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Abstract

The knockoff filter introduced by Barber and Candès 2016 is an elegant framework1

for controlling the false discovery rate in variable selection. Yet, there is no2

conclusive result on the power (type II error rate) analysis, or how to choose the3

knockoff generation method, even in the Gaussian setting. When the predictors4

are i.i.d. Gaussian, it is known that as the signal to noise ratio tend to infinity, the5

power of the knockoff filter tends to 1 under any fixed FDR budget. However, when6

the predictors have a general covariance structure Σ, it is not obvious that one can7

define an analogous notion of the signal to noise ratio. We introduce the notion8

of effective signal deficiency (ESD) as any functional of Σ, such that the power9

tend to 1 if and only if this functional tends to 0 (under given noise level, sparsity10

ratio, and sampling rate). We then study the ESD for Lasso and the knockoff11

filter with different knockoff constructions, assuming the correctness of the replica12

method prediction for Lasso. As a baseline for comparison, we show that using13

Lasso with an oracle for choosing the threshold that gives the correct FDR, the14

ESD tends to 0 if and only if the empirical distribution of the diagonals of the15

precision matrix P := Σ−1 convergences to 0 in distribution. In other words, the16

ESD can be taken as ‖(Pjj)pj=1‖LP := inf
{
ε > 0: 1

p |{Pjj ≥ ε}| ≤ ε
}

. For the17

knockoff filter, if P is the 2p× 2p precision matrix for the predictors and knockoff18

variables, we show that the ESD is ‖(P jj)
2p
j=1‖LP . We then find more explicit19

formulae for various specific knockoff constructions. We introduce the conditional20

independence knockoff, which always exists for Gaussian tree graphical models (or21

when the graph is sufficiently sparse), and show that its ESD is ‖(ΣjjP 2
jj)

p
j=1‖LP .22

In contrast, for the equi-knockoffs in the literature, the ESD can achieve λmax(P),23

which is prohibitive when a small set of predictors are highly correlated.24

1 Introduction25

Modern large-scale data analysis often concerns the problem of finding a small set of highly informa-26

tive predictors, among a larger set often of size comparable or larger than the number of observations.27

Examples include selecting a few genes related to a certain disease, or discovering a number of28

demographic attributes linked to the crime rates in a community. False-discovery rate (FDR) control,29

popularized by Benjamini and Hochberge’s [BH95], has become a now-standard criterion for the30

type I errors in such large-scale hypothesis testing problems. Under orthogonal designs and assuming31

that the p-values under the null hypothesis are known, the Benjamini-Hochberge method is guaran-32

teed to bound the FDR below any desired threshold ([BH95][STS04]). Recently, the knockoff filter33

[BC15][CFJL18] has emerged as a competitive approach for FDR control, which extends to setting34

beyond orthogonal designs and known p-values under null, and has demonstrated great empirical35

success [KS][SKB+].36
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The knockoff filter is build on the Lasso estimator. While it is possible to perform variable selection37

by a simple threshold test for the Lasso coefficients, it may not be feasible to determine such a38

threshold that gives rise to the desired FDR. The idea of the knockoff filter is to generate knockoff39

(fake) variables that has the same distribution as the true ones, but conditionally independent of the40

observations, and then regress the observations on both the true variables and the knockoff variables.41

Roughly speaking, one can then determine a threshold with the desired FDR guarantee, by leveraging42

on the Lasso coefficients for the knockoff variables, knowing that they are nulls.43

It is known that any construction of the knockoffs that satisfies a certain exchangeability condition is44

guaranteed to control the FDR [BC15, Theorem 1]. Such a construction is not unique, and we would45

like to choose one with a high power (type II error rate). Heuristically, we would like the knockoffs46

to be as uncorrelated with the true predictors as possible, while the exchangeability condition is47

satisfied. Various algorithms for generating the knockoffs have been proposed in different settings,48

which typically involves solving an optimization that minimizes a heuristically chosen correlation49

measure [BC15][CFJL18][RSC]. Knockoff constructions with analytic expressions are rare (with50

the exception of the equi-knockoff [BC15] and metropolized knockoff sampling [BCJW19]). Partly51

due to this, analytical studies of the power of the knockoff filter has been very limited, even in the52

Gaussian setting. In the special case where the predictors are independent, one can generate the53

knockoffs simply independent of the true predictors, in which case [WBC17] has shown that the54

power tends to 1 as as the signal to noise ratio tends to infinity (under a fixed sampling rate), by55

leveraging results on the Lasso statistics [BM12][SBC17]. For the case of correlated predictors,56

[FDLL19] proved a lower bound on the power, where the limiting (sample size n→∞) power is57

bounded below in terms of the number of predictors p and extremal eigenvalues of the covariance58

matrix of the true and knockoff variables. The assumption of bounded eigenvalues may not appear59

to capture the crux of the matter in certain scenarios. For example, if all predictors are independent60

except that two of them are always equal, then the minimum eigenvalue of the covariance matrix is61

zero, yet the FDR and the power is almost unchanged as we experimentally observed for the knockoff62

filter.63

In this paper, we again consider the knockoff filter in the Gaussian case, but ask the following question:64

for a fixed sampling rate n/p and given a sequence of predictor covariance matrices (Σ(p))∞p=1, is65

power of the knockoff filter tending to 1 under any fixed FDR budget? Using the results on the Lasso66

statistics in [JM14], we find that the answer essentially depends on whether the empirical distribution67

of the diagonals of P := Σ−1 converges to 0, where Σ denotes the covariance matrix of the true and68

knockoff variables. Note that Σ−1 depends on the method of generating knockoffs, and hence this69

observation can be useful in the comparison of various knockoff constructions; an explicit evaluation70

function will be provided in (13), which we call effective signal deficiency.71

A second contribution is to propose a new rule of generating the knockoffs, called conditionally72

