
Supplement: Improved Precision and Recall Metric
for Assessing Generative Models

Tuomas Kynkäänniemi∗
Aalto University

NVIDIA
tuomas.kynkaanniemi@aalto.fi

Tero Karras
NVIDIA

tkarras@nvidia.com

Samuli Laine
NVIDIA

slaine@nvidia.com

Jaakko Lehtinen
Aalto University

NVIDIA
jlehtinen@nvidia.com

Timo Aila
NVIDIA

taila@nvidia.com

A Pseudocode and implementation details

Algorithm 1 k-NN precision and recall pseudocode.

Input: Set of real and generated images (Xr, Xg), feature network F , neighborhood size k.

1: function PRECISION-RECALL(Xr, Xg,F , k)
2: Φr ←F (Xr)
3: Φg ←F (Xg)
4: precision← MANIFOLD-ESTIMATE(Φr,Φg, k)
5: recall ← MANIFOLD-ESTIMATE(Φg,Φr, k)
6: return precision, recall

7: function MANIFOLD-ESTIMATE(Φa,Φb, k)
8: Approximate manifold of Φa.
9: for φ ∈ Φa do

10: d ←
{∥∥φ− φ′∥∥

2

}
for all φ′ ∈ Φa . Pairwise distances to all points in Φa.

11: rφ←mink+1(d) . (k + 1)-th smallest value to exclude φ itself.
12: Compute how many points from Φb are within the approximated manifold of Φa.
13: n← 0
14: for φ ∈ Φb do
15: if

∥∥φ− φ′∥∥
2
≤ rφ′ for any φ′ ∈ Φa then

16: n← n+ 1
17: return n/|Φb|

Algorithm 1 shows the pseudocode for our method. The main function PRECISION-RECALL evaluates
precision and recall for given sets of real and generated images, Xr and Xg , by embedding them in a
feature space defined by F (lines 2–3) and estimating the corresponding manifolds using MANIFOLD-
ESTIMATE (lines 4–6). The helper function MANIFOLD-ESTIMATE takes two sets of feature vectors
Φa,Φb as inputs. It forms an estimate for the manifold of Φa and counts how many points from Φb

are located within the manifold. Estimating the manifold requires computing the pairwise distances
between all feature vectors φ ∈ Φa and, for each φ, tabulating the distance to its k-th nearest
neighbor (lines 9–11). These distances are then used to determine the fraction of feature vectors

∗This work was done during an internship at NVIDIA.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

1

2 3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
Covered modes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Precision
Recall

1 2 3 4 5 6 7 8 9 10
Covered modes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
F1=8

F8

(a) (b) (c)

Figure 1: (a) Real data covers five modes (1–5) and the generated data is expanded, one mode at a
time, to cover the real modes (1–5) and five extraneous modes (6–10). Both metrics were evaluated
using 20k real and generated samples. (b) Results from our metric with k = 3. (c) Results from the
method of Sajjadi et al. [6].

φ ∈ Φb that are located within the manifold (lines 13–17). Note that in the pseudocode feature
vectors φ are processed one by one on lines 9 and 14 but in a practical implementation they can be
processed in mini-batches to improve efficiency.

We use NVIDIA Tesla V100 GPU to run our implementation. A high-quality estimate using 50k
images in both Xr and Xg takes ∼ 8 minutes to run on a single GPU. For comparison, evaluating
FID using the same data takes∼ 4 minutes and generating 50k images (1024× 1024) with StyleGAN
using one GPU takes ∼14 minutes. Our implementation can be found at https://github.com/
kynkaat/improved-precision-and-recall-metric.

B Precision and recall with synthetic dataset

In Figure 1 we replicate the mode dropping and invention experiment from [6], albeit with a 10-
class 2D Gaussian mixture model instead of CIFAR-10 images. As in [6], the real data covers five
modes, and we measure precision and recall when 1–10 of the modes are covered by a hypothetical
generator that draws samples from the corresponding Gaussian distributions. In Figure 1b we see
that our method yields the correct values for precision and recall in all cases: when not all modes are
being generated, precision is perfect and recall measures the fraction of modes covered, and when
extraneous modes are generated, recall remains perfect while precision measures the fraction of real
vs. generated modes. Figure 1c illustrates that the method of Sajjadi et al. [6] performs similarly
except for artifacts from k-means clustering.

C Analysis of truncation methods

Many generative methods employ some sort of truncation trick [5, 1, 4, 3] to allow trading variation
for quality after the training, which is highly desirable when, e.g., showcasing uncurated results.
However, quantitative evaluation of these tricks has proven difficult, and they are largely seen as an
ad-hoc way to fine-tune the perceived quality for illustrative purposes. Using our metric, we can
study these effects in a principled way.

StyleGAN is well suited for comparing different truncation strategies because it has an intermediate
latent spaceW in addition to the input latent space Z . We evaluate four primary strategies illustrated
in Figure 2a: A) generating random latent vectors inW via the mapping network [3] and rejecting ones
that are too far from their mean with respect to a fixed threshold, B) approximating the distribution of
latent vectors with a multivariate Gaussian and rejecting the ones that correspond to a low probability
density, C) clamping low-density latent vectors to the boundary of a higher-density region by finding
their closest points on the corresponding hyperellipsoid [2], and D) interpolating all latent vectors
linearly toward the mean [4, 3]. We also consider three secondary strategies: E) interpolating the
latent vectors in Z instead ofW , F) truncating the latent vector distribution in Z along the coordinate
axes [5, 1], and G) replacing a random subset of latent vectors with the mean of the distribution. As

