A Appendix - Proofs and Additional Material

A.1 Section[T]
A.1.1 Additional Material

Example A.1 (Without inverse stability: parameter minimum =~ realization minimum). Consider
the two domains

D, = {(331,3:2) S (—1, 1)2: To > |.Z’1|}, Dy = {(3?1,.%‘2) € (—1, 1)22 xr1 > |.’132|} 40)

For simplicity of presentation, assume we are given two samples x' € Dy, x? € Do with labels
y' =0, y?* = 1. The corresponding MSE is

L(g) = 3((g9(z")* + (9(=*) = 1)) (41)
for every g € C(R?,R). Let the zero realization be parametrized byﬂ
Iy =(0,(=1,0)) € N2 1) (42)

with loss L(R(L,)) = L. Note that changing each weight by less than 1 does not decrease the loss,
as this rotates the vector (—1,0) by at most 45°. Thus I, is a local minimum in the parametrization
space. However, the sequence of realizations given by

gr(z) = gp(z1 — 22) = R((1,-1), 1) (43)
satisfies that
g — RT)lwioo(—1,1)2) = llgkllwr=(—1,12) < 7 (44)
and
Lg) = 5(gr(z®) = 1)* < 3 = LIR(L)), (45)

see Figure @ Accordingly, R(T,) is not a local minimum in the realization space even w.r.t. the
Sobolev norm. The problem occurs, since inverse stability fails due to unbalancedness of T .

Figure 6: The figure shows the samples ((@%,y"));=1,2, the realization R(T',) of the local parameter
minimum (left) and g3 (right).

Theorem A.2 (Quality of local realization minima). Assume that

sup inf |R(®)— f|l <n (approximability). (46)
feS PeQn

Let g. be a local minimum with radius r' > 21 of the optimization problem minger (o) £(g). Then
it holds for every g € R(Qn) (in particular for every global minimizer) that

L(g+) < L(g) + %||g« — glIn. (47)

Proof. Define \ := 2Hg%/g*\l and f:= (1 — \)g. + A\g € S. Due to {8) there is ¢ € Q such that

IR(®) — f|| < and by the assumptions on g. and L it holds that
L(g+) < LIR(P)) < L(f) + en < (1= A)L(gx) + AL(g) + en.
This completes the proof. See Figure [7)for illustration. O

>See notation in the beginning of Section

13



Figure 7: The figure illustrates the proof idea of Theorem Note that decreasing 7, ¢, ||g« — g|| or
increasing r’ leads to a better local minimum due to the convexity of the loss function (red).

A.1.2 Proofs

Proof of Proposition[I.2] By Deﬁnitionwe know that for every g € R(Q2) with ||g — R(T',)| <
(g)l/o‘ there exists ® € ) with

R(®) =g and [[® - Tl <sllg =R <7 (48)

Therefore by assumption it holds that
L(R(T.)) < L(R(D)) = L(9)- (49)
which proves the claim. O

Proof of Theorem[I.3] Let e,7 > 0, define 7/ := (Z)¥/* and 7 := min{(2 diam(3)) e, %}
Then compactness of S implies the existence of an architecture n(e, r) € Ay, such that for every
N € Ap with Ny > ny(e,r),...,Np—1 > ng_1(e,r) the approximability assumption (@6) is
satisfied. Let now ', be a local minimum with radius at least r of minreq, L(R(T)). As we
assume uniform (s, a) inverse stability, Proposition [I.2]implies that R(T,) is a local minimum of
the optimization problem mingex (o) £(g) with radius at least ' = (£)!/® > 25. Theorem
establishes the claim. ]

Proof of Corollary[I.4 'We simply combine the main observations from our paper. First, note that
the assumptions imply that the restricted parametrization space {2, which we are optimizing over, is
the space NV, (*d +2,N141,D) from Deﬁnition Secondly, Theorem implies that the realization

map is (4,1/2) inverse stable on 2. Thus, Proposition directly proves Claim For the proof
of Claim [2| we make use of Lemma@ It implies that for every © € P(q n, p) there exists I €
such that it holds that

INIRM)E) —y'|> = LY IRO) (") — I, (50)
=1

H'M:
)

which proves the claim. ]