independent knockoffs (CIK), which possesses both simple analytic expressions and excellent ex-73

perimental performance. CIK does not exist for all Σ, but we show its existence for tree graphical74

models or other sufficiently sparse graphs. Note that in practice, the so-called model-X knockoff filter75

requires the knowledge of Σ, an estimation of which is often prohibitive except when the graph has76

sparse or tree structures. CIK has simple explicit expressions of the effective signal deficiency for tree77

models, since the empirical distribution of the diagonals of Σ−1 is the same as that of (P 2
jjΣjj)

p
j=1.78

We remark that CIK is different than metropolized knockoff sampling studied in [BCJW19] (originally79

appeared in [CFJL18, Section 3.4.1]), even in the case of Gaussian Markov chains. The latter exists80

for generic distributions and is computationally efficient for Markov chains.81

2 Preliminaries on the knockoff filter82

Notation: [n] := {1, . . . , n}. We use boldface such as X := (Xij)i∈[n],j∈[p] and Y := (Yi)i∈[n] =83

Y n to denote matrix and vectors. ‖θ‖0 and ‖θ‖1 denote the standard `0 and `1 norms of vectors.84

diag(s) is a diagonal matrix when s is a vector, and diag(P) denotes the vector of diagonal entries85

when P is a matrix. In discussions of knockoffs, we use the underline to indicate instances in the86

extended cases with knockoff variables, e.g., θ denotes a 2p-vector when θ is a p-vector. Q(r), r ∈ R87

denotes the Gaussian tail probability. A � B means that the matrix B−A is positive semidefinite.88

Suppose that the true observation model is Y =
∑p
j=1 θ0,jXj +N , where θ0 ∈ Rp are the unknown89

parameters, Xp := (Xj)
p
j=1 are the (observable) predictors, and N is the noise. We adopt the model-90
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X framework [CFJL18], where Xp are assumed to be random variables with known distribution. This91

is a “semi-supervised learning” setting where a large number of unlabelled samples are available for92

estimating the distribution of Xp. Knowing a sample size n number of observations and predictor93

values, the knockoff filter aims to determine the set of active predictor, {j : θ0,j 6= 0}, while94

controlling the false discovery rate (FDR)95

FDR := E

[
|H0 ∩ Ĥ1|
|Ĥ1|

]
(1)

below a given threshold. Here, H0 := {j : θ0,j = 0} and Ĥ1 denotes the set of selected predictors.96

The method is to generate knockoff variables X̃1, . . . , X̃p, with the property that97

(Xp, X̃p)swap(S) = (Xp, X̃p) (2)

in distribution, for any set S ∈ {1, . . . , p}. The swap operation means switching the true and98

knockoff coordinates with indices in S; for example, if p = 2 and S = {1}, then (X2, X̃2)swap(S) =99

(X̃1, X2, X1, X̃2).100

Recall that we use the underline to indicate instances in the extended cases with knockoff variables.101

For example, θ is a 2p-vector, Σ is a 2p× 2p matrix. The the knockoff filter performs the following:102

regress Y on [Xp, X̃p], let θ̂1, . . . θ̂2p be the Lasso coefficients, and put103

Wj := |θ̂j | − |θ̂j+p|, (3)

j = 1, . . . , p. Choose the data dependent threshold T > 0 by the following rule104

T := min

{
t ∈ W :

|{j : Wj ≤ −t}|
|{j : Wj ≥ t}| ∨ 1

≤ q
}

(4)

where W := {|Wj | : j = 1, . . . , p} \ {0}, and q equals the given FDR budget. Then select j for105

which Wj > T as the active predictors. It is shown in [BC15, Theorem 1] that this procedure bounds1106

FDR below q. More generally, the FDR is controlled below q as long as (Wj)
p
j=1 depends on (X,Y)107

only through (X>X,X>Y), and satisfies the antisymmetry property [BC15, Section 2.2].108

For Gaussian Xp, note that the exchangeability condition implies that the covariance of (Xp, X̃p)109

has the form110

Σ =

[
Σ Σ− diag(s)

Σ− diag(s) Σ

]
. (5)

As observed in [BC15], positive semi-definiteness of this matrix is equivalent to111

diag(s) � 0, (6)
2Σ− diag(s) � 0. (7)

Previous methods for generating the knockoffs (computing s) include the following [CFJL18]:112

• The equi-knockoffs construction chooses s1, . . . , sp all equal. Note that the maximum of113

such value compatible with (7) is 2λmin(Σ). [CFJL18] assumed the normalization Σjj = 1,114

j = 1, . . . , p, and recommended choosing115

sj = 2λmin(Σ) ∧ 1, (8)

with the goal of minimizing the correlation between Xj and X̃j .116

• The semidefinite program (SDP) construction solves the following117

minimize

p∑
j=1

|Σjj − sj | (9)

s.t. 0 ≤ sj ≤ Σjj , diag(s) � 2Σ. (10)
1While [BC15] discusses fixed knockoff whereas the present paper mainly concerns the model-X knockoff,

the proof in [BC15] still works in the model-X case (see the explanation in [CFJL18]).
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• The approximate semidefinite program (ASDP) construction first solves (9) and (10) with118

Σ replaced by a certain block diagonal matrix, returning a vector ŝ. Then the final result is119

chosen as s = γŝ, where γ is the maximum scalar that fulfils (7).120

We do not discuss other knockoff constructions, such as the exact construction [CFJL18, Section 3.4.1]121

and deep knockoff [RSC], are mostly targeting at general non-Gaussian distributions.122

