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A Proof of Theorem 1

First, we present an easy lemma that uses our topological conditions on the neighborhood function.

Definition 1. A binary relation R C X x Y, or equivalently a set-valued function X — 27, is upper
hemicontinuous if it has the following property. For all open sets V. C Y and points x € X such that
R(z) C S, x has an open neighborhood U such that R(U) C V. Equivalently, RT (Y \ V) is closed.

Lemma 1. Suppose that the adversarial constraint function N is upper hemicontinuous, and N (x)
is nonempty and closed for all z € X. Then the cost function cx o ¢ is lower semicontinuous.

Proof. For each point (z, ') such that (cy o c¢&)(z,2") = 1, we will find an open neighborhood

with the same cost. Thus ¢y o c]TV is the indicator function of an open set and is lower semicontinuous.
The sets N(z) and N(z') must be disjoint because (cy o c¢§)(z,2’) = 1. They are closed, and
X’ is a normal space, so they have disjoint open neighborhoods V' and V’. Because N is upper
hemicontinuous, = and =’ have open neighborhoods U and U’ such that R(U) C V and R(U’) C V.

O

Because V and V' are disjoint, ¢y o ¢k is one everywhere in U x U’.

For the proof of Theorem [I] we need to use the concept of a cyclically monotone set [[1]].

Definition 2. A subset I' C X x Y is said to be c-cyclically monotone if, for all n € N and all
families of points (z,y) € T™ C X" x V",
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(with the convention y, = Yo ).

Proof of Theorem[l] Abbreviate ¢y o ck as c. From Lemma 1| the cost function c is lower-
semicontinuous. From Theorem 5.10 (ii), there isa set I' C X’ x X that is measureable, is c-cyclically
monotone, and such that every optimal coupling is concentrated on it.

We need to find f, g : X — Rsuchthat c(x,y) > g(y) — f(z) everywhere and ¢(z,y) < g(y)— f(x)
for (x,y) € T. The former property means that f and g are admissible potentials and the latter means
that they are optimal in the dual transportation problem. A classifier h can be constructed from any
pair of admissible {0, 1}-valued potentials.
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For all 7 > 0, let
Ay={re X I e Xstclx,y)=1,(x,y) €T}
Al ={y eX:3x e Astclz,y) =0}
Aipr={zeX:3 e A stc(z,y)=0,(z,y) €T}
By={yeX:32 € Xstcla',y)=1,(,y) €T}
Bz/'—i-l ={z' e X:3y € B;st. c(x/,y):o}
Bipi={yeX:3a' e Bj st c(a,y)=0,(z',y) e}

Further define A = U;>04;, A’ = U;>14,, B = U;>0B;, and B’ = U;>1Bj]. Observe that
A ={ye X :3x € Ast.c(z,y) =0and B’ = {z € X : Jy € Bs.t. c(x,y) = 0}. If we
let g(y) = 1(B), then f(z) = 1(B’') = sup, g(y) — c(=,y), i.e. the largest function such that
g(y) — f(x) < e(z,y) everywhere. Alternative choices for f and g come from A and A’. If we let
f(x) =1—1(A), then g(y) =1 — 1(A') = inf, f(2) + c(z,y).

Forall z € A, there is some j and sequences (zo, - -+ , ;1) and (yg, - -+ ,y;_;) such thatz; ; = =,
x; € Aj,and yj € Aj | that witness this. Similarly, for all y € B, there is some k and sequences
(xg, -+ ,xh_q) and (yo,- -+ ,yx—1) such that y,_1 =y, y; € B;, and z € B]. Now we have

j—1 k—1

C(xmyg) + ZC(Z‘;,yL) =2

i=0 =0

and
j—1

k—1
c xz 17yz + ZC T;_ 17y1 + c(x(vaO) +c (xj*hyk*l) = C($67y(/3) +C(x]’*17yk*1)'
1 =1

i=

From the cyclic monotonicity of I" and the fact that c is always at most 1, ¢(z(, yy) = ¢(j—1,Yr—1) =
1. Thus ¢(x,y) = 1 for all (z,y) € A x B. This means that A and B’ are disjoint and B and A’ are
disjoint.