A.2 Section[2]
A.2.1 Additional Material

Lemma A.3 (Reparametrization in case of linearly independent weight vectors). Let

0 = (4°,C°) = ([af|.. . lag]", [ - |¢0]) € Ma,m.p) (51)
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with linearly independent weight vectors (af )™, and min;e ) [|c?|lso > 0 and let
® = (A%, B%) = ([a7].. - lap] ", [}]. .. lem]) € Nam, D) (52)

with R(®) = R(©). Then there exists a permutation 7: [m] — [m] such that for every i € [m| there
exist \; € (0,00) with
af = )\iaf?(i) and ¢l = %c?(i). (53)

This means that, up to reordering and rebalancing, © is the unique parametrization of R(©).

Proof. First we define for every s € {0, 1} the corresponding open orthant

O :i={z eR™: 21(2s1 — 1) > 0,...,2n (28, — 1) > 0} CR™. (54)
By assumption A® has rank m, i.e. is surjective, and therefore the preimages of the orthants
H® :={z cR?: A2 c O°} CR?Y, sc{0,1}™, (55)
are disjoint, non-empty open sets. Note that on each H*® the realization R(©) is linear with
R(O)(z) = C® diag(s)A®z and DR(O)(z) = C® diag(s)A®. (56)
Since A® has full row rank, it has a right inverse. Thus we have for s,¢ € {0,1}™ that
C® diag(s)A® = C° diag(t)A° = C® diag(s) = C° diag(t). (57)

Note that C® diag(s) = C® diag(t) can only hold if s = ¢ due to the assumptions that ||c||o. 7 0
for all # € [m]. Thus the above establishes that for s, ¢ € {0,1}™ it holds that
C° diag(s)A® = C® diag(t)A® ifand only if s =t, (58)

i.e. R(O) has different derivatives on its 2™ linear regions. In order for R(®) to have matching
linear regions and matching derivatives on each one of them, there must exist a permutation matrix
P € {0,1}™>*™ such that for every s € {0,1}™

PA%z € O° forevery x € H®. (59)
Thus, there exist (A\;)7; € (0,00)™ such that

A® = diag(\1, ..., \n)PTA®. (60)
The assumption that DR(©) = DR(¥), together with (36) for s = (1,..., 1), implies that

C® = COPdiag(5-, ..., 3-), (61)
which proves the claim. O

Example A.4 (Failure due to unbalancedness). Let
I = ((k,0), %) € No11), kEN, (62)
and gy, € R(N(2,1,1)) be given by
ge() = £p(((0,1),2)), keEN. (63)

The only way to parametrize gy is gr(x) = R(Pr)(x) = cp({(0,a),z)) with a,c > 0 (see
LemmalAZ3), and we have

R(®r) — R(Tk)|wree < 3 and || @k — Tillo > k. (64)
Lemma A.5. Let d,m € Nand a; € R% i € [m), such that > icm) @i = 0. Then it holds for all
z € R? that
Y ollaiz)) = Y pl{—ai,z)). (65)
i€[m] i€[m]

Proof. By assumption we have for all z € R that {a;,x) = 0. This implies for all € R?

that

i€[m)]

Z (a;,x) — Z (a;j,x) = Z —{a;, x), (66)

i€[m]: {a;,z)>0 i€[m] i€[m]: (a;,z)<0

which proves the claim. O
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A.2.2 Proofs
Proof of Example[2.1] We have for every k € N that

HngLoo((,Ll)z) < % and |gk|W1.oo = 1{32. (67)

Assume that there exists sequence of networks (®y)ren € N(22,1) With R(®y) = g; and with
uniformly bounded parameters, i.e. supj ¢y || Pr|/cc < 00. Note that there exists a constant C' (de-
pending only on the network architecture) such that the realizations R (9, ) are Lipschitz continuous
with

Lip(R(®x)) < C[|®k|%,

(see [34, Prop. 5.1]). It follows that |R(®)|w1.c < Lip(R(Py)) is uniformly bounded which
contradicts (67). O

Proof of Example[2.2] The only way to parametrize gy, is g, (z) = R(®x)(z) = cp({(0,a), z)) with
a,c > 0 (see also Lemma @), which proves the claim. O

