
Supplementary Material: Spherical Text Embedding

A Proof of Theorem 1

Definition 1 (Modified Bessel Function of the First Kind). The modified Bessel function of the first
kind of order r can be defined as [26]:
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Lemma 1. The definite integral of power of sin on the interval [0, ⇡] is given by
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where �(x) =
R1
0 exp(�t)tx�1

dt is the gamma function.
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p Jp�2.

Using the above iteration relationship and the property of gamma function �(x + 1) = x�(x), we
write Jp using gamma function:
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• When p is an odd integer:
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Theorem 1. When the corpus has infinite vocabulary, i.e., |V | ! 1, the analytic forms of Equations
(1) and (2) are given by the von Mises-Fisher (vMF) distribution with the prior embedding as the
mean direction and constant 1 as the concentration parameter, i.e.,

lim
|V |!1

p(v | u) = vMFp(v; u, 1), lim
|V |!1

p(u | d) = vMFp(u; d, 1).

Proof. We give the proof for the first equality, and the second equality can be derived similarly. We
generalize the relationship proportionality p(v | u) / exp(exp(cos(v, u))) in Equation (2) to the
continuous case and obtain the following probability dense distribution:
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|V |!1

p(v | u) =
exp(cos(v, u))R

Sp�1 exp(cos(v0, u))dv0 ,
exp(cos(v, u)))

Z
, (8)

where we denote the integral in the denominator as Z.

To evaluate the integral Z, we make the transformation to polar coordinates. Let t = Qv0, where
Q 2 Rp⇥p is an orthogonal transformation so that dt = dv0. Moreover, let the first row of Q be u so
that t1 = u>v0. Then we use (r, ✓1, . . . , ✓p�1) to represent the polar coordinates of t where r = 1
and cos ✓1 = u>v. The transformation from Euclidean coordinates to polar coordinates is given by
[35] via computing the determinant of the Jacobian matrix for the coordinate transformation:
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According to Definition 1, the integral term of Z above can be expressed with Ip/2�1(1) as:
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Plugging Z back to Equation (8), we finally arrive that
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B Proof of Theorem 2

Lemma 2. Let (Xn)n2N be a non-negative stochastic process with bounded positive variations, i.e.,P1
n=0 E [max (E [Xn+1 � Xn | Fn] , 0)] < 1. Then this process is a quasi-martingale, i.e.,
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where Fn is the increasing sequence of �-algebras generated by variables before time n, Fn =
{s0, . . . , sn�1}, such that Xn computed from s0, . . . , sn�1 is Fn measurable.

Proof. See [14].

Before proving Theorem 2, we first prove the update rule without approximation, i.e., replacing the
retraction Rx in Equation (7) with the exponential map expx defined by Equation (4), leads to almost
surely convergence.
Lemma 3. When the update rule given by
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is applied to L(✓), and the learning rate satisfies the usual condition in stochastic approximation,
i.e.,
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Proof. We use l(xt, zt) to denote the approximated loss function L(xt) evaluated at a training
instance zt, i.e., L(xt) = Ez[l(xt, z)].

Let
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and we omit the arguments of ⇠ and grad l in the following derivation because we only care about the
upper bound of both.

We consider two consecutive gradient update steps of the parameter, xt and xt+1. There exists a
geodesic segment �(s) = expxt
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L(xt+1) = L(expxt
(�⇠ · grad l))

= L(xt) � ⇠ · grad l
>grad L(xt) +

Z ⇠

0
(⇠ � s)�0(s)>Hess L(�(s))�0(s)ds,

(9)
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For spherical space, the Riemannian Hessian is given by [1, 12]
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where r2
f(x) is the Euclidean Hessian of f(x).

Therefore, at each training instance zt, the Riemannian Hessian of the approximated loss is bounded:
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where we use the fact that r2
l(xt, zt) = 0 and krl(xt, zt)k  2 by computing the Euclidean

Hessian and gradient of Equation (3).

Consequently, the Riemannian Hessian of the original loss is bounded:
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Similarly, the Riemannian gradient is also bounded:
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Therefore, Equation (9) shows that
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Now let Ft be the increasing sequence of �-algebras generated by variables before time t, Ft =
{z0, . . . , zt�1}, such that xt computed from z0, . . . , zt�1 is Ft measurable.

Then we take the expectation over z under Ft of both sides of Equation (10)
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since zt is independent of Ft.

As L(xt) � 0 and
P
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2
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thus it converges almost surely. Therefore, L(xt) converges almost surely.

Next, to prove grad L(xt) converges, we repeat the above proof and replace L(xt) with
kgrad L(xt)k2. Specifically, we can bound the second derivative of kgrad L(xt)k2 and arrive at a
very similar form as Equation (11). We then prove grad L(xt) almost surely converge.

Finally, we prove grad L(xt) must converge to 0. Summing over t of Equation (11), we have
X
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From Equation (11), we know that L(xt) satisfies the assumption in Lemma 2. Hence,P
t�0 Ez[L(xt+1) � L(xt) | Ft] converges almost surely, implying

P
t�0 ⇠kgrad L(xt)k2 also

converges almost surely. Combining with the fact that grad L(xt) converges almost surely, which we
have proved, we show that grad L(xt) must converge to 0.

Theorem 2. When the update rule given by Equation (7) is applied to L(x), and the learning rate
satisfies the usual condition in stochastic approximation, i.e.,
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Pr
⇣

lim
t!1

L(xt) = L(x⇤)
⌘

= 1, Pr
⇣

lim
t!1

grad L(xt) = 0
⌘

= 1.

4



Proof. Let

xexp
t+1 = expxt
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be the updated point mapped via exponential mapping.

Let
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be the updated point mapped via retraction.

The retraction is a first-order approximation of the exponential mapping, i.e., 9M > 0 such that
d(Rxt(✏↵), expxt

(✏↵)) < M✏
2 for ✏ > 0 sufficiently small, where k↵k = 1.

Then,
L(xt+1) � L(xt)  |L(xt+1) � L(xexp

t+1)| + L(xexp
t+1) � L(xt), (12)

where L(xexp
t+1) � L(xt) is proved to be bounded in Equation (10) of Lemma 3, and the term

|L(xt+1) � L(xexp
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by applying a similar derivation as in Lemma 3 from Equation (9) to Equation (10).

Therefore, L(xt) is a quasi-martingale and converges almost surely according to Lemma 2. Also,P1
t=1 ⇠kgrad L(xt)k2

< 1 almost surely, which means kgrad L(xt)k can only converge to 0 if it
converges because

P
t ⌘t = 1.

Finally, to prove grad L(xt) almost surely converges, we repeat the above proof by replacing L(xt)
with kgrad L(xt)k2 so that we can arrive at a similar form of Equation (12) and use the same
procedure to show kgrad L(xt)k2 is a quasi-martingale and converges almost surely.
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