Supplementary Document for
“Metric on Nonlinear Dynamical Systems with Koopman Operators"'

In this supplementary material, we briefly explain the notion of the exterior product of Hilbert spaces
in Section[A, and then give the proofs of Proposition 3.1, Proposition[3.2] Proposition 3.6, Lemma[3.7,
and Proposition[d.1]in Section D, Section[B] Section|C] Section[E and Section [F| respectively. And
then, we describe the details of the derivations of Eq. (7), and the analytic solutions of A; in Eq.
and A, in Eq. (9) in Section|G] Section[H, and Section[[} respectively.

A Exterior product of Hilbert spaces

Let H be a Hilbert space with inner product (-, -). Let H®™ be a m-tensor product as an abstract
complex linear space. Then for z1 @ ... Ty, Y1 @ ... Ym € HO®™,

m

<-771 Q. Tm, Y1 .. ~ym>® = H<-Tz’yz>
=1

induces an inner product on H®™. We denote by &™ H the completion via the norm induced by the
inner product (-, ).

We define a linear operator & : @ H — & H by
E(x1 @ Tpy) := Z SgN(0)Te(1) @ - -+ @ Lo (m),
ceS,,

where &, is the m-th symmetric group, and sgn : &,, — {£1} is the sign homomorphism. We
define the m-th exterior product of H by

N =& (8"H).
For z4,...,x, € H, we also define
TN Ty = E(21 @+ Q)
The inner product on \"™ H is described as

(LI A ATy Y1 A AYm) A i = det({Ts, ¥5))ij=1,....m-
We note that there exists an isomorphism

m

@ /\H@/\H’%/\(H@H'); Z Ty Q Ys > Z Ty A Ys.

r4+s=m r+s=m r4+s=m

Let L : H — H' be a linear operator. Then L induces a linear operator &"L:®"H - " H'
defined by @mL(ml ®...%m) = Lz; ® -+ ® Lx,,. The operator ®" L induces an operator on
A™ H, namely,®" L (A™ H) ¢ \™ H’, and we define

m

ANL:=8 'L‘/\WH.

B Proof of Proposition 3.1

Proof. Let S(D;) := (Lhi/i, ceey LhiKﬁflfi), which is a linear operator from Hj, to Hfb.

Since A™S(D3)*S(D1) = (A™S(D3))* (AN™S(D1)), &m (D1, Dy) is just a inner product of the
Hilbert-Schmidt operators A™S(D1) nad A™S(Dy), thus, we see that &2 is a positive definite
kernel. O



C Proof of Proposition

Proof. Since <77 is a positive definite kernel on .7(Hiy, Ho), there exists RKHS M 75 with feature

m

map ¢ : 7| (Hin, Hov) = H <5 Therefore, the statement of the theorem follows that

V1= 80002 =272 |00 - 43,

a5

D Proof of Proposition 3.6

In this section, we denote v, := v1 ., and W, 1= va . Also, let @y, ., = a1, Ln, @10, Ao A
1,y Lny P10, aNd Yy, o i= G20 iy Yo ny Ao AG2p,, Lp, Yo n,,. Then we have

<Lh1K;11 Ve Ao ALy Kgrvg,, L, K wg, A=+ A Lth;r;wsm>

o0

o t1 ~t1 tom ~—tm

= E )‘171)1 )‘2#1 e )‘l,pm>‘2,qm <90P1’~~,;Dm7 ¢Q1,m,qm> :
P1y--sPm=1
q1,--,qm=1

Thus we have the following formulas:
T
ﬁm(Dlv DQ)
T ——7T
e} T T
1- >‘1,p1 A2,q1 1 - >‘1,pm>‘2,qm

- ¥

)\ )\7 . e )\ )\7 <<pp17...,pm) wq17~..7(hn> ’
1= Arp A2 L= Apm A2

P1,--Pm=1
q1;--,qm=1
T
R (D1, D1)
—7 —7T
200: 1- )‘{pl)‘lﬂh 1- )‘{,pm)‘l’lhn
= 1 A T e 1 /\ )\7 <<pp17---,17mﬂ quly---qu> )
P1ye-eyPm=1 — AMpiML,q1 — ALpm N L,gm
qise-qm=1
T
R (D2, D3)
—7T —7T
[e'S) T AT
1 A2ap1 AQ;QI . 1 A2,p7n)\27(hn <’(b ’lb >
N P1y--sPm > q1,--sqm /[

- ¥

D1y sPm=1
q1;---,qm=1

- )‘27131)‘2,!11 1- )\27pm)\27(I'm

Here, for any complex number z, if z = 1, we regard (1 — 27)/(1 — z) as T..