Proof of Example[2.3] Any parametrization of gx must be of the form @, := (4, c) € R?*2 x R1x2

with
_laa 0 _ 0 as
A= {0 ‘12} or A= {al O] (68)

completed by direct calculation. O

(see Lemma/[A.3). Thus it holds that ||®5 — '||oc > ||(1,0) — (0,a2)|lec > 1 and the proof is

Proof of Example Let @, be an arbitrary parametrization of g, given by
O, = ([a1laz] .- - [azm]", ¢) € Ma2m1) (69)

As gy, has two linear regions separated by the hyperplane with normal vector v, there exists j € [2m]
and A € R\ {0} such that

aj = Av. (70)
The distance of any weight vector +a; of I to the line {\v: A € R} can be lower bounded by
|0~ dol% > 3 0~ Mel3 > & [lalBlol — (@:0)?], i€ml AR (D)

The Cauchy-Schwarz inequality and the linear independence of v to each a;, i € [m], establishes
that C' := 5 min;e(n,) [[lail3[v]|3 — (ai,v)?] > 0. Together with the fact that R(I') = 0, this
completes the proof. O

Proof of Example[2.3] Since x = p(z) — p(—=) for every x € R, the difference of the realizations
is linear, i.e.

R(Ok) — R(Ty) = (ckak + cKab + ckak, x) = ((0,0,3), z) (72)

and thus the difference of the gradients is constant, i.e.
R(©k) = R(Tk)lwre =3, keN. (73)
However, regardless of the balancing and reordering of the weight vectors a¥, i € [3], we have that
10k — Tilloc = k. (74)
By Lemma[A3] up to balancing and reordering, there does not exist any other parametrization of O,

with the same realization. O
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A.3 Section[3
A.3.1 Additional Material

Lemma A.6. Let d,m,D € Nand © € P(q , p). Then there exists I' € A/’(*d+2,m+1,D) such that
for all z € R® it holds that
R(T)(x1,...,x4,1,—1) = R(O)(x). (75)
Proof. Since © € P4 ., p) it can be written as
0= ((4.0). (c.€)) = ([l lam]" 1), (1] - em], ) (76)
with
R(O)(x) = Zcm((ai,@ +b)+e, xeRY o))
i=1
where A € R™*4 b € R™, C € RP*™ and e € RP. We define for i € [m)]
b;+1 :5;>0 _ 1 :b; >0
b= = d b = v = 78
i {1 hy<0 OOV {—@-+1 b <0 (78)
and observe that b > 0,b; > 0, and b — b, = b;. Fori € [m] let
" Ci il #0
c; = (79)
{(1,...,1) leilleo =0
and
X (ai1s-- s aia,b7,07)  : leilloo # 0
a; = ’ D . (80)
{(O,...,O,l,l) lcilloo =0
Note that we have
R @ . - * * o d
©)(z) =Y _cip((al, (z1,...,2a,1,-1))) +e, xR 81

=1

To include the second bias e let

« _ Je e #£0 «  [(0,...,0,2,1) :e#0
qﬂlr{ﬂwuﬂ):e—07am %”r_{mwuﬂﬂﬂ):e—O' 82)

In order to balance the network, let al’ = a* (1¢th=)1/2 and oF = cx(12ll=)1/2 forevery i € [m+1].

llai oo

Then the claim follows by direct computation.

A.3.2 Proofs

Proof of Theorem[3.1] Without loss of generalityﬂ we can assume for all i € [m] that P = 0 if and
only if ¢® = 0. We now need to show that there always exists a way to reparametrize R(©) such
that the architecture remains the same and (33)) is satisfied. For simplicity of notation we will write
r:=|g — R(T)|w1.~ throughout the proof. Let f}": R? — Rresp. f©: R? — R be the part that is
contributed by the i-th neuron, i.e.

RI) =Y f1 with ff(2):=c}p((a],)), (83)
=1

g=R(©) =Y _f° with f2(x):=cPp((al, x)). (84)
=1

81n case one of them is zero, the other one can be set to zero without changing the realization.
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Further let
HITZ = {z e R%: (a],z) > 0},
Hp,; = {z € R": (a;,z) = 0}, (85)
Hp,={ze R (al,z) < 0}.