Now consider some (z,y) € I'. If ¢(z,y) = 1, thenz € Ap, y € By, so (z,y) € A x B. If
c(z,y) =0, (x,y)isinone of A x A", B x B,or (X \ A\ B') x (¥ \ A"\ B). We can now
easily check that for g(y) = 1(B) and f(x) = 1(B’), g(y) — f(z) = ¢(z,y) everywhere in T'. The
choices g(y) = 1(X \ A’) and f(x) = 1(X \ A) work similarly.

Finally, we have

E[g(X-1) — f(X1)]
= Pr[ﬁ(Xfl) =-1]- PT[B(XI) # 1]

=1 - Pr[h(X,) # 1] — Pr{a(X 1) ]
=1-Pr{a(Xy) # 1] = Pr[h(X_y) # —1]
—1—2L(N,h, P).

B Full Proof of Theorem 2

For a closed convex ball B C RY, define the cone Cg C R4*L, Cg = {(2,a) : @ > 0,2 € aBB}.
Observe that Cp is convex and for ¢ > 0, (z, ) € Cp implies (cz, ca) € Cg. Thus Cp is indeed a
cone. From this, define the norm ||z||g = min{a : (2,a) € Cp}. Thus Cg = {(z, @) : ||z|lg < a}.

For a cone C C R, the definition of the dual cone is C* = {y € R? : yTo > 0 Vz € C}. A
pair (w,7) € Cj if and only if w' 2 + @y > 0 for all (2, ) € Cg. It is enough to check the pairs
(2,]12]l5), which gives the condition —w " z < ||z].



This is very close to the ordinary definition of the dual norm. However, when /5 is not symmetric, the
minus sign matters. If 0 € 5, then (0, 1) € Cp and the constraint v > 0 applies to Cj;. However, if
0 ¢ B, Cj; with contain points with negative v components. In this case, there is no interpretation as
a norm.

B.1 Proof of Lemma 1

Consider the following convex program:

min aa + b3
(Zva7y:5) S CB X CZ
z+y=p

The cone constraint is equivalent to ||z||g < « and ||y||s < 8. The equality condition is equivalent
to u — z — y € {0}, the trivial cone.

The Lagrangian is
L=aa+b8—w'(z+y—p)
z z
=07 a 0" ) || -w"(I 0 I 0 3 +wlp

B B

The dual is
w € RY

max pu” w

(—w,a,—w,b) € Cg x Cs,

The cone constraint on w is trivial because the dual of {0} is all of R,

If we change the objective of the first program to use a hard constraint on « instead of including it in
the objective, the new primal is

(2,0, y, B) € RI+1+d+1
min b3
(z,,y,0) € Cg x Cx
z+y=p
a<dao

the new Lagrangian is
L=bf—w'(z4+y—p) —nld —a).
The new dual is

(w,n) € R
max T w — a'n
n>0

(—w,n, —w,b) € C x Cs,.

Rewriting without any cone notation, combining « with o/, and specializing to b = 1, we have
(2,y,f) € Ri+d+1
min 8
Izl < a
lylls <8
Z+y=p



and
(u%7n E]Rd+1
max pw — an
n=0
[—wllz <n
[—wlls <1
From complementary slackness we have —w " z+na = 0 and —w " y+b3 = 0. From the constraints,
we have ||z]5 < a. lylls < 8. [|-wl < 7. and |—w]]§; < b. We have w'z < |jw||3]|2]5 and

w'y < ||w||%ly|ls. Combining these, all six inequalities are actually equalities.

B.2 Simplification of transportation problem

From TheorenT}
CNOOJW\;(PX17PX71) SzienﬁfBCTV(PX17PX71)’ (])
= inf sup Px,(A) — Px_,(A 2
Jnf sup Px, (4) = Px_, (4), @)
= ZienﬂfB sup By onr(u—z,x) [L(wTz > 0)] = Epopnr(—pt2,m) [L(wTz > 0)]
3)
. wiz —wTy wTuwTZ>
= inf su — | — — 7 , 4
2€BB pr< VwTXw ) Q( VwTXw @
. wlz —wTy
= inf sup?2 —_— | - 1. 5
z2€pB wp Q( VwTXw ) ©)
As before, since the @-function decreases monotonically, its supremum is obtained by find-
ing inf,, % The infimum is attained at w* = 2%~ !(z — p) and its value is
V/(z = )T2-1(z — p), which implies that
O o CX(Px, Px_,) < inf 2Q (V= w21 = p)) 1. (6)

B.3 Connection to the classification problem

We consider the linear classification function f,,(z) = sgn (wTz).

