Towards Understanding Acceleration Tradeoff
between Momentum and Asynchrony
in Nonconvex Stochastic Optimization

Tianyi Liu Shiyang Li
School of Industrial and System Engineering Harbin Institue of Technology
Georgia Institute of Technology lsydevin@gmail.com

Atlanta, GA 30332
tliu341@gatech.edu

Jianping Shi Enlu Zhou*
Sensetime Group Limited School of Industrial and System Engineering
shijianping@sensetime.com Georgia Institute of Technology

Atlanta, GA 30332
enlu.zhou@isye.gatech.edu

Tuo Zhao!

School of Industrial and System Engineering
Georgia Institute of Technology
Atlanta, GA 30332
tuo.zhao@isye.gatech.edu

Abstract

Asynchronous momentum stochastic gradient descent algorithms (Async-MSGD)
have been widely used in distributed machine learning, e.g., training large col-
laborative filtering systems and deep neural networks. Due to current technical
limit, however, establishing convergence properties of Async-MSGD for these
highly complicated nonoconvex problems is generally infeasible. Therefore, we
propose to analyze the algorithm through a simpler but nontrivial nonconvex prob-
lems — streaming PCA. This allows us to make progress toward understanding
Aync-MSGD and gaining new insights for more general problems. Specifically,
by exploiting the diffusion approximation of stochastic optimization, we establish
the asymptotic rate of convergence of Async-MSGD for streaming PCA. Our
results indicate a fundamental tradeoff between asynchrony and momentum: To
ensure convergence and acceleration through asynchrony, we have to reduce the
momentum (compared with Sync-MSGD). To the best of our knowledge, this is the
first theoretical attempt on understanding Async-MSGD for distributed nonconvex
stochastic optimization. Numerical experiments on both streaming PCA and train-
ing deep neural networks are provided to support our findings for Async-MSGD.

*Home Page: http://enluzhou.gatech.edu
THome Page: https://www2.isye.gatech.edu/ tzhao80/

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

1 Introduction

Modern machine learning models trained on large data sets have revolutionized a wide variety
of domains, from speech and image recognition (Hinton et al., 2012; |[Krizhevsky et al., 2012)
to natural language processing (Rumelhart et al., |1986) to industry-focused applications such as
recommendation systems (Salakhutdinov et al., [2007). Training these machine learning models
requires solving large-scale nonconvex optimization. For example, to train a deep neural network
given n observations denoted by {(z;, v;) }_,, where z; is the i-th input feature and y; is the response,
we need to solve the following empirical risk minimization problem,

1 n

where / is a loss function, and f is a neural network function/operator associated with parameter 6.

Thanks to significant advances made in GPU hardware and training algorithms, we can easily train
machine learning models on a GPU-equipped machine. For example, we can solve (1) using the
popular momentum stochastic gradient descent (MSGD, |[Robbins and Monro|(1951); Polyak (1964))
algorithm. Specifically, at the ¢-th iteration, we uniformly sample 4 (or a mini-batch) from (1, ..., n),
and then take

g+l — (k) _ Ve (y;, f(xi, g(k))) + M(G(k) _ 9(7971))7)

where 1) is the step size parameter and 11 € [0, 1) is the parameter for controlling the momentum. Note
that when p = 0, (2)) is reduced to the vanilla stochastic gradient descent (VSGD) algorithm. Many
recent empirical results have demonstrated the impressive computational performance of MSGD.
For example, finishing a 180-epoch training with a moderate scale deep neural network (ResNet, 1.7
million parameters, He et al. (2016)) for CIFAR10 (50, 000 training images in resolution 32 x 32)
only takes hours with a NVIDIA Titan XP GPU.

For even larger models and datasets, however, solving (1]) is much more computationally demanding
and can take an impractically long time on a single machine. For example, finishing a 90-epoch
ImageNet-1k (1 million training images in resolution 224 x 224) training with large scale ResNet
(around 25.6 million parameters) on the same GPU takes over 10 days. Such high computational
demand of training deep neural networks necessitates the training on distributed GPU cluster in order
to keep the training time acceptable.