We may assume both &2 (D, D1) and £ (D, D) are grater than some positive constant not
depending on T'.

At first, we treat the case DD and Ds are semi-stable. In this case, we see that R%(Di, Dj) =
¢; ;T 4+ o(T™ ) for some some constant ¢; ; and non-negative integer n;; > 0. Moreover, we have
2n12 < ny1,N22. By combining this with that an,...,nm l|¢n1,....n., || and Zm,---,nm ¥n,....0n0m I

converge, we see that A,,, converges and the limit is equal to ,Qf,f for any Banach limit B.



Next, put

— T P
S A P e e

1.p
KT — sPm
1I,N * E

1 - >‘17P1 )‘2#11 1- )\1,pm )\2,qm

T

<§0P1,<--71)m7 ¢Q1=--<7Qm> )

P1y--sPm=1
ql»-*anL:l
N —7 — T
KT  .— 1- )‘{pl)‘lm 1 - )‘{pm)‘lﬁqm
2,N - Z 1\ B 1\ N <‘10P1,~~’Pm7 <Pq1,~~~,qm>7
P1s.-sPm=1 — AMLpi Mg T ALpm AL gm
q1,--3qm=1
N —7T —
KT . 2 : 1- )‘2T,p1>‘2=q1 1 - )‘2T.,pm A2,q,,
3N - 1— oo o 1— 2\ . (Wproms Parreeom) >
PlyesPm= — 2p1\2,q1 T A2, N2,gm
qi,-.-, gm=1
T |2 o0
An = M €
N = KT KT )
2NB3N )

Since Ay — A, as N — oo, thus C Ay — C'A,, and thus it suffices to show that C' A converges
for any sufficiently large IV, but, the convergence of C A actually follows the Lemmabelow.
BC = B.

Lemma D.1. We denote by S := {z € C | |z| = 1} the unit circle in C. Let f : S™ x C" — C be

a continuous function. Let ¢ € S™ and {x;};>0 C C" be a sequence convergent to zero. Then the
limit
1 Z
lim — E ta
T—oo T Py f(c ’ t)

converges.

Proof. By the Weierstrass’ approximation theorem, we may assume f is a m + n-variable monomial:

f@1, .. Togn) = 27z Thus f(CF, @) is regarded as ¢* or ¢y, where ( € C with
I¢] = 1 and {y; }:>0 is a sequence convergent to zero. In the both cases, we see that the limit in the
lemma exists. O

E Proof of Lemma

We use the property of trace of a linear operator A on C*:
tr(AN---ANA) = Z (Aeg, A+ N Aes, ) €5, Ao+ Neg, ),
0<s1< <8, <N
= Z (E(Aes, ® -+ ® Aes, ), E(es, ® - ®ey,,)).
0<s1< - <Sm <N

Here, e, be N-length vectors whose sj-th component is 1 and the others are 0, and

1
Ei®...ony)=tv1 A--- Aoy = N Z SgN(0)Vp(1) @ -+ @ Ug(n)
oESN

where Sy is the symmeric group of degree V. Thus, we have

ﬁﬁ((Lhrivain)v (th7Kfj7Xj))
T-1

= 2

t1, tm=01<s51<--<85;, <N
(Dn KRXED Ao p Ly K X O Ly KX A ALy K X))

Here, we use the property of Hermite transpose of wedge product: (41®---®A4,,)* = A®---Q A},
for operators Ay, ..., Ay,



F Proof of Proposition 4.1

Let V; be a matrix making A; the Jordan normal form in the following form:
D, - 0

VAV = Jiinia

0o - Jin,

M/
i

Here, all the n; ;, > 1 and ﬁl = diag(ay,1,. .., ai0,) and Ji o, o= Bikdn, ,, + mei .—1 Where

. o I,
v (5 B )

We assume
laia| > > o] > 1= laig41] = = |Qm| > |Qmg1] > > ||
1Bial = - 2Byl > 1= |Bigsal = -+ = |Bims| > |Biomial = -+ > |Biarr
Let
0 0
N- L N’I/Liyl—l
1 T b
0o ... Ni st

be a nilpotent matrix and let D; := Vi_lAiVi — N, be a diagonal matrix. Then direct computation
shows that

RZ ((LciuKAi7Iq)7 (LC]‘7KAj7Iq))

q T-1
—det V- detV; det | 303 .Cu- Gy DTN WNSD]
a,b=0 r=0
where W = Vj*CJ’?‘CiVi. Put
q T-1
Bi,j,T = Z Z +Cq - rCp - D;r_bN;bWNiaD:_a'
a,b=0 r=0

For T" > 0, we define

D =diag| o ", ... a7, T2 T2 1,001
i, T g i1 IRt W) l'i+17 ) m y Ly ’Mi

T —1p-T —ni1+1/-T -T g+l T
’Bi,lvT ﬂi’l,...,T "“JFBM7...,6“;7...,7“ HTB

il

7

T2 T R T 1).