Classification accuracy: We define the classification problem with respect to the classification
accuracy E(, oy p [1(fuw(2) = y)] = P(gy)~p [fw(z) = y], which also equals the standard 0 — 1
loss subtracted from 1. The aim of the learner is to maximize the classification accuracy, i.e. the
classification problem is to find w* which is the solution of max,, P, ,y~p [fuw(z) = y].

Performance with adversary: In the presence of an adversary, the classification problem becomes
mgx P(z,y)NP [fw (SU + h(l’, Y, ’LU)) = y]

1 1
= mgx §P1~N(M,Z) [fw(x + h<x7 17w)) = 1] + §Px~N(7u,E) [fw(x + h(.’L’, —17’LU)) = _1] .

We will focus on the case with y = 1 for ease of exposition since the analysis is identical. The correct
classification event is then

fw(lx+h(z,1,w)) =1,
=wT(x + h(z,1,w)) >0,

=swTze —wTargmaxwTz > 0,
z€EBB

swTez —maxwTz >0
zeBB

=wTz — Bllw|. >0,
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Figure 1: Variation in minimum 0 — 1 loss (adversarial robustness) as 3 is varied for ‘3 vs. 7°.

For MNIST and Fashion-MNIST, the loss of a robustly classifier (trained with iterative adversarial
training) is also shown for a PGD adversary with an /., constraint.

where || - ||+ is the dual norm for the norm associated with 5. This gives us the classification
accuracy for the case with y = 1 as max,, Egnr(u,n) [L(wTz — Bllw||« > 0)]. We now perform a
few changes of variables to obtain an expression in terms of the standard normal distribution. For
the first, we do 2’ = & — 1, which gives us max,, E, . nr(0,5) [L(wT2" +wTp — B|lwll« > 0)]. The
second is " = wTa’, which results in max,, E,» ar(0,02) [1(2” +wTp — Bllwl[« > 0)], where 0 =
VwTXw. Finally, we set 2"/ = %ﬁ, leading to maxy, By ar(o,1) [1(x”’ + wTT“ — % > 0)].
The classification problem is then

1 1
muE]lX iprN(u,Z) [fw(x + h(l'v 1,’LU)) = 1] + i]P)xNN(—M,E) [fw(x + h(l', —1,w)) = —1] s

(7
_ Bllwlls —wTp
- (FE). v

Since Q(-) is a monotonically decreasing function, it achieves its maximum at w* =

wlls—wTp

min,, ﬁ’HwW This is the dual problem to the one described in the previous section.

C Proof of Theorem 3
The proof of Theorem [3]is below. The assumptions and setup are in Section [5]of the main paper.

Proof. Let i = Elu|((X1,Y1),...,(Xn,Ys)]. A straightforward computation using Bayes rule
shows that X, 11 - Y1 |((X1, Y1), ..., (Xn, Yn)) ~ N (fi, I). Thus after observing n examples, the
learner is faced with a hypothesis testing problem between two Gaussian distributions with known
parameters. From Theorem 2} the optimal loss for this problem is Q(a* (8, f1)).

Furthermore, (i = #M Yo, X;and o ~ N(O, L ). Averaging over the training examples,

we see that the expected loss is
E[Q(a” (8, )] = Pr[T = (8, )] = Pr[(, T) € S(1, 8)] = Pr[Y € 5(p, pb)]
where T € R, T ~ N(0,1) and V € R4,V ~ N(0, I). O

D Results for an /., adversary

In Figures|Ialand[Tb] we see that the lower bound in the case of /., adversaries is not very informative
for checking if a robust classifier has good adversarial robustness since the bound is almost always 0,
except at 5 = 0.5, in which any two samples can be reached from one another with zero adversarial
cost, reducing the maximum possible classification accuracy to 0.5. This implies that in the /o,
distance, these image datasets are very well separated even with an adversary and there exist good
hypotheses h. For MNIST (till 5 = 0.4) and Fashion MNIST (8 = 0.3), we find that iterative
adversarial training is effective.

For the CIFAR-10 dataset non-zero adversarial robustness occurs after 5 = 0.2. However, current
defense methods have only shown robust classification with 5 up to 0.1, where the lower bound is 0.
In future work, we will explore the limits of S till which robust classification is possible with neural
networks.
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