In this paper, we consider the “parameter server” approach (Li et al., [2014), which is one of the
most popular distributed optimization frameworks. Specifically, it consists of two main ingredients:
First, the model parameters are globally shared on multiple servers nodes. This set of servers are
called the parameter servers. Second, there can be multiple workers processing data in parallel and
communicating with the parameter servers. The whole framework can be implemented in either
synchronous or asynchronous manner. The synchronous implementations are mainly criticized for
the low parallel efficiency, since the servers always need to wait for the slowest worker to aggregate
all updates within each iteration.

To circumvent this issue, practitioners have resorted to asynchronous implementations, which empha-
size parallel efficiency by using potentially stale stochastic gradients for computation. Specifically,
each worker in asynchronous implementations can process a mini-batch of data independently of the
others, as follows: (1) The worker fetches from the parameter servers the most up-to-date parameters
of the model needed to process the current mini-batch; (2) It then computes gradients of the loss with
respect to these parameters; (3) Finally, these gradients are sent back to the parameter servers, which
then updates the model accordingly. Since each worker communicates with the parameter servers
independently of the others, this is called Asynchronous MSGD (Async-MSGD).

As can be seen, Async-MSGD is different from Sync-MSGD, since parameter updates may have
occurred while a worker is computing its stochastic gradient; hence, the resulting stochastic gradients
are typically computed with respect to outdated parameters. We refer to these as stale stochastic
gradients, and its staleness as the number of updates that have occurred between its corresponding
read and update operations. More precisely, at the k-th iteration, Async-MSGD takes

0D = 0" — Ve (y;, f(ai, 0F7))) + p(@® — o), 3)

where 71, € Z, denotes the delay in the system (usually proportional to the number of workers).

Understanding the theoretical impact of staleness is fundamental, but very difficult for distributed
nonconvex stochastic optimization. Though there have been some recent papers on this topic, there
are still significant gaps between theory and practice:

(A) They all focus on Async-VSGD (Lian et al.,[2015;|/Zhang et al.||2015; Lian et al.,|2016). Many
machine learning models, however, are often trained using algorithms equipped with momentum such
as Async-MSGD and Async-ADAM (Kingma and Ba} [2014). Moreover, there have been some results
reporting that Async-MSGD sometimes leads to computational and generalization performance loss
than Sync-MSGD. For example, [Mitliagkas et al.| (2016) observe that Async-MSGD leads to the
generalization accuracy loss for training deep neural networks; |Chen et al.|(2016) observe similar
results for Async-ADAM for training deep neural networks; Zhang and Mitliagkas (2018) suggest that
the momentum for Async-MSGD needs to be adaptively tuned for better generalization performance.

(B) They all focus on analyzing convergence to a first order optimal solution (Lian et al., [2015;
Zhang et al., 2015} Lian et al.||2016)), which can be either a saddle point or local optimum. To better
understand the algorithms for nonconvex optimization, machine learning researcher are becoming
more and more interested in the second order optimality guarantee. The theory requires more refined
characterization on how the delay affects escaping from saddle points and converging to local optima.

Unfortunately, closing these gaps of Async-MSGD for highly complicated nonconvex problems (e.g.,
training large recommendation systems and deep neural networks) is generally infeasible due to
current technical limit. Therefore, we will study the algorithm through a simpler and yet nontrivial
nonconvex problems — streaming PCA. This helps us to understand the algorithmic behavior of
Async-MSGD better even in more general problems. Specifically, the stream PCA problem is
formulated as

max UTEXND[XXT]’U subjectto v v =1, 4

where D is an unknown zero-mean distribution, and the streaming data points { X} }7° ; are drawn
independently from D. This problem, though nonconvex, is well known as a strict saddle optimization
problem over sphere (Ge et al.,[2015), and its optimization landscape enjoys two geometric properties:
(1) no spurious local optima and (2) negative curvatures around saddle points.

These nice geometric properties can also be found in several other popular nonconvex optimization
problems, such as matrix regression/completion/sensing, independent component analysis, partial
least square multiview learning, and phase retrieval (Ge et al.| [2016; |Li et al., 2016; |Sun et al.|
2016). However, little has been known for the optimization landscape of general nonconvex problems.
Therefore, as suggested by many theoreticians, a strict saddle optimization problem such as streaming
PCA could be a first and yet significant step towards understanding the algorithms. The insights
we gain on such simpler problems shed light on more general nonconvex optimization problems.
Ilustrating through the example of streaming PCA, we intend to answer the fundamental question,
which also arises in Mitliagkas et al.|(2016):

Does there exist a tradeoff between asynchrony and momentum
in distributed nonconvex stochastic optimization?