(2

By conditions and we have for all 7, j € I' that

i#j = Hp,#Hp;. (86)
Further note that we can reparametrize R(©) such that the same holds there. To this end observe that
cp({a, 2)) + ¢ p(la, ) = (c + ¢ Kl=)p((a, 2)), (87)

given that o’ is a positive multiple of a. Specifically, let (J;)5_; be a partition of I® (i.e. Ji, # 0,
U,Ic{:le = 1% and J, N Jy = 0 if k # k'), such that for all k € [K] it holds that

Cl]e a.@
ij € Jp = =1 (88)
’ laf e llaPll

We denote by ji the smallest element in J;, and make the following replacements, for all 7 € [ e,
without changing the realization of ©:

<}
e © o lla; e
i Ci i ||aj('—)k”°°7
J€Jk

a? — Ovc? — 0, ifi € J and @ # jy. (90)

ad —a ifi € Jy, and i = jy, (89)

Note that we also update the set 1 := {i € [m]: a® # 0} accordingly. Let now
Hg,i = {z e R (a?,z) > 0},
H&i ={x e R%: <a?,z> =0}, 91
Hg,={z € R (af,z) > 0}.
By construction and condition we have for all i, j € I® that
i#j = He,;# He. (92)
Note that we now have a parametrization © of g, where all weight vectors a are either zero (in
which case the corresponding c? are also zero) or pairwise linearly independent to each other nonzero

weight vector.
Next, for s € {0,1}™, let

Hp:= ()  Hf;n Hp,,
i€[m]: s;=1 i€[m]: s;=0 93)
Hy:= () Hé,n Hg .,
i€[m]: s;=1 i€[m]: s;=0
and
S = {sc{0,1}™: H: #0}, S©:={sec{0,1}™: H # 0}. (94)

The Hi, s € ST, and HE, s € S®, are the interiors of the different linear regions of R(T") and R(©)
respectively. Next observe that the derivatives of f}, fi@ are (a.e.) given by

Dff(x) =1y (x)cia;, DfP(x) =1y (x)cPag. 95)
Note that for every x € Hp, y € HE we have
DR()(@)= ) Dfi (@)=Y siciaj = 5,
1€[m] 1€[m)]

DR(O)(y) = Y DfP(y)= Y sicfad = X7

1€[m] i€[m]

(96)
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Next we use that for s € ST, ¢t € S© we have | — ¥P| < rif HT N HP # (), and compare
adjacent linear regions of R(I') — R(©). Let now i € I and consider the following cases:
Case 1: We have HY.; # HJ ; forall j € I°. This means that the Df, k € [m], and the D f},

k € [m]\{i}, are the same on both sides near the hyperplane Hp. ;, while the value of D f{ is 0 on
one side and ¢l al” on the other. Specifically, there exist s*, s~ € ST and s* € S® such that s]” = 1,
s; =0, sj = s; forall j € [m]\{i}, and H1§+ NHE #0,HE N HE # 0, which implies

lei af lloo = IS5+ — 22) = (Z5- = 22)

oo < 2r. 97)

Case 2: There exists j € 1€ such that HY ; = Hg ;. Note that (86) ensures that Hp ; # Hp , for
k € [m]\ {i} and (©2) ensures that Hg ; # Hp, for k € [m] \ {j}. Moreover, Condition
implies H; = H . This means that the D f2, k € [m]\{j}, and the Df{’, k € [m]\{i}, are the
same on both sides near the hyperplane Hf{i = H(%’ ;» While the values of D fF and D fj@ change.
Specifically there exist s*, s~ € ST and t7,¢t~ € S© such that s} = 1, s; =0, s = s;, forall
ke [m\{i},t] =1,t; =0, =t; forallk € [m]\{j}and HL, N HZ # 0, H_ nH2 # 0,
which implies

Iefal —cfalloo = (Z5 —£8) — (L = 29[ < 27 (98)

Analogously we get for i € 1€ that H, ; # H{ ; forall j € I" implies ||cPaf || < 2r. Next let

Iy == {i € [m]: HY; # H} ; forall j € I°}U{i € [m]: a] =0} (99)

7

and
I :=[m]\ I, = {i € [m]: 3j € I® such that HY, = Hérj} (100)

Colloquially speaking, this shows that for every f! with i € I, there is a fj@ with exactly matching
half-spaces, i.e. HIT ;= Hg’ ;» and approximately matching gradients (Case 2). Moreover, all
unmatched fiF and fj@ must have a small gradient (Case 1).