Define123

POWER := E

[
|Ĥ1 ∩H1|
|H1|

]
(11)

where H1 := {j : θ0,j 6= 0}. Previously, [JM14] performed power analysis for i.i.d. design in the124

linear (fixed n/p) regime. [FDLL19] performed power analysis for a general Σ, and showed a125

consistency result as n→∞.126

3 Summary of the main results127

The present paper is interested in the linear (fixed n/p) regime and general Σ. At first glance, it is128

not even obvious that any meaningful result can be said for a general sequence (Σ(p))∞p=1. A starting129

point is the observation that, under mild conditions, the empirical distribution of the errors in the130

regression coefficients divided by (Σ−1)
1/2
jj is asymptotically normal. This has been hinted or has131

explicitly appeared in various literature on regression problems, e.g. [JM14][EKBB+13, Lemma 1].132

More formally, we consider the asymptotic setting where the sequence of instances {(θ(p)0 ,Σ(p))}p≥1133

has a standard distributional limit in the sense of [JM14, Definition 4.1] (reproduced in Definition 3).134

This assumption implies that the empirical distribution of {(θ0,j , P jj)}
p
j=1 converges weakly to135

some probability measure on R2, and it is believed to be not much stronger than that, although a136

more precise characterization of such sequences remains an outstanding question [JM14]. Assuming137

the correctness of the replica method calculations, [JM14, Replica Method Claim 4.6] provided138

mild conditions under which the standard distributional limit exists. In particular, as observed by139

[JM14], those conditions are satisfied for block diagonal covariance matrices in which the empirical140

distribution of the block converges. In other words, in a “direct sum” version of the problem where141

we have a fixed Σ but have k independent copies of those predictors, and let n also grow linearly142

in k, the assumption for the replica method claim in [JM14, Replica Method Claim 4.6] is always143

satisfied. We remark that in the regime of vanishing ‖θ0‖0/p, there are also rigorous (without144

appealing to the replica method) results showing that the weak convergence of the distribution of145

{(θ0,j , P jj)}
p
j=1is essentially sufficient for the existence of a standard distributional limit ([JM14,146

Theorem 4.5]), although the present paper does not concern that regime. We introduce:147

Definition 1 (Effective signal deficiency). Given any sampling rate2 δ := n/p > 1, noise level148

Ni ∼ N (0, nσ2) (under the model Yi =
∑p
j=1 θ0,jXij +Ni, i = 1, . . . , n), and a variable selection149

algorithm, define the effective signal deficiency (ESD) as any function of a sequence (θ
(p)
0 ,Σ(p))p≥1150

with a standard distributional limit, such that the following property holds: for any ε > 0, there exists151

ε′ > 0 such that ESD < ε′ ensures that lim supp→∞max{FDR(p), 1− POWER(p)} < ε.152

We are often interested in settings where θ0 has given sparsity level and bounds on the amplitude of153

the nonzero coefficients, so effectively ESD is a function of the sequence (Σ(p))p≥1. Also note that154

by definition, ESD is not unique, and our goal is to find simple representations of the equivalent class.155

ESD is a potentially useful concept in comparing or evaluating different ways of generating knockoff156

matrices. As an analogy, think of the various notions of convergences of probability measures.157

A sequence of probability measures may converge in one topology but not in another. Similarly,158

one may cook up different functionals of the covariance matrix, such as limp→∞ pTr−1(Σ) and159

limp→∞ pTr(Σ−1), which both intuitively characterize some sort of signal deficiency since they160

tend to be small when the signal gets stronger. However, they are not equivalent, and the second161

convergence to 0 is stronger in the sense that the first must vanish when the second vanishes. ESD is162

2We assume δ > 1 for convenience so that the parameter τ in the replica analysis can be bounded indepen-
dently of Σ. However the result in [JM14, Definition 4.1] applies to any δ > 0.

4



intended to be the correct notion of “convergence” that characterizes FDR tending to 0 and power163

tending to 1.164

Of course, by definition it is not obvious that a succinct expression of such an effective signal165

deficiency exists. Remarkably, we find that the effective signal deficiency can be characterized by166

the convergence of certain empirical distribution derived from Σ. The effective signal deficiency for167

various (old and new) algorithms as follows:168

• Not using knockoffs: one may use Lasso to regress Y on X, and obtain θ̂:169

θ̂ = argminθ∈Rp

{
1

2n
‖Y −Xθ‖2 + λ‖θ‖1

}
(12)

The parameter λ can be chosen as any fixed positive number independent of p. Instead of170

a direct threshold test on θ̂, we compute an “unbiased version” θ̂u (defined in (15)) as in171

[JM14] for simplicity of the analysis, and pass a threshold to select non-nulls. Suppose that172

there is an oracle telling how to pick the threshold to make FDR at the desired level. We173

show that ESD for this oracle algorithm is the limit p→∞ of174

‖(Pjj)pj=1‖LP := inf

{
ε > 0:

1

p
|{Pjj ≥ ε}| ≤ ε

}
. (13)

The assumption of the standard distributional limit ensures the weak convergence of the175

empirical distribution of (Pjj)
p
j=1, and hence the convergence of (13). For simplicity, we176

may simply say ‖(Pjj)pj=1‖LP is ESD without mentioning the limit in p, when there is no177

confusion. In other words, we defined ‖(Pjj)pj=1‖LP as the distance between the empirical178

distance of diag(P) and the delta measure at 0, under the Lévy-Prokhorov metric3 (we179

are abusing the notation of norms even though this is not a norm). Note that ‖‖LP can be180

replaced by any metric compatible with the weak convergence topology.181

• General knockoff: for a general (potentially non-analytic) knockoff construction, it seems182

hopeless to find simple expressions of ESD in terms of Σ. Nevertheless, if (θ
(p)
0 ,Σ(p)) has183

a standard distributional limit, we can express ESD as ‖(P jj)
2p
j=1‖LP , where we recall that184