The answer is “Yes". We need to reduce the momentum for allowing a larger delay. Roughly speaking,
our analysis indicates that for streaming PCA, the delay 7’s are allowed to asymptotically scale as

e S (L= p)*/ V.

Moreover, our analysis also indicates that the asynchrony has very different behaviors from mo-
mentum. Specifically, as shown inLiu et al.|(2018), the momentum accelerates optimization, when
escaping from saddle points, or in nonstationary regions, but cannot improve the convergence to
optima. The asynchrony, however, can always enjoy a linear speed up throughout all optimization
stages. The linear speed-up can be understood as follows. We assume all the workers have similar
performance, which is realistic when training Deep Neural Network where all GPUs are same. Async-
MSGD works in a pipelining manner. Since we have more workers, Async-MSGD can complete
7 updates in the one iteration time of MSGD. Thus, if we count 7 updates of Async-MSGD as one
iteration, the algorithm will enjoy a linear speed up (faster).

The main technical challenge for analyzing Async-MSGD comes from the complicated dependency
caused by momentum and asynchrony. Our analysis adopts diffusion approximations of stochastic
optimization, which is a powerful applied probability tool based on the weak convergence theory.

Existing literature has shown that it has considerable advantages when analyzing complicated
stochastic processes (Kushner and Yin,2003). Specifically, we prove that the solution trajectory of
Async-MSGD for streaming PCA converges weakly to the solution of an appropriately constructed
ODE/SDE. This solution can provide intuitive characterization of the algorithmic behavior, and
establish the asymptotic rate of convergence of Async-MSGD. To the best of our knowledge, this is
the first theoretical attempt of Async-MSGD for distributed nonconvex stochastic optimization.

Notations: For 1 < i < d, lete; = (0,...,0,1,0,...,0) T (the i-th dimension equals to 1, others 0)
be the standard basis in R?. Given a vector v = (v, ... v(®)T € RY, we define the vector norm:
I[v]|? =32 ; (v19))2. The notation w.p.1 is short for with probability one, B, is the standard Brownian

Motion in R?, and S denotes the sphere of the unit ball in R?, ie., S = {v € R¢||jv|| = 1}. F
denotes the derivative of the function F'(¢). < means asymptotically equal.

2 Async-MSGD and Optimization Landscape of Streaming PCA

Recall that we study Async-MSGD for the streaming PCA problem formulated as
max ’UTEXND[XXT]’U subjectto v'wv = 1.

We apply the asynchronous stochastic generalized Hebbian Algorithm with Polyak’s momentum
(Sanger, [1989). Note that the serial/synchronous counterpart has been studied in Liu et al. (2018).
Specifically, at the k-th iteration, given X; € R? independently sampled from the underlying
zero-mean distribution D, Async-MSGD takes

Vg1 = U + p(vg — vg—1) + (I — Uk—TkU;I_Tk)XkaTvk—T,C, (5

where 1 € [0, 1) is the momentum parameter, and 7y is the delay. We remark that from the perspective
of manifold optimization, (3)) is essentially considered as the stochastic approximation of the manifold
gradient with momentum in the asynchronous manner. Throughout the rest of this paper, if not clearly
specified, we denote (5) as Async-MSGD for notational simplicity.

The optimization landscape of (4]) has been well studied in existing literature. Specifically, we impose
the following assumption on ¥ = E[X X T].

Assumption 1. The covariance matrix X is positive definite with eigenvalues

M > >..>2 >0

and associated normalized eigenvectors v', v, ..., v

Assumption E implies that the eigenvectors v, +v2, ..., +v? are all the stationary points for
problem @ on the unit sphere S. Moreover, the eigen-gap (A\; > A2) guarantees that the global
optimum ! is identifiable up to sign change, and moreover, v2, ..., v~ ! are d — 2 strict saddle
points, and v is the global minimum (Chen et al., 2017).

