Input ∈ RL
4x4 upconv. 128 stride 1 pad 0 & ReLU
4x4 upconv. 64 stride 2 pad 1 & ReLU
4x4 upconv. 32 stride 2 pad 1 & ReLU
4x4 upconv. 3 stride 2 pad 1 & Sigmoid

(b) SVHN dataset.

Encoder Decoder

Input ∈ R2048 Input ∈ RL
FC. 1024 ELU FC. 256 ELU
FC. 512 ELU FC. 512 ELU
FC. 256 ELU FC. 1024 ELU
FC. L, FC. L FC. 2048

(c) CUB image dataset.

Encoder

Input ∈ R1590

Word Emb. 256
4x4 conv. 32 stride 2 pad 1 & BatchNorm2d & ReLU
4x4 conv. 64 stride 2 pad 1 & BatchNorm2d & ReLU
4x4 conv. 128 stride 2 pad 1 & BatchNorm2d & ReLU
1x4 conv. 256 stride 1x2 pad 0x1 & BatchNorm2d & ReLU
1x4 conv. 512 stride 1x2 pad 0x1 & BatchNorm2d & ReLU
4x4 conv. L stride 1 pad 0, 4x4 conv. L stride 1 pad 0

Decoder

Input ∈ RL
4x4 upconv. 512 stride 1 pad 0 & ReLU
1x4 upconv. 256 stride 1x2 pad 0x1 & BatchNorm2d & ReLU
1x4 upconv. 128 stride 1x2 pad 0x1 & BatchNorm2d & ReLU
4x4 upconv. 64 stride 2 pad 1 & BatchNorm2d & ReLU
4x4 upconv. 32 stride 2 pad 1 & BatchNorm2d & ReLU
4x4 upconv. 1 stride 2 pad 1 & ReLU
Word Emb.T 1590

(d) CUB-Language dataset.

Table 6: Encoder and decoder architectures.
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G Qualitative results of MMVAE on CUB

In this section, we show some more qualitative results of our MMVAE model on CUB Image-Caption
dataset.

Figure 10: Image reconstruction of MMVAE on CUB Image-Caption dataset. Top row: ground truth, bottom
row: reconstruction.

Figure 11: Caption reconstruction of MMVAE on CUB Image-Caption dataset.

(a) Image → Caption (b) Caption → Image (c) Joint Generation

Figure 12: Cross generation (a, b) and joint generation from prior samples (c) of MMVAE on CUB Image-Caption
dataset.
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H Qualitative results of Wu and Goodman (2018)’s MVAE on CUB

The qualitative results of MVAE on CUB Image-Caption dataset are as shown in Figure 13 and
Figure 14. Note that similar to the MMVAE experiments, for the generation in the vision modality,
we reconstruct the image features extracted from ResNet101 and perform nearest neighbour search to
find the corresponding images.

Figure 13: Qualitative results of MVAE on CUB Image-Caption dataset, including reconstruction (vision →
vision, language → language), cross generation (vision → language, language → vision) and joint generation
from prior samples.

Figure 14: Qualitative results of MVAE on CUB Image-Caption dataset. Here both modalities are given to
reconstruct the inputs.

We can see from the results in Figure 13 that the vision modality dominates, with almost perfect image
feature reconstruction; however, the performance in all other tasks are quite poor, especially when
language is given as input: the language reconstruction fails to recover some of the key characteristics
of the original description, replacing “small sized” with “medium sized”, “blue bird” with “white
bird” etc.; the language-vision cross generation suffers from mode collapse, generating exclusively
the 2 images under the language→ vision column in Figure 13 for any given caption.
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The language generation both in reconstruction (language→ language) and cross-modal generation
(vision→ language) fails to capture the key characteristics the original caption; neither are joint
generation of image-caption pairs coherent,. No significant improvement in reconstruction quality
can be observed when both modalities are given as input, as seen in Figure 14, with the language
generation omitting/“making up” important characteristics of the bird images. Performing CCA
analysis on these image-caption pairs gives a negative correlation of -0.00523 (averaged over the test
set), suggesting low coherence of the generated multi-modal data.
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