P is the extended precision matrix including the knockoff variables. We next find more185

explicit expressions in terms of P for specific constructions:186

• Equi-knockoff: we show that ESD is at least λmax(P). This is also achievable by choosing187

sj = λmin(Σ) (note that this is slightly different than (8) in [BC15][CFJL18]).188

• We introduce a new method for generating the knockoff matrix, called conditional indepen-189

dence knockoff. If the Gaussian graphical model is from a tree, the conditional independence190

knockoff always exists, and the ESD is ‖P 2
jjΣjj‖LP .191

As noted in [FDLL19], although knockoff filter has the advantage of controlling FDR, it usually has192

a lower power than Lasso with oracle threshold. We use oracle threshold Lasso as a baseline for193

comparison, and indeed its ESD is smaller than that of other algorithms.194

The last knockoff construction, conditional independence knockoff, appears to be new. It is both195

analytically simple and empirically competitive. Comparing equi- and conditional independence196

knockoff: the latter is more robust, since having a small fraction of j with large P 2
jjΣjj does not197

increase ‖ · ‖LP much. For example, if the p and p − 1 th predictors are equal, then the ESD for198

conditional independence knockoff almost does not change, but equi-knockoff completely fails.199

While the solution in the (approximate) semidefinite knockoff is not analytically simple, empirically200

we find that the conditional independence knockoff usually has similar or improved performance.201

4 Baseline: Lasso with oracle threshold202

Before analyzing any algorithm, let us observe the following converse bound, which is information-203

theoretic (i.e. not limited to Lasso or any particular algorithm). This result lower bounds the effective204

3Generally, the Lévy-Prokhorov distance between two probability measures µ and ν is defined as inf{ε >
0|µ(A) ≤ ν(Aε) + ε, ν(A) ≤ µ(Aε) + ε, ∀A}, where Aε denotes the ε-neighborhood of A.
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signal deficiency (ESD) by ‖(Pjj)pj=1‖LP , where ‖‖LP was defined in (13). Intuitively, the result205

comes from the fact that the conditional variance of Xj given X\j is P−1jj .206

Proposition 2 (Converse). Fix α ∈ (0, 1), n, p ∈ N, and let Σ be the covariance matrix of the207

Gaussian predictors. Let θ1, . . . , θp be i.i.d. Ber(α). Assume that the noise variance (for each208

sample) is n. Assume that there exists an algorithm satisfying FDR ≤ q, POWER ≥ 1− ε. Then209

for n, p ≥ N(ε, α) large enough, we have210

‖(Pjj)pj=1‖LP ≤ max

 1.1(
2Q−1(

√
q

1−α +
√

2ε)
)2 , q

1− α
+
√
ε

 , (14)

where Q(a) := denotes the standard Gaussian tail probability. In particular, max{ε, q} → 0 implies211

that ‖(Pjj)pj=1‖LP → 0.212

We next show that ‖(Pjj)pj=1‖LP is also an achievable ESD, and in fact achievable by appropriately213

using Lasso. More precisely, for a sequence of instances having a standard distributional limit defined214

as follows (introduced by [JM14, Definition 4.1]), limp→∞ ‖(Pjj)pj=1‖LP is an achievable ESD,215

where the existence of the limit is ensured by the standard distributional limit assumption.216

Definition 3 (Standard distributional limit). A sequence {(Σ(p), θ
(p)
0 ,m(p), n(p), σ(p))}p≥1 is said217

to have a standard distributional limit if there exists τ 6= 0 and potentially random d ∈ R such that218

{θ0,j , (θ̂uj − θ0,j)/τ, (Σ−1)jj}mj=1 converges almost surely to a probability measure ν on R3. Here,219

Σ(p) is m(p) ×m(p) matrix, θ̂u is defined in terms of the Lasso estimator:220

θ̂u := θ̂ +
d

n
Σ−1X>(Y −Xθ̂), (15)

ν is the probability distribution of (Θ0,Υ
1/2Z,Υ), where Z ∼ N (0, 1), and Θ0 and Υ are some221

random variables independent of Z.222

As mentioned in [JM14], characterizing instances having a standard distributional limit is highly223

nontrivial. Yet, at least, the definition is non-empty since it contains the case of standard Gaussian224

design. Moreover, a non-rigorous replica argument indicates that the standard distributional limit225

exists as long as a certain functional defined on R2 has a differentiable limit [JM14, Replica Method226

Claim 4.6], which is always satisfied for block diagonal Σ where the empirical distribution of the227

blocks converges.228

We now consider a simple variable selection algorithm based on the Lasso estimator (without using229

knockoffs), where indices j for which |θ̂uj | exceeds a certain threshold are selected (see definition of230

θ̂u in (15)). In practice, the knockoff filter has the advantage of controlling FDR. However, if Lasso is231

used with the right threshold giving the correct FDR, then Lasso has higher power than the knockoff232

filter (see the discussion in [FDLL19]).233

Proposition 4 (Lasso achievability). Let {(Σ(p), θ
(p)
0 , n(p), σ(p))}p≥1 be any sequence having a234

standard distributional limit, where235

|θ0,j | ≥ 1, ∀j : θ0,j 6= 0, (16)

lim sup
p→∞

‖θ(p)0 ‖1/p = β <∞, (17)

lim
p→∞

‖θ(p)0 ‖0/p = α, (18)

lim
p→∞

n(p)/p = δ, (19)

σ(p) =
√
nσ0, (20)

lim
p→∞

‖(Pjj)pj=1‖LP = L. (21)

Then using a threshold test for θ̂u defined in (15), where the Lasso parameter λ > 0 is any number236

independent of p, one can bound both FDR(p) and 1 − POWER(p) by fα,β,δ,σ0,λ(L) almost237

surely for large enough p, where fα,β,δ,σ0,λ(·) is a function that vanishes at the origin for any fixed238