3 Convergence Analysis

We analyze the convergence of the Async-MSGD by diffusion approximations. Our focus is to
find the proper delay given the momentum parameter p and the step size 7. We first prove the
global convergence of Async-MSGD using an ODE approximation. Then through more refined SDE
analysis, we further establish the rate of convergence. Before we proceed, we impose the following
mild assumption on the underlying data distribution:

Assumption 2. The data points { X, }72, are drawn independently from some unknown distribution
D over R® such that
EX]=0,EXX"] =%, |X] < Cu,

where Cy is a constant (possibly dependent on d).
The boundedness assumption here can be further relaxed to a moment bound condition. The proof,

however, requires much more involved truncation arguments, which is beyond the scope of this paper.
Thus, we assume the uniform boundedness for convenience.

3.1 Global Convergence

We first show that the solution trajectory converges to the solution of an ODE. By studying the ODE,
we establish the global convergence of Async-MSGD, and the rate of convergence will be established
later. Specifically, we consider a continuous-time interpolation V"7 (¢) of the solution trajectory
of the algorithm: For ¢t > 0, set V"7 (¢) = v;"" on the time interval [kn, kn + n). Throughout our
analysis, similar notations apply to other interpolations, e.g., H"" (t), U7 (t).

To prove the weak convergence, we need to show the solution trajectory {V'"7 (¢)} must be tight in
the Cadlag function space. In another word, {V"7(¢)} is uniformly bounded in ¢, and the maximum
discontinuity (distance between two iterations) converges to 0, as shown in the following lemma:

Lemma 1. Given vy € S, for any k < O(1/n), we have |lvi|* < 1+ O (max; Tin/(1 — p)?).
Specifically, given 71, < (1 —)% /n'=" for some vy € (0, 1], we have
QCCm

loxl* <1+ 0 () and logsr —vell < 7= o

The proof is provided in Appendix Roughly speaking, the delay is required to satisfy
T S (1= p)*/n' 77, Yk >0,

for some y € (0, 1] such that the tightness of the trajectory sequence is kept. Then by Prokhorov’s
Theorem, this sequence {V"(¢)} converges weakly to a continuous function. Please refer to|Liu et al.
(2018)) for the prerequisite knowledge on weak convergence theory.

Then we derive the weak limit. Specifically, we rewrite Async-MSGD as follows:
Vkt1 = Uk +NZk = Vg + 0(Mpy1 + Bk + €x), (6)
where € = (Zk — Z)Uk—-rk — U;_Tk (Zk — Z)U}.@,Tkvk,-rk,

k i T
Mkg+1 = Zi:(} Mz[zvk*i*ﬂcﬂ‘ - /Uk—i—Tk,,ika*i*ﬂc—ivk*i*'f—k—iL

k=1 ki
and B = >0 pF T [(B = D)vimr, — 0 (B0 = D)vir i,]

As can bee seen in @) the term my,; dominates the update, and 5 + € is the noise. Note

that when we have momentum in the algorithm, my; is not a stochastic approximation of the

gradient, which is different from VSGD. Actually, it is an approximation of M (v)]) and biased, where

M(v) = ﬁ [Yv — v T Zvv]. We have the following lemma to bound the approximation error.

Lemma 2. Forany k > 0, we have

Imity = M(w})]| < O (nlog(1/n)) + 0<(1Tk_/\17)2>, w.p. 1.

Note that the first term in the above error bound comes from the momentum, while the second one is
introduced by the delay. To ensure that this bound does not blow up as — 0, we have to impose a
further requirement on the delay.

Given Lemmas|[I and [2, we only need to prove that the continuous interpolation of the noise term
B + €1 converges to 0, which leads to the main theorem.

Theorem 3. Suppose for any i > 0, v_; = vg = v1 € S. When the delay in each step is chosen
according to the following condition:

e S(1— u)z/()\lnl_'y), Vk > 0, for some v € (0,1],

for each subsequence of {V"(-),n > 0}, there exists a further subsequence and a process V (-) such
that V1(-) = V(-) in the weak sense as 1 — 0 through the convergent subsequence, where V ()
satisfies the following ODE:

1

V= R M[EV ~VTSVV], V(0) = v. ©)

To solve ODE (7), we rotate the coordinate to decouple each dimension. Specifically, there exists an
eigenvalue decomposition such that

¥ =QAQ", where A = diag(A, \o,...,\q) and Q' Q = I.