Then we see that lim7_, o, D;‘*TBL 5.7 D} 1 exists. Therefore, since

|det (Dfy-Bio,rDir)|?

Al (Dy,Dy) =
det (DllfTBLLTDLT) det (D/QfTBQ»ZTDZT)

)

the limit of A exists.

If the systems are stable and observable, it is the direct consequce of the definition of principal angles
(see the formula (1) in [6]).



G Derivation of Eq.

Let
Pi={vit, vt Qi={Viti+1s-- > Yimi }oand Ry = {Vimig1,-- -5 YN, ) -

Define D] 1 := diag((%‘,l)’T, s (i)™ E, \/Til, cey \FTﬁl, 1,..., 1). Then, fori = 1, 2, we

li+1 myg
have
Jim R (D1, Dy) - |det Dj p|? - | det V;| 2
bde el
1 1 (10)
= (—1)*Fi det ( > det < ) .
L—af a,feEP; L—af a,BER;
On the other hand,
Jim |87 (Dy, D,) - det D] 1 - det D;,T‘ |det V7 - det V5| (11)
det< ! ) det( ! > if |P1| = | P, | =|Ra|, Q1 =Q
— 1_aﬁ aeP17 1_a/8 aERh 1| — 2| - 2| 1 — 2y
0 otherwise.

Here, we give a sketch of the proof of Egs. and (LI). Since both are proved in a similar way, we
only show Eq. in the case of i = 1.

Proof of (I0) in the case of i = 1. Recall

T-1
.Q,II\} (Dla D2) = det (Z(Vl—l)*DIr+1WDI+1V1_1>

r=0

T
= |det DlVl det (Z ’)/1 g")/l ¢ )
r=1

s, t=1,...N
and put

T-1
Cr = (Z (%‘,s%’,t)r> .
s,t=1,...N

r=0

where W € R?*? whose components are all 1. The matrix D;*C7 D; 7 is described as the following
matrix with nine sections:

(P P) (PQ1) (PiRy)
DypCrDy g = ( (QiP1) (@1Q1) (Q1R1) )
(R P1) (RiQ1) (RiRy)

where each section has an explicit description for example

b
1-— ’Yl,s’ylﬂf s,t=1,...,01

s [RRRE}

s L =L,
P — k)
(F1Q1) (\/T(l - ’71,5’71,t)>

(PPy)

s=1,...,01
t=1,...,mq

Thus we see that

—1
T— o0 l—aﬂ o, BEP;

Tli_{{io(QlQﬁ =

1
lim (RlRl) = ( )
T—o0 170[6 a.BER,

AP = Jin () = i (@uf) =0




Therefore, we have
Jim &Y (D1, Dy) - |det Dy 1| - | det D V12
—00 ’

1 1
= (—1)#*" det ( ) det ( ) .
1—ap a,BEP; 1—ap a,BER,

O
Also, for distinct complex numbers 1, ..., Ty, Y1, - . -, Ym, the determinant of the Cauchy matrix
det ((z; — yj)*l)i,jzl,wm is equal to
[T = 2w — )
i<j
Hi,j (zi — y5)
Combining it with
1 _
det ( ) =det ((a™" = B) Nacr, [] o
1—af aeI;H BEP; iip,
and the similar formula for det ((1 — a8) ™) acr,,. if |P1| = |P2|, |[R1| = |R2| and Q1 = Q2, we
5€Rj

have Eq. (7). Otherwise, <7,(D;, Ds) = 0.

H Analytic solution of <7 (Eq. (8)) using Szego kernel

In this appendix, we show the derivation of

Tlgrngﬁl( az,Dgu)):TIQH;O*E k(x (t))
1 & 1

= lim e

T%mTzl—(aﬁ)tzE

_Ji e lal=181=1andaf = >miP/a,
1 otherwise,
where p, q is relatively prime integers and let ¢ = +o0o when a3 rotates an irrational angle.

Here it suffices to consider the case of || = |3| = 1 and a3 rotates a rational and irrational angles.