α, β, δ, σ0, λ. For explicit bounds, see (22) and (23).239
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Explicitly, we have the following bounds almost surely,240

lim sup
p→∞

FDR(p) ≤ 2Q

(
1

2τ
√
L

)
+ L; (22)

lim inf
p→∞

POWER(p) ≥ 1− 1

α

[
2Q

(
1

2τ
√
L

)
+ L

]
, (23)

where τ is from the definition of the standard distributional limit, and is bounded by241

τ2 ≤ 2δσ2
0

δ − 1
+

2λδ(δ + 1)β

(δ − 1)3
. (24)

5 Results for general knockoff matrices242

Given Σ, let Σ be the extended 2p× 2p covariance matrix for the true predictors and their knockoffs.243

Let θ0 be the 2p-vector where the indices corresponding to the knockoff variables (j = p+ 1, . . . , 2p)244

are 0. Consider the procedure of the knockoff filter described in Section 2, with a slight tweak: define245

Wj := |θ̂
u

j | − |θ̂
u

j+p|, instead of (3), where unbiased regression coefficients θ̂
u

is defined analogous246

to (15). This definition of Wj still fulfills the sufficiency and antisymmetry condition in [BC15,247

Section 2.2], so FDR can still be controlled. This change allows us to perform analysis using results248

in [JM14]. We also assume that the Lasso parameter λ is an arbitrary number independent of p. Then,249

assuming the existence of standard distributional limit, we show that ‖(P jj)
2p
j=1‖LP is ESD.250

Lemma 5. Let {(Σ(p), θ
(p)
0 , 2p, n(p), σ(p))}p≥1 be a sequence having a standard distribution limit.251

Suppose that (16)-(20) still applies, with δ > 2. Suppose that252

q >
2Q(1/3τ

√
L) + L

α/2− 4Q(1/3τ
√
L)− 2L

(25)

where τ is from the definition of the standard distributional limit, which is bounded as in (24). Let253

L := limp→∞ ‖(P jj)
2p
j=1‖LP . Then almost surely, running the knockoff filter with FDR budget at q254

achieves power255

lim inf
p→∞

POWER(p) ≥ 1− 8

α
Q(1/3τ

√
L)− 4L

α
. (26)

In particular, the asymptotic power tends to 1 as L→ 0.256

6 Conditional independence knockoff and ESD257

We introduce the conditional independence knockoff, where Xj and X̃j are conditionally independent258

of X\j , for each j = 1, . . . , p. This condition implies that259

sj = Var(Xj |X\j) = P−1jj , j = 1, . . . , p, (27)

where s1, . . . , sp are as defined in (5). However such an s may violate the positive semidefinite260

assumption for the joint covariance matrix (example with p = 3 exists). Yet, interestingly, we find261

that in the case of tree graphical model, this construction always exists. In many practical scenarios,262

the predictors Xp comes from a tree graphical model, and we can estimate the underlying graph sing263

the Chow-Liu algorithm [CL68].264

Theorem 6. Σ defined in (5) is positive semidefinite with s defined in (27), if either of the following265

is satisfied: 1) Σ is the covariance matrix of a tree graphical model; 2) P is diagonally dominant.266

Either condition in the theorem intuitive imposes that the graph is sparse. In practice, Σ needs to be267

estimated, which is generally only feasible with some sparse structure (e.g. via graphical lasso).268

Assuming the existence of a standard distributional limit, we have the following results:269

Theorem 7. For tree graphical models, assuming that the algorithm is knockoff filter using the270

conditional independence knockoff, ‖(P 2
jjΣ

jj)pj=1‖LP is an effective signal deficiency.271

Theorem 8. The effective signal deficiency for equi-knockoff with sj = λmin(Σ), j = 1, . . . , p is272

λmin(Σ).273
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Figure 1: Left: Binary tree, equal correlations. Extension _e, _a, _c refers to equi-knockoffs, asdp
knockoffs, and conditional independence knockoff, respectively. Right: Markov chain, randomly
chosen correlation strengths.

7 Experimental results274

We first consider the setting where the conditional independence graph X1, . . . , Xp forms a binary275

tree, in which X1, . . . , Xp ∼ N (0, 1). The correlations between adjacent nodes are all equal to 0.5.276

Choose k = 100 out of p = 1000 indices uniformly at random as the support of θ, and set θj = 4.5277

for j in the support. Generate n = 1000 samples Yi = Xiθ +Ni where Ni ∼ N (0, n).278

Figure 1 Left shows the box plots of the power and FDR for the knockoff filter with three different279

knockoff constructions, equi-knockoff, sdp-knockoff, and conditional independence knockoff. The280

FDR is controlled at the target q = 0.1 in all three cases. The powers are similar, but the rough trend281

is POWERe < POWERs < POWERc. We then compare the effective signal deficiency. Note282

that in the current setting, Var(Xj |X\j) ≤ 1, and hence P jj ≥ 1, for each j = 1, . . . , 2p, and we283

always have ‖(P jj)
2p
j=1‖LP = 1 by the definition (13), which cannot reveal any useful information284

for comparison. To resolve this, we can scale down P jj by a common factor before computing285

the LP norms, noting that such a scaled version of the LP norm is still a valid effective signal286

deficiency (in the same equivalence class). Lacking a systematic way of choosing such a scaling287

factor, heuristically we choose it so that the LP norms for the three algorithms are all “bounded away288

from 0 and 1”. We find that ‖(P e,jj)
2p
j=1/2000‖LP = 0.5010, ‖(P s,jj)

2p
j=1/2000‖LP = 0.0480, and289

‖(P c,jj)
2p
j=1/2000‖LP = 0.0025, and their ordering matches the ordering of the powers.290