Note that, after the rotation, e is the optimum corresponding to v;. Let H"(t) = QT V" (t), then we
have as n — 0, {H"(-),n > 0} converges weakly to

0 [At \12\ 72 o) At N
HY(t) = (; [H (0) exp (ﬂ)}) H'(0) exp (1_,“) ,i=1,..,d.
Moreover, given H(1)(0) # 0, H(t) converges to H* = e; as t — oo. This implies that the
limiting solution trajectory of Async-MSGD converges to the global optima, given the delay 7, <

(1 — w)?/(An*~7) in each step.

Such an ODE approach neglects the noise and only considers the effect of the gradient. Thus, it is
only a characterization of the mean behavior and is reliable only when the gradient dominates the
variance throughout all iterations. In practice, however, we care about one realization of the algorithm,
and the noise plays a very important role and cannot be neglected (especially near the saddle points
and local optima, where the gradient has a relatively small magnitude). Moreover, since the ODE
analysis does not explicitly characterize the order of the step size 7, no rate of convergence can be
established. In this respect, the ODE analysis is insufficient. Therefore, we resort to the SDE-based
approach later for a more precise characterization.

3.2 Local Algorithmic Dynamics

The following SDE approach recovers the effect of the noise by rescaling and can provide a more
precise characterization of the local behavior. The relationship between the SDE and ODE approaches
is analogous to that between Central Limit Theorem and Law of Large Number.

o Phase III: Around Global Optima. We consider the normalized process

{ug”™ = (hy" —e1)/vn}
around the optimal solution ey, where h"™ = Q "v”"". The intuition behind this rescaling is similar
to “4/ N" in Central Limit Theorem.

We first analyze the error introduced by the delay after the above normalization. Let D,, = H,, 41 —
H, —n Zf:o k= {A;H; — H A;H; H;} be the error . Then we have
Un+1 = Un + \/ﬁZf:O ,u‘kiz{Ale - Hq,TA’LHle} + ﬁD'nn

Define the accumulative asynchronous error process as: D(t) = % Zf/: "I D;. To ensure the weak
convergence, we prove that the continuous stochastic process D(t) converges to zero as shown in the
following lemma.

Lemma 4. Given delay 7] s satisfying

(1 —p)?
(A1 + Ca)nz=’
for some y € (0,0.5], we have for any t fixed, lim,_,o D(t) — 0, a.s.

~

= Yk > 0,

LemmaE shows that after normalization, we have to use a delay smaller than that in TheoremEto
control the noise. This justifies that the upper bound we derived from the ODE approximation is
inaccurate for one single sample path.
We then have the following SDE approximation of the solution trajectory.
Theorem 5. For every k > 0, the delay satisfies the following condition:
_ o (A-p?
Tk = T S 1_>
(A + Ca)nz="
asn — 0, {UT*4(:)} (i # 1) converges weakly to a stationary solution of
A — A i
v = Dyar+ % _qp,, (8)
L—p (1—n)
where o j = \/E[(Y D)2(Y@)2] and U™ (-) is the i-th dimension of U™*(-).

Vk > 0, for some v € (0,0.5],

2
(177")1 workers are allowed to work simultaneously. For notational
(M+Ca)n2™"
simplicity, denote 7 = maxy 7, and ¢ = j ai ;» which is bounded by the forth order moment of

the data. Then the asymptotic rate of convergence is shown in the following proposition.

Theorem [§ implies that

Proposition 6. Given a sufficiently small € > 0 and

n= (1= p)e(Ar = A2)/0,
there exists some constant § < /1, such that after restarting the counter of time, if (H 1 (0))2 >
1 — 62, we allow T workers to work simultaneously, where for some ~y € (0,0.5],

__ Q= (1—p) (1 — 1)(A1 — Ao)6?
A (A + Cy)nz— 2(A1 — X2) log <(1 — 1) (A1 — Ag)e — 277¢>

to ensureZ?:2 (H””“(Tg))2 < e with probability at least 3 /4.

, and we need T3 =

Proposition [6]implies that asymptotically, the effective iteration complexity of Async-MSGD enjoys
a linear acceleration, i.e.,

3 (M1 + Ca)pzt7 o ((1 —) (A1 — Ag)é?)
™ 1= M) Fede B T = 0 — Ae — 209
Remark 7. Mitliagkas et al. (2016) conjecture that the delay in Async-SGD is equivalent to the
momentum in MSGD. Our result, however, shows that this is not true in general. Specifically, when
w =0, Async-SGD yields an effective iterations of complexity:
Tt Caettr ((M — A2)82)
(A — Ag)]2TVexty (A1 — Ag)e — 20/’

which is faster than that of MSGD (Liu et al.||2018):

¢] ((A1 —)\2)52)
72 . Og .
6()\1 - /\2) (/\1 —)\2)6 — 27’]¢
Thus, there exists fundamental difference between these two algorithms.