Specifically, the above establishes that there exists a permutation 7: [m] — [m] such that for every
1 € I it holds that

e a5 lloos Hc‘zc?(i)a?(i)HOO < 2, (101)
and for every ¢ € I5 that
e} ai — C?(i)a?(i)noo < 2r (102)

We make the following replacements, for all ¢ € [m], without changing the realization of ©:

In order to balance the weights of © for I;, we further make the following replacements, for all ¢ € I,
with ai@ # 0, without changing the realization of ©:

el y1/2 go
S’ i

a® = ( ¢ — (lalee)1/2 (9, (104)

i

This implies for every ¢ € I; that
21, llaf oo < (20)172. (105)
Moreover, due to Condition[C.1] we get for every ¢ € I that
i1 llai lle < 8. (106)
Thus we get for every ¢ € I; that

P — |, [laf — al[loo < B+ (2r)Y/2. (107)
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Next we (approximately) match the balancing of (¢, aP) to the balancing of (c!, al) fori € I,
in order to derive estimates on |c® — c!'| and ||a® — al'||o from (T02). Specifically, we make the
following replacements, for all ¢ € I, without changing the realization of O:

=)
a = (pa)"” al. ¢ - (i) 2 e, if el al o <2r,  (108)
e
cs
a? — %a?, c? — c{, if ||¢; aF||OO > 2r, \CF\ > ||aF||OO, (109)
G
e r <) Hai@”OO <) r r r
a; —a;, ¢ — ol ¢, 1f||c a; |loo > 27, ]¢; | < lla; |loos (110)
i oo
[S]
af = (o2, @ = (i) 2P, it el o > 2r, Jel] = ol e (11D

Let now ¢ € I5 and consider the following cases:
Case A: We have ||cl'al'||. < 2r which, together with (T02), implies ||c®a? || < 47. Due to (T0S)
and Condition [CT]it follows that

|ci®—c£|,||ai@—af||oo§ﬂ+2r1/2. (112)

Case B.1: We have ||cFal'||oc > 2r and |cF| > ||al||o which ensures |cF| > ||cFal'[|X%. Due to
(T09) we get c® = ¢! and it follows that

1 2r
o_ T _ 949 _ Ll < 1/2
||a’1 a; ||00 ‘CF| ||C — G a HOO —= H r FHl/Q - (27.) ’ (113)
Case B.2: We have ||cFal || > 2r and |cF| < ||al||sc which ensures [|al|| > [|cFal'[|5%. Due to
(T10) we get aP = al and it follows that
1 2r
e_ I_ ©6e_ IT 1/2
¢, —¢ | = coa; —c;a; — < (2r)7°. 114
| ) 1| Ha£||oo|| i % 4 'LHOO— H r FHl/Q —( ) ( )
Case B.3: We have ||c} a! || > 2r and |c}'| = ||a}||«. Note that ||cf al'||. > 2r and (T02) ensure

that sgn(c) = sgn(c}), and that for z,y > 0 it holds that |z — y| < |22 — y?|'/2. Combining this
with the definition of I5, the reverse triangle inequality, and (ITT) implies that

a® — al oo < (2r)/2 and | — cﬂ < (2r)/2, (115)

Combining (T07), (I12), (IT3), (IT4), and (TT3) establishes that
16 — Tl < B+ 2r%, (116)
which completes the proof. O

Proof of Theorem[3.3] Let © € N}; be a parametrization of g, i.e. R(©) = g. We write

ay af
_ r r _ : e e *
r=( L)), o= (] | [0 1e8)) € Ny (1ID)
a, ay,
and r := |g — R(T")|y1. . For convenience of notation we consider the weight vectors a!', a® here
as row vectors in order to write the derivatives of the ridge functions as c! al, c@ @ €RP xd Wlthout

transposing.