In the previous example, the simplest equi-knockoff has a highly competitive performance. However,291

this is an artifact of the fact that the data covariance is highly structured (i.e., correlations are all292

the same). If the correlations have high fluctuations, and in particular, a small number of node pairs293

are highly correlated, then the equi-knockoff has a much worse performance. This is demonstrated294

in the next example. Consider the setting where X1, . . . , Xp forms a Markov chain, in which295

X1, . . . , Xp ∼ N (0, 1). The correlation between Xj and Xj+1 is ρj := Gj1{|Gj | ≤ 1}, where296

Gj ∼ N (0, 0.25), j = 1, . . . , p − 1 are chosen independently. Choose k = 100 out of p = 1000297

indices uniformly at random as the support of θ, and set θj = 4.5 for j in the support. Generate298

n = 1200 samples Yi = Xiθ +Ni where Ni ∼ N (0, 0.49n).299

Figure 1 Right shows the box plots of the power and FDR for the knockoff filter with three different300

knockoff constructions. The target FDR q = 0.1. Since the correlations are now chosen randomly,301

with high probability there exist highly nodes, and hence λmin(Σ) can be very small, in which case302

the equi-knockoff performs poorly. (Figure 1 shows the case where the correlations are truncated303

between [−1, 1]. If we truncate the correlation to a smaller interval around 0, we can observe that304

POWERe goes up). However POWERc is similar to POWERs, with the median of the former305

slightly higher. To compare the ESD, first scale down P jj by a heuristically chosen factor. We306

find ‖(P e,jj)
2p
j=1/100‖LP = 0.9995, ‖(P s,jj)

2p
j=1/100‖LP = 0.8660, and ‖(P c,jj)

2p
j=1/100‖LP =307

0.1075, and their ordering matches the ordering of the powers of the three knockoff constructions.308
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A Proof of Proposition 2348

Proof. We can prove such an impossibility bound even assuming that when deciding whether j is349

null, one has the full information of θ0,\j . Then the problem becomes testing a single parameter350

θj from the effective observation θj(Xj − E[Xj |X\j ]) +W where the signal Xj − E[Xj |X\j ] has351

variance [(Σ−1)jj ]
−1.352

9



Using the fact that |{j : θ̂j 6= 0}| ≤ p, we obtain from the definition of FDR that 1
p

∑p
j=1 P[θj =353

0, θ̂j 6= 0] ≤ q, and hence354

1

p

p∑
j=1

P[θ̂j 6= 0|θj = 0] ≤ q

1− α
. (28)

By the Markov inequality we have 1
q |S1| ≤

√
q

1−α where we defined355

S1 :=

{
j : P[θ̂j 6= 0|θj = 0] >

√
q

1− α

}
. (29)

For each j ∈ [p] \ S1, we have356 √
q

1− α
> P[θ̂j 6= 0|θj = 0] (30)

= P
[
θ̂j 6= 0

∣∣∣∣ 1n‖X̄j‖2Pjj ≤ 1.1, θj = 0

]
· P
[

1

n
‖X̄j‖2Pjj ≤ 1.1

]
(31)

≥ P
[
θ̂j 6= 0

∣∣∣∣ 1n‖X̄j‖2Pjj ≤ 1.1, θj = 0

]
· (1− on(1)) (32)

where we defined X̄j := Xj − E[Xj |X\j ]; (31) used the independence of X̄j and θj ; (32) used the357

concentration of the χ2 distribution.358

Let us turn to Type-II error:359

1− ε ≤ E

[
|{j : θj 6= 0, θ̂j 6= 0}|

1 ∨ |{j : θj 6= 0}|

]
(33)

≤ E

[
|{j : θj 6= 0, θ̂j 6= 0}|

1 ∨ |{j : θj 6= 0}|
· 1{|j : θj 6= 0| ≥ (1− ε)αp}

]
+ P[|j : θj 6= 0| < (1− ε)αp] (34)

≤ E

[
|{j : θj 6= 0, θ̂j 6= 0}|

(1− ε)αp

]
+ P[|j : θj 6= 0| < (1− ε)αp]. (35)

Therefore,4360

1

p

p∑
j=1

P[θ̂j 6= 0|θj 6= 0] =
1

αp

p∑
j=1

P[θ̂j 6= 0, θj 6= 0] (36)

≥ (1− ε)(1− ε− op(1; ε, α)) (37)
≥ 1− 2ε− op(1; ε, α). (38)

By the Markov inequality, 1
p |S2| ≤

√
2ε+ op(1; ε, α), where we defined361

S2 :=

{
j : P[θ̂j = 0, θj 6= 0] >

√
2ε+ op(1; ε, α)

}
. (39)

For j ∈ [p] \ S2, we have362 √
2ε+ op(1; ε, α) ≥ P[θ̂j = 0, θj 6= 0] (40)

= P
[
θ̂j = 0

∣∣∣∣ 1n‖X̄j‖2Pjj ≤ 1.1, θj 6= 0

]
· P
[

1

n
‖X̄j‖2Pjj ≤ 1.1

]
(41)

≥ P
[
θ̂j = 0

∣∣∣∣ 1n‖X̄j‖2Pjj ≤ 1.1, θj 6= 0

]
· (1− on(1)). (42)

4op(1; ε, p) means a sequence indexed by p, which vanishes for any fixed ε, p.
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Using Neyman-Pearson’s lemma, we can lower bound P
[
θ̂j 6= 0

∣∣ 1
n‖X̄j‖2Pjj ≤ 1.1, θj = 0

]
+363

P
[
θ̂j = 0

∣∣ 1
n‖X̄j‖2Pjj ≤ 1.1, θj 6= 0

]
by364

1− 1

2
|µ1 − µ2| ≥ 1−

√
1

2
D(µ1‖µ2) (43)

≥ 2Q

(
1

2

√
1.1

Pjj

)
(44)

where µ1 and µ2 are one dimensional Gaussian distributions with the same variance n but differ in365

mean by
√

1.1n/Pjj . But, for j ∈ [p] \ (S1 ∪ S2), we can upper bound it by366

φ :=
1

1− on(1)