NgX

o Phase II: Traverse between Stationary Points. For Phase II, we study the algorithmic behavior
once Async-MSGD has escaped from saddle points. During this period, since the noise is too small
compared to the large magnitude of the gradient, the update is dominated by the gradient, and the
influence of the noise is negligible. Thus, the ODE approximation is reliable before it enters the
neighborhood of the optimum. The upper bound 7 < (1 — 1)2/A\1n' =7 we find in Section[iworks
in this phase. Then we have the following proposition:

Proposition 8. After restarting the counter of time, given n < €(A\y — X2)/¢, 6 < /1, we can allow
T workers to work simultaneously, where for some v € (0, 1],

_ (=p? _ (1-w 1-¢°
T =< W, and we need Ty = 30— M) log 52

such that (H”’I(Tg))2 >1-62

Proposition [8]implies that asymptotically, the effective iteration complexity of Async-MSGD enjoys
a linear acceleration by a factor 7, i.e.,

T, Ao g (12
20—)y —)it B\ T)

~

2 ~

o Phase I: Escaping from Saddle Points. At last, we study the algorithmic behavior around saddle
points e;, j # 1. Similarly to Phase I, the gradient has a relatively small magnitude, and noise is
the key factor to help the algorithm escape from the saddles. Thus, an SDE approximation need to
be derived. Define {u;" = (h5" — e;)/,/n} fori # 1. By the same SDE approximation technique
used in Section[3.2] we obtain the following theorem.

Theorem 9. Condition on the event that h) — e; < /1) for k = 1,2.... Then fori # j, if for any k,
the delay satisfies the following condition:

(1—p?
(M + Ca)nz =
for some v € (0,0.5], {U™¢(:)} converges weakly to a solution of

AlfAj) Q5
Udt + —1—dB,.
1—u Q—p "

TR X , VE >0,

dU:(

Here h)! —e; < /7 is only a technical assumption. When (h}! —e;)/,/n is large, MSGD has escaped
from the saddle point e;, which is out of Phase I. In this respect, this assumption does not cause any
issue.

We further have the following proposition:

Proposition 10. Given a pre-specified v € (0,1), n < €(A\1 — A2)/¢, and § =< /1, we allow T
workers to work simultaneously, where for some v € (0,0.5],

1—p)? 1— 1— =152\ —
T = (—H)l, and we need Ty = 7'ulog 2(w0 (2\1 A2) +1
(A + Ca)nz =7 2(0 = A2) -1 (H2) a2,

such that (H"?(T1))? < 1 — 62 with probability at least 1 — v, where ®(x) is the CDF of the
standard normal distribution.

Proposition[I0]implies that asymptotically, the effective iteration complexity of Async-MSGD enjoys
a linear acceleration, i.e.,

T 34y 1—p)n= 6% (N —
4o (M +Ca)o R G —pn'o (21 22))
N 2(1 = p)(Ar — Ag)E e ™Y o1 () oy

Remark 11. We briefly summarize here: (1) There is a trade-off between the momentum and
asynchrony. Specifically, to guarantee the convergence, delay must be chosen according to :

(1—p)?
(A1 + Ca)nz =
Jor some v € (0,0.5]. Then Async-MSGD asymprotically achieves a linear speed-up compared to

MSGD. (2) Momentum and asynchrony have fundamental difference. With proper delays, Async-SGD
achieves a linear speed-up in the third phase, while momentum cannot improve the convergence.

Ny

4 Numerical Experiments

We present numerical experiments for both streaming PCA and training deep neural networks to
demonstrate the tradeoff between the momentum and asynchrony. The experiment on streaming PCA
verify our theory in Section |3} and the experiments on training deep neural networks verify that our
theory, though trimmed for Streaming PCA, gains new insights for more general problems.