Now, we set v = o3 and T’ = 2. First, we consider the rational angle case. Then we will show the
derivation of

1 1 1
72 T = T (12)
First, we will show the following proposition:

Proposition H.1. Assume v = e2™"P/9, where p, q is relatively prime integers and T' is a constant
complex value. Then, we have

g—1 1 q
> oo = T (13)
t=0

Proof. First, we remember the following fact:

qg—1
(14)

T/q 1-— tT’7
=0



where a; is a scalar coefficient for t = {0, ..., q — 1}, which is calculated below. Here, we use the
property: 1 — T7/971 = g;& 1 — 4T when v = €27/4 (j.e., v7 = 1). Then, for deriving the
following solution

,_.
>_|

q— q—

1-— fT’ 1-— tT’ ’ (15
t=0 t=0
we consider the limit on 7" — ~~° for s = {0,...,q — 1} as follows:
qg—1 q—1 a
li ST = lim (1 —~T' — 44, =a,.
e ; 1- tT/ P, (= )gz [y T
Thus, it is enough to calculate a4, which is calculated as follows:
-1
: ) q N T T — (v )1 s Ceyg—1y~1
as = lm (1-r"T)—00 = (%) lim ( = =7q (¢ =1,
which gives Eq. (I5)). Therefore we obtain Eq. (13). O

Next, we consider the limit on the time 7'. Consider T" = gbr + ¢, where g, by, ¢ are non-negative
integers, ¢ < ¢ and by is a variable that changes with 7', then we have

lew 1 (& 1 =
lim =) —— = lim — T —_—
Jim 5> 1T 756 T (Z —yr * 2 1—7tT’>
t=0 t=0 t=0 (16)
—1
br 1 1
T%T;I—'}/tT’ 1-17
which implies Eq. (12).
In case of |a| = |8] = 1 and v = af rotating an irrational angle, we set v = 2™, where ¢ is a
irrational number. In complex analysis, we introduce the following fact:
1 - 277751‘ 271'79 1
gy S = [ <7>

for any continuous function F. By combining (17)) and the residue theorem in complex analysis, we
obtain

oo

lim 2 > ! /27r S / L=
im =) ——— = ———df = — ———dx = 1.
Tooo T =1 — 41" o 1 —e2moTy 270 Jjg)=1 (1 = 2T")z

I Analytic solution of <% (Eq. (9)) using Szego kernel

In this appendix, we show the derivation of

O(|zw[H(*R) laf = |8] =1,
0 ‘O‘|:17|ﬂ|<1a
2 2 _
Q{(Dza7Dw7ﬂ)_ 0 ‘a|<1’|6|:1’
lal?)(1—18]? aBl? _
QoiofQolo) e O(lsf?) ol 18] < 1

where, for a = 2™ and 8 = €?™%, the integer u(c, 3) is defined by

q a ¢ Qorb¢ Qwitha —b=p/qwith (p,q) =1,
p(a, B) = { +oo a¢ Qorbé¢ Qwitha—b¢ Q,
min{p—i—q’p,quap—quZ} a,b e Q.



Let ,, = 2™ € H;, be an element of RKHS. We note that {(,, }52, is an orthonomal basis. Moreover,
since I, is the adjoint of the composition operator of R, we have:

Kopn =" ¢p.
As in the proof of Proposition[3.6]in Appedinx[D, we have
T (12 2
Rz (DZ0: D s)

z,a0
o 1— aplTﬁ(hT 1— apz)TBtJQT
- Z l—arpn 1 —arpe

P1,P2,91,92=0

ap2 zP1tp2 302 wh e <90;D1 N Ppyy g N ‘Pq2>

= 1-afTpet 1 —qitpdt
=2 o arpr 1—alpa (@B) (zw)™
P,9=0
p#q

i 1—arTpil 1 —qilpgeT
- _aP T
S 1—aPpe 1—aipr
p#q

Q18P (Zw)P

In particular, we see that

T (12 2\ _ JoT?) iflal =B =1,
R (DZ@,DUJ,B) - {O(T) if |af] < 1.

Thus in the case of |a| =1, 8] < 1or |8] =1, |a| < 1, we have
o (D2, D2 5) = 0.

The other cases are proved in a straight way.



	Introduction
	Perron-Frobenius operator in RKHS
	Metric on NLDSs with Perron-Frobenius Operators in RKHSs
	Definition
	Estimation from finite data

	Relation to Existing Metrics on Dynamical Systems
	Relation to metric via principal angles and Martin's metric
	Relation to the Binet-Cauchy metric on dynamical systems

	Empirical Evaluations
	Illustrative example: Rotation on the unit disk
	Real-world time-series data

	Conclusions
	Exterior product of Hilbert spaces
	Proof of Proposition 3.1
	Proof of Proposition 3.2
	Proof of Proposition 3.6
	Proof of Lemma 3.7
	Proof of Proposition 4.1
	Derivation of Eq. (7)
	Analytic solution of A1 (Eq. (8)) using Szegö kernel
	Analytic solution of A2 (Eq. (9)) using Szegö kernel