(√
q

1− α
+
√

2ε+ op(1; ε, α)

)
, (45)

and hence from (44) and (45),367

Pjj ≤
1.1

(2Q−1(φ/2))
2 . (46)

Thus368

‖(Pjj)pj=1‖LP ≤ max

{
1.1

(2Q−1(φ/2))
2 ,

1

p
|S1 ∪ S2|

}
(47)

≤ max

{
1.1

(2Q−1(φ/2))
2 ,

q

1− α
+
√

2ε+ op(1; ε, α)

}
. (48)

369

B Proof of Proposition 4370

Proof. The main work is to show that τ defined in the standard distributional limit is bounded371

independently of Σ. Recall from [JM14, (37)] that τ satisfies the equation372

τ2 = σ2
0 +

1

δ
lim
p→∞

1

p
E[‖η1/d(θ0 + τΣ−1/2Z)− θ0‖2Σ] (49)

where Z ∼ N (0, I), ‖y‖Σ :=
√

y>Σy, 1/d = 1− ‖θ̂‖0/n ≥ 1− 1/δ. and the proxy operator is373

defined by374

η1/d(y) := argminθ∈Rp

{
1

2d
‖θ − y‖2Σ + λ‖θ‖1

}
. (50)

We note that the proxy operator η1/d is non-expansive in ‖ · ‖Σ. Indeed, consider arbitrary y1, y2,375

and let θ1, θ2 be such that 0 ∈ Σ(θk − yk) + ∂L(θk), k = 1, 2, where ∂L denotes the subgradient376

of the convex functional λd‖ · ‖1. We then have377

Σ(y1 − y2) ∈ Σ(θ1 − θ2) + ∂L(θ1)− ∂L(θ2), (51)

and hence there exist G1 ∈ ∂L(θ1) and G2 ∈ ∂L(θ2) such that ‖θ1 − θ2‖2Σ ≤ ‖θ1 − θ2‖2Σ +378

〈G1 −G2, θ1 − θ2〉 = 〈θ1 − θ2, y1 − y2〉Σ ≤ ‖θ1 − θ2‖Σ · ‖y1 − y2‖Σ, where we used the379

convexity of L(·). This shows the non-expansiveness of η1/d. We now upper bound the right side of380

(49) by noting that381

‖η1/d(θ0 + τΣ−1/2Z)− θ0‖2Σ

≤ 1 + δ

2
‖η1/d(θ0 + τΣ−1/2Z)− η1/d(θ0)‖2Σ +

δ + 1

δ − 1
‖η1/d(θ0)− θ0‖2Σ (52)

≤ 1 + δ

2
‖τΣ−1/2Z‖2Σ +

δ + 1

δ − 1
‖η1/d(θ0)− θ0‖2Σ (53)

≤ 1 + δ

2
τ2p+

δ + 1

δ − 1

(
‖η1/d(θ0)− θ0‖2Σ + 2dλ‖η1/d(θ0)‖1

)
(54)

≤ 1 + δ

2
τ2p+

δ + 1

δ − 1
· 2λd‖θ0‖1. (55)
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Therefore by (49),382

τ2 ≤ 2δσ2
0

δ − 1
+

2λδ(δ + 1)β

(δ − 1)3
. (56)

Suppose that the algorithm selects j such that |θ̂uj | < t as nulls, for some threshold t ∈ (0, 1). Let383

H0 := {j : θ0,j = 0} andH1 := [p] \ H0. We have384

|{j ∈ H0, |θ̂uj | ≥ t}| ≤ inf
s>0

[
|{j ∈ H0 : |θ̂uj | ≥ τsP

1/2
jj }|+ |{j ∈ H0 : τsP

1/2
jj ≥ t}|

]
. (57)

For fixed s independent of p, by the definition of standard distributional limit, we have, almost surely,385

lim sup
p→∞

1

p
|{j ∈ H0 : |θ̂uj | ≥ τsP

1/2
jj }| ≤ P[|Z|Υ1/2 ≥ sΥ1/2] (58)

= P[|Z| ≥ s] (59)

where Z ∼ N (0, 1) and Υ is a random variable whose distribution is the weak limit of the empirical386

distribution of (Pjj)
p
j=1 (from the definition of the standard empirical distribution). Moreover, if387

s ≤ t
τ
√
L

, then388

lim sup
p→∞

1

p
|{τsP 1/2

jj ≥ t}| ≤ P

[
Υ ≥

(
t

sτ

)2
]

(60)

≤ L (61)

almost surely, where L := limp→∞ ‖(P (p)
jj )pj=1‖LP . Substituting into (57), we obtain389

lim sup
p→∞

1

p
|{j ∈ H0, |θ̂uj | ≥ t}| ≤ P

[
|Z| ≥ t

τ
√
L

]
+ L. (62)

By the same arguments, we also have390

lim sup
p→∞

1

p
|{j ∈ H1, |θ̂uj | ≤ t}| ≤ lim sup

p→∞

1

p
|{j ∈ H1, |θ̂uj − θ0,j | ≥ 1− t}| (63)

≤ P
[
|Z| ≥ 1− t

τ
√
L

]
+ L (64)

almost surely. Choosing t = 1/2 and noting that |H1|/p→ α shows that we can bound391

lim sup
p→∞

FDR(p) ≤ 2Q

(
1

2τ
√
L

)
+ L (65)

and392

lim inf
p→∞

POWER(p) ≥ 1− 1

α

[
2Q

(
1

2τ
√
L

)
+ L

]
. (66)