4.1 Streaming PCA

We first provide a numerical experiment to show the tradeoff between the momentum and asynchrony
in streaming PCA. For simplicity, we choose d = 4 and the covariance matrix ¥ = diag{4, 3,2, 1}.
The optimum is (1, 0,0, 0). We compare the performance of Async-MSGD with different delays and
momentum parameters. Specifically, we start the algorithm at the saddle point (0, 1,0,0) and set
n = 0.0005. The algorithm is run for 100 times.

Figure [T shows the average optimization error obtained by Async-MSGD with p =
0.7,0.8,0.85,0.9,0.95 and delays from O to 100. Here, the shade is the error bound. We see
that for a fixed u, Async-MSGD can achieve similar optimization error to that of MSGD when the
delay is below some threshold. We call it the optimal delay. As can be seen in Fig[I, the optimal
delays for = 0.7,0.8,0.85,0.9,0.95 are 120, 80, 60, 30, 10 respectively. This indicates that there
is a clear tradeoff between the asynchrony and momentum which is consistent with our theoretical
analysis. We remark that the difference among Async-MSGD with different when 7 = 0 is due to
the fact that the momentum hurts convergence, as shown in|Liu et al.|(2018)).

4.2 Deep Neural Networks

We then provide numerical experiments for comparing different number workers and choices of
momentum in training a 32-layer hyperspherical residual neural network (SphereResNet34) using
the CIFAR-100 dataset for a 100-class image classification task. We use a computer workstation
with 8 Titan XP GPUs. We choose a batch size of 128. 50k images are used for training, and the
rest 10k are used for testing. We repeat each experiment for 10 times and report the average. We

0.8F

0.6

n
—~
]
—
—
m
=
15 Topt ~ 10
o— Tor ~ 30 ~ ~
45 0.4 pt Topt ~ 60 Topt 80 Topt ~2 120
N
g
-2 0.2¢
jo
o
0 20 40 60 80 100 120 140 160

Delay T

Figure 1: Comparison of Async-MSGD with different momentum and delays. For p =
0.7,0.8,0.85,0.9,0.95, the optimal delay’s are T = 120, 80, 60, 30, 10 respectively. This suggests a
clear tradeoff between the asynchrony and momentum.

choose the initial step size as 0.2. We decrease the step size by a factor of 0.2 after 60, 120, and
160 epochs. The momentum parameter is tuned over {0.1,0.3,0.5,0.7,0.9}. More details on the
network architecture and experimental settings can be found in|He et al. (2016) and |Liu et al. (2017).
We repeat all experiments for 10 times, and report the averaged results.

. 1 Worker _ 2 Workers _ 4 Workers 8 Workers
0.76 0.76 0.76 0.

76

75 75 75 0.75

0.74 0.74 0.74 0.74

0.73 0.73 0.73 0.73

0.72 0.72 0.72 0.72

0.71 0.71 0.71 0.71
0.7 0.7 0.7 0.7 .

01 03 05 07 09 01 03 05 07 09 01 03 05 07 09 01 03 05 07 09
Momentum Parameter u Momemum Parameter g Momentum Parameter p Momentum Parameter p

Figure 2: The average validation accuracies of ResNet34 versus the momentum parameters with
different numbers of workers. We can see that the optimal momentum decreases, as the number of
workers increases.

Figure 2 shows that the validation accuracies of ResNet34 under different settings. We can see that
for one single worker 7 = 1, the optimal momentum parameter is ¢+ = 0.9; As the number of workers
increases, the optimal momentum decreases; For 8 workers 7 = 8, the optimal momentum parameter
is i = 0.5. We also see that ;1 = 0.9 yields the worst performance for 7 = 8. This indicates a clear
tradeoff between the delay and momentum, which is consistent with our theory.

5 Discussions

We remark that though our theory helps explain some phenomena in training DNNGs, there still exist
some gaps: (1) The optimization landscapes of DNNs are much more challenging than that of our
studied streaming PCA problem. For example, there might exist many bad local optima and high
order saddle points. How Async-MSGD behaves in these regions is still largely unknown; (2) Our
analysis based on the diffusion approximations requires n — 0. However, the experiments actually
use relatively large step sizes at the early stage of training. Though we can expect large and small
step sizes share some similar behaviors, they may lead to very different results; (3) Our analysis only
explains how Async-MSGD minimizes the population objective. For DNNs, however, we are more
interested in generalization accuracies. We will leave these open questions for future investigation.