2

https://github.com/kynkaat/improved-precision-and-recall-metric
https://github.com/kynkaat/improved-precision-and-recall-metric

A) Reject by distance B) Reject by density

C) Clamp by density D) Interpolate to mean
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Recall
0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

Pr
ec

isi
on

A) Reject dist.
B) Reject dens.
C) Clamp dens.
D) Interp. mean

E) Interp. Z
F) Trunc. Z
G) Replace

80 70 60 50 40 30 20 10 0
FID

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

Pr
ec

isi
on

A) Reject dist.
B) Reject dens.
C) Clamp dens.
D) Interp. mean

E) Interp. Z
F) Trunc. Z
G) Replace

(a) (b) (c)

Figure 2: (a) Our primary truncation strategies avoid sampling the extremal regions of StyleGAN’s
intermediate latent space. (b) Precision and recall for different amounts of truncation with FFHQ.
(c) Using FID instead of recall to measure distribution quality. Note that the x-axis is flipped.

suggested by Karras et al. [3], we also tried applying truncation to only some of the layers, but this
did not have a meaningful impact on the results.

Figure 2b shows the precision and recall of each strategy for different amounts of truncation. Strategies
that operate in Z yield a clearly inferior tradeoff (E, F), confirming that the sampling density in
Z is not a good predictor of image quality. Rejecting latent vectors by density (B) is superior to
rejecting them by distance (A), corroborating the Gaussian approximation as a viable proxy for image
quality. Clamping outliers (C) is considerably better than rejecting them, because it provides better
coverage around the extremes of the distribution. Interpolation (D) appears very competitive with
clamping, even though it ought to perform no better than rejection in terms of covering the extremes.
The important difference, however, is that it affects all latent vectors equally — unlike the other
strategies (A–C) that are only concerned with the outliers. As a result, it effectively increases the
average density of the latent vectors, countering the reduced recall by artificially inflating precision.
Random replacement (G) takes this to the extreme: removing a random subset of the latent vectors
does not reduce the support of the distribution but inserting them back at the highest-density point
increases the average quality.2

Our findings highlight that recall alone is not enough to judge the quality of the distribution — it only
measures the extent. To illustrate the difference, we replace recall with FID in Figure 2c. Our other
observations remain largely unchanged, but interpolation and random replacement (D, G) become
considerably less desirable as we account for the differences in probability density. Clamping (C)
becomes a clear winner in this comparison, because it effectively minimizes the Wasserstein-2
distance between the truncated distribution and the original one in W . We have inspected the
generated images visually and confirmed that clamping appears to generally yield the best tradeoff.

D Quality of samples and interpolations

Figure 3 shows BigGAN-generated images for which the estimated realism score is very high or very
low. Images with high realism score contain a clear object from the given class, whereas low-scoring
images generally lack such object or the object is distorted in various ways. High and low quality
images for each class were obtained from 1k generated samples.

Figure 4 demonstrates StyleGAN-generated images that have very high or very low realism score.
Some variation in backgrounds, accessories, etc. is lost in high quality samples. We hypothesize
that the generator could not realistically recreate these features, and thus they are not observed in
high quality samples, whereas low quality samples often contain hats, microphones, occlusions, and

2Interestingly, random replacement (G) actually leads to a slight increase in recall. This is an artifact of our
k-NN manifold approximation, which becomes increasingly conservative as the density of samples decreases.

3

varying backgrounds that are challenging for the generator to model. High and low quality images
were obtained from 1k generated samples.

Figure 5 presents further examples of high and low quality interpolations. High-quality interpolations
consist of images with high perceptual quality and coherent background despite the endpoints being
potentially quite different from each other. On the contrary, low-quality interpolations are usually
significantly distorted and contain incoherent patterns in the image background.

References
[1] A. Brock, J. Donahue, and K. Simonyan. Large scale GAN training for high fidelity natural image synthesis.

In Proc. ICLR, 2019.
[2] D. Eberly. Distance from a point to an ellipse, an ellipsoid, or a hyperellipsoid. Geometric Tools, LLC, 2011.
[3] T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative adversarial networks. In

Proc. CVPR, 2019.
[4] D. P. Kingma and P. Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. CoRR,

abs/1807.03039, 2018.
[5] M. Marchesi. Megapixel size image creation using generative adversarial networks. CoRR, abs/1706.00082,

2017.
[6] M. S. M. Sajjadi, O. Bachem, M. Lucic, O. Bousquet, and S. Gelly. Assessing generative models via

precision and recall. CoRR, abs/1806.00035, 2018.

4

B
or

de
rC

ol
lie

L
ak

es
id

e
N

or
w

ic
h

Te
rr

ie
r

Pe
rs

ia
n

ca
t

Pa
nd

a
Si

am
es

e
ca

t

(a) High-quality samples

B
or

de
rC

ol
lie

L
ak

es
id

e
N

or
w

ic
h

Te
rr

ie
r

Pe
rs

ia
n

ca
t

Pa
nd

a
Si

am
es

e
ca

t

(b) Low-quality samples

Figure 3: Examples of (a) high and (b) low quality BigGAN samples according to our realism scores.

5

(a) High-quality samples

(b) Low-quality samples

Figure 4: High (a) and low quality (b) StyleGAN samples according to our realism scores.

6

(a) High-quality interpolations

(b) Low-quality interpolations

Figure 5: Examples of (a) high and (b) low quality interpolations according to our realism scores.

7

	Pseudocode and implementation details
	Precision and recall with synthetic dataset
	Analysis of truncation methods
	Quality of samples and interpolations