393

C Proof of Lemma 5394

Proof. According to the definition of the standard distributional limit, there exists τ 6= 0 such395

that with probability 1, the empirical distribution of {
(

(θ̂
u

j − θ0,j)/τ, (Σ−1)jj

)
}2pj=1 (which is396

random since Y and X are random) convergences weakly to the distribution of (Υ1/2Z,Υ) where397

Z ∼ N (0, 1) is independent of Υ.398

Since for any number t′, Wj := |θ̂
u

j | − |θ̂
u

j+d| ≤ −t′ implies |θ̂
u

j+d| ≥ t′, by the same steps up to399

(62), we have400

lim sup
p→∞

1

2p
|{j ∈ [p] : Wj ≤ −t′}| ≤ 2Q(t′/τ

√
L) + L. (67)
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But401

|{j ∈ H1 : Wj ≥ t′}| ≥ |H1| − |{j ∈ H1 : Wj ≤ t′}| (68)

≥ |H1| − |{j ∈ H1 : |θ̂
u

j | ≤ 2t′}| − |{j ∈ H1 : |θ̂
u

j+d| ≥ t′}| (69)

≥ |H1| − |{j ∈ [p] : |θ̂
u

j − θ0,j | ≥ 1− 2t′}| − |{j ∈ [p] : |θ̂
u

j+d| ≥ t′}|,
(70)

where H1 := {j : θ0,j 6= 0}. Now again using the same steps up to (62), we conclude that almost402

surely,403

lim inf
p→∞

1

2p
|{j ∈ H1 : Wj ≥ t′}| ≥ α/2− 2Q((1− t′)/τ

√
L)− 2Q(t′/τ

√
L)− 2L. (71)

Since404

T := min

{
t :
|{j ∈ [p] : Wj ≤ −t}|
|{j ∈ [p] : Wj ≥ t}| ∨ 1

≤ q
}

(72)

and we chose405

2Q(t′/τ
√
L) + L

α/2− 2Q((1− t′)/τ
√
L)− 2Q(t′/τ

√
L)− 2L

< q, (73)

we see that almost surely, T ≤ t′ for p large enough. Thus the number of true positives using the data406

dependent threshold T is larger than the number of true positives using the threshold t′. The claim407

follows by choosing t′ = 1/3 and using (71).408

D Proofs in Section 6409

Proof of Theorem 6. From linear algebra, we see that a necessary and sufficient condition such that410

(27) fulfills the positive semidefinite condition for the joint covariance matrix is that411

2 diag(diag(Σ−1))−Σ−1 � 0 (74)

In other words, we want the precision matrix to maintain p.s.d. after flipping the signs of the412

off-diagonals. This is true in the diagonally dominant case.413

Using Hammersley theorem we know that the nonzero patter of the precision matrix (inverse of the414

covariance matrix) corresponds to the connectivity graph of the graphical model, which is a tree in415

the current case. The claim then follows from Lemma 9 below.416

Lemma 9. P is a square matrix and the nonzero pattern of P corresponds to a forest (a union of417

trees), then P and 2 diag(P)−P have the same set of eigenvalues.418

Proof. Assume without loss of generality that the first entry corresponds to a leaf and the second entry419

corresponds to its unique neighbor. We can expand the determinant to check that the characteristic420

polynomial satisfies421

det(λIp −P) = (λ− P11) det(λIp−1 − P[2:n]×[2:p])− P 2
12 det(λIp−2 − P[3:p]×[3:p]) (75)

where p is the size of P, and P[2:p]×[2:p] denotes the principle submatrix of P consisting of entries of422

P with indices in {2, . . . , p} × {2, . . . , p}. Note that P[2:p]×[2:p] and P[3:p]×[3:p] also correspond to423

forrests. By induction, we see that the off-diagonal coefficients enter the characteristic polynomial424

only through their squares. In other words, the characteristic polynomial is unchanged after flipping425

the signs of the off-diagonals.426

Proof of Theorem 7. The {1, . . . , p} × {1, . . . , p}-submatrix of the precision matrix satisfies427

(P[p]×[p])
−1 = 2 diag(s)− diag(s)Σ−1 diag(s) (76)

= 2 diag−1(P)− diag−1(P)P diag−1(P) (77)

where sj = Pjj
−1, j = 1, . . . , p in the case of conditional expectation knockoff. Note that428

2 diag−1(P)− diag−1(P)P diag−1(P) and diag−1(P)P diag−1(P) have the same diagonals, but429
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the off-diagonals are of the opposite signs and equal absolute values. When P is assumed to be430

associated with a tree, these two matrices have the same spectral, and in particular, have the same431

determinant. By the same reasoning, all their principal minors have the same determinant. Therefore432

the433

diag(P[p]×[p]) = diag−1(P) diag(P−1) diag−1(P) (78)

= diag−1(P) diag(Σ) diag−1(P). (79)

434

Proof of Theorem 8. Recall that (P[p]×[p])
−1 = 2 diag(s) − diag(s)Σ−1 diag(s). In the case of435

equi-knockoff, one selects sj = λmin(Σ), and we have436

λmin(Σ)I � 2 diag(s)− diag(s)Σ−1 diag(s) � λmin(Σ)I. (80)

437

E Notes on the experiments438

Our code is built upon the knockoff software on Emmanuel Candès’s website,439

https://web.stanford.edu/group/candes/knockoffs/software/knockoffs/440

with the slight modification that Wj is computed using the unbiased coefficients (see Section 5). We441

hope to post the details of the changes of the codes and our simulation codes at the time of final442

submission.443

It is worth mentioning that the code chooses the Lasso parameter λ via cross validation, whereas our444

theoretical analysis chooses any λ independent of p.445
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