References

CHEN, J., PAN, X., MONGA, R., BENGIO, S. and JOZEFOWICZ, R. (2016). Revisiting distributed
synchronous sgd. arXiv preprint arXiv:1604.00981 .

CHEN, Z., YANG, F. L., L1, C. J. and ZHAO, T. (2017). Online multiview representation learning:
Dropping convexity for better efficiency. arXiv preprint arXiv:1702.08134 .

GE, R., HUANG, F., JIN, C. and YUAN, Y. (2015). Escaping from saddle points—online stochastic
gradient for tensor decomposition. In Conference on Learning Theory.

GE, R., LEE, J. D. and MA, T. (2016). Matrix completion has no spurious local minimum. In
Advances in Neural Information Processing Systems.

HE, K., ZHANG, X, REN, S. and SUN, J. (2016). Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition.

HINTON, G., DENG, L., YU, D., DAHL, G. E., MOHAMED, A.-R., JAITLY, N., SENIOR, A.,
VANHOUCKE, V., NGUYEN, P., SAINATH, T. N. ET AL. (2012). Deep neural networks for
acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal
Processing Magazine 29 82-97.

KINGMA, D. P. and BA, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

KRIZHEVSKY, A., SUTSKEVER, I. and HINTON, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems.

KUSHNER, H. J. and YIN, G. G. (2003). Stochastic approximation and recursive algorithms and
applications, stochastic modelling and applied probability, vol. 35.

L1, M., ANDERSEN, D. G., PARK, J. W., SMOLA, A. J., AHMED, A., JOSIFOVSKI, V., LONG,],
SHEKITA, E. J. and Su, B.-Y. (2014). Scaling distributed machine learning with the parameter
server. In OSDI, vol. 14.

L1, X., WANG, Z., LU, J., ARORA, R., HAUPT, J., L1U, H. and ZHAO, T. (2016). Symmetry, saddle
points, and global geometry of nonconvex matrix factorization. arXiv preprint arXiv:1612.09296 .

L1AN, X., HUANG, Y., L1, Y. and L1U, J. (2015). Asynchronous parallel stochastic gradient for
nonconvex optimization. In Advances in Neural Information Processing Systems.

L1AN, X., ZHANG, H., HSIEH, C.-J., HUANG, Y. and LIU, J. (2016). A comprehensive linear
speedup analysis for asynchronous stochastic parallel optimization from zeroth-order to first-order.
In Advances in Neural Information Processing Systems.

Liu, T., CHEN, Z., ZHOU, E. and ZHAO, T. (2018). Toward deeper understanding of noncon-
vex stochastic optimization with momentum using diffusion approximations. arXiv preprint
arXiv:1802.05155 .

Liu, W., ZHANG, Y.-M., L1, X., YU, Z., DA1, B., ZHAO, T. and SONG, L. (2017). Deep
hyperspherical learning. In Advances in Neural Information Processing Systems.

MITLIAGKAS, 1., ZHANG, C., HADIIS, S. and RE, C. (2016). Asynchrony begets momentum, with
an application to deep learning. In Communication, Control, and Computing (Allerton), 2016 54th
Annual Allerton Conference on. IEEE.

PoLYAK, B. T. (1964). Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics 4 1-17.

ROBBINS, H. and MONRO, S. (1951). A stochastic approximation method. The annals of mathemat-
ical statistics 400-407.

RUMELHART, D. E., HINTON, G. E. and WILLIAMS, R. J. (1986). Learning representations by
back-propagating errors. nature 323 533.

SALAKHUTDINOV, R., MNIH, A. and HINTON, G. (2007). Restricted boltzmann machines for

collaborative filtering. In Proceedings of the 24th international conference on Machine learning.
ACM.

10

SANGER, T. D. (1989). Optimal unsupervised learning in a single-layer linear feedforward neural
network. Neural networks 2 459—473.

SUN, J., Qu, Q. and WRIGHT, J. (2016). A geometric analysis of phase retrieval. In Information
Theory (ISIT), 2016 IEEE International Symposium on. IEEE.

ZHANG, J. and MITLIAGKAS, 1. (2018). Yellowfin: Adaptive optimization for (a) synchronous
systems. Training 1 2-0.

ZHANG, W., GUPTA, S., L1AN, X. and L1U, J. (2015). Staleness-aware async-sgd for distributed
deep learning. arXiv preprint arXiv:1511.05950 .

11