We will now adjust the approach used in the proof of Theorem [3.1]to work for multi-dimensional
outputs in the case of balanced networks. By definition of N, the (a®)™ , are pairwise linearly
independent and we can skip the first reparametrization step in (89) and

The following “hyperplane -jumping” argument, which was used to get the estlmates 97) and (98),
works analogously since Conditions|C.2] and- C 3| are fulfilled by definition of A5;. Th1s establishes

the existence of a permutation 7: [m] — [m] and sets I1, I C [m], as defined as in (99) and (I00),
such that for every ¢ € I; it holds that
e ai lloo, ey lloe < 21, (118)
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and for every ¢ € I5 that
e} af — ¢Sy aiylloo < 2r. (119)

(i

As in (T03), we make the following replacements, for all i € [m], without changing the realization of

O:
ap — afuy, o = oy (120)
Note that the weights of © are already balanced, i.e. we have for every ¢ € [m] that
1P oo = llaflloo = NP 1% a2 1% = 1P af[132. (121)
Thus, we can skip the reparametrization step in (T04) and get directly for every i € I; that
Ie? = e lloo < llelloc + e lloe = [0 137 + lief af 13? < 2(2r)'/2 (122)

and analogously [|a® — al ||o < 2(2r)'/2.

For i € I, we need to slightly deviate from the proof of Theorem 3.1} We can skip the reparametriza-
tion step in (TO8)-(TTT) due to balancedness and need to distinguish three cases:

Case A.1: We have |[cl'al'||. < 27 which, together with (TT9), implies ||c®a® || < 47. Due to
balancedness it follows that

Ie? = e lloc llaf” — aflloo < 4r/2. (123)

Case A.2: We have ||c®a®||. < 2r which, together with (TT9), implies ||c}al || < 47. Again it
follows that

le? = et lloes la? = @ loo < 4r*/2. (124)

Case B: We have ||c®aP||o > 2r and ||cf'al ||« > 2r. Due to the definition of I there exists

e; € RGN AD € (0,00) with [|€;]|e = 1, a® = Ae;, and al = Ale;. As in (TT3) we obtain that

la = af lloo = lleslloolAS = AT < IAD)? = (AD)?M?
= [llePlloollaflloo = llef lloollaf lloo| /2 (125)

< || efad — efaf I3 < (2r)'/2.

Let now w.l.o.g. ||aF lloo > [laP]/oo (otherwise we switch their roles in the following) which implies

that \I' = A; + A9 with A; = A — AP > 0. Then it holds that

106y JPaf — el _ [l — cPaP e + | P? — el
Lo ||aiF||oo - la lloo
Moo Al = A +2r  AOA; +2
S ||cl H | ? T K ‘+ r — K +@r (126)
Al A;+ A
_@n)VEAH D) — (AP = (2r)'2)((2r)! 7 — Ay < (2r)1/2,
B N -
The last step holds due to (T23)) and the balancedness of © which ensure that
AP = [|cRal |12 > (2r)'2 = A2 = M| = A (127)
This completes the proof. O

A.4 Sectionld

A.4.1 Additional Material
Lemma A.7 (Inverse stability for fixed weight vectors). Let N = (d,m,D) € N3, let A =
[a1] ... |an]T € R™*d with

a;

ailloc ™ llajloo

and (a;)da—1,(a;)qa >0 (128)
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foralli € [m],j € [m]\ {i}, and define
N3 = {r eNy: aj = \a; with \; € (0,00) and ||c} ||oo = ||} || foralli € [m]}. (129)

Then for every B € (0,00) there is Cp € (0, 00) such that we have uniform (Cp,1/2) inverse sta-
bility w.r.t. || - || Lo ((— B, B)ya)- That is, for all T' € N3 and g € R(N) there exists a parametrization
® € N with
1

R@) =g and [Tl < Callg = RO 2w p o (130)
Proof. Note that the non-zero angle between the hyperplanes given by the weight vectors (a;),
establishes that the minimal perimeter inside each linear region intersected with (—B, B)? is lower
bounded. As the realization is linear on each region, this implies the existence of a constant
C'; € (0,00), such that for every © € N3 it holds that

IR(O©)|w1ee < CBIR(O)| Lo ((—B,B))- (131)

Now note that for N§} we can get the same uniform (4, 1/2) inverse stability result w.r.t. | - 1,0
as in Theorem [3.3] by choosing 7 to be the identity in (T18). Together with (I3T)) this implies the
claim. O
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