
SUPPLEMENTARY MATERIAL
Learning latent variable structured prediction models with Gaussian

perturbations

Appendix A Detailed Proofs

In this section, we state the proofs of all the theorems in our manuscript.

A.1 Proof of Theorem 1

Here, we provide the proof of Theorem 1. First, we derive an intermediate lemma needed for the
final proof.

Lemma 1 (Adapted from Lemma 5 in [16]). Assume that there exists a finite integer value r such
that, |Yx ×Hx| ≤ r for all (x, y) ∈ S. Assume also that ‖Φ(x, y, h)‖2 ≤ γ for any triple (x, y, h).
Let Q(w) be a unit-variance Gaussian distribution centered at αw for α = γ

√
8 log rn

‖w‖22
. Then for

all (x, y) ∈ S, and all w ∈ W , we have:

P
w′∼Q(w)

[m(x, y, 〈fw′(x)〉,w) ≥ 1] ≤ ‖w‖22/n

or equivalently:

P
w′∼Q(w)

[m(x, y, 〈fw′(x)〉,w) ≤ 1] ≥ 1− ‖w‖22/n (8)

Proof. Note that the randomness in the statement comes from the variable w′, then by a union bound
on the elements of Yx ×Hx it suffices to show that for any given (ŷ, ĥ) with m(x, y, ŷ, ĥ,w) ≥ 1,
the probability that fw′(x) = (ŷ, ĥ) is at most ‖w‖22/(rn).

Consider a fixed (ŷ, ĥ) ∈ Yx ×Hx with m(x, y, ŷ, ĥ,w) ≥ 1. First, by well-know concentration
inequalities we have that for any vector Ψ ∈ R` with‖Ψ‖2 = 1 and ε ≥ 0:

P
w′∼Q(w)

[(αw −w′) ·Ψ ≥ ε] ≤ e−ε
2/2 (9)

Let h∗ = argmaxh∈Hx Φ(x, y, h) ·w, and let ∆(x, y, h∗, ŷ, ĥ) = Φ(x, y, h∗) − Φ(x, ŷ, ĥ). Then,
m(x, y, ŷ, ĥ,w) = ∆(x, y, h∗, ŷ, ĥ) · w. Using Ψ = ∆(x, y, h∗, ŷ, ĥ)/‖∆(x, y, h∗, ŷ, ĥ)‖2 in (9)
we have:

P
w′∼Q(w)

[m(x, y, ŷ, ĥ,w′) ≤ αm(x, y, ŷ, ĥ,w)− ε‖∆(x, y, h∗, ŷ, ĥ)‖2] ≤ e−ε
2/2

P
w′∼Q(w)

[m(x, y, ŷ, ĥ,w′) ≤ α− ε‖∆(x, y, h∗, ŷ, ĥ)‖2] ≤ e−ε
2/2

P
w′∼Q(w)

[m(x, y, ŷ, ĥ,w′) ≤ 0] ≤ e−α
2/(8γ2) (10.a)

P
w′∼Q(w)

[fw′(x) = (ŷ, ĥ)] ≤ e−α
2/(8γ2)

where the step in (10.a) follows from ε = α/‖∆(x, y, h∗, ŷ, ĥ)‖2 and ‖∆(x, y, h∗, ŷ, ĥ)‖2 ≤ 2γ.
Thus, we prove our claim.

Next, we provide the final proof.



Proof of Theorem 1. Define the Gibbs decoder empirical distortion of the perturbation distribution
Q(w) and training set S as:

L(Q(w), S) =
1

n

∑
(x,y)∈S

E
w′∼Q(w)

[d(y, 〈fw′(x)〉)]

In PAC-Bayes terminology, Q(w) is the posterior distribution. Let the prior distribution P be the
unit-variance zero-mean Gaussian distribution. Fix δ ∈ (0, 1) and α > 0. By well-known PAC-Bayes
proof techniques, Lemma 4 in [16] shows that with probability at least 1− δ/2 over the choice of n
training samples, simultaneously for all parameters w ∈ W , and unit-variance Gaussian posterior
distributions Q(w) centered at wα, we have:

L(Q(w), D) ≤ L(Q(w), S) +

√
KL(Q(w)‖P ) + log (2n/δ)

2(n− 1)

= L(Q(w), S) +

√
‖w‖22 α2/2 + log (2n/δ)

2(n− 1)
(11)

Thus, an upper bound of L(Q(w), S) would lead to an upper bound of L(Q(w), D). In order to
upper-bound L(Q(w), S), we can upper-bound each of its summands, i.e., we can upper-bound
Ew′∼Q(w)[d(y, fw′(x))] for each (x, y) ∈ S. Define the distribution Q(w, x) with support on
Yx ×Hx in the following form for all y ∈ Yx and h ∈ Hx:

P
(y′,h′)∼Q(w,x)

[(y′, h′) = (y, h)] ≡ P
w′∼Q(w)

[fw′(x) = (y, h)] (12)

For clarity of presentation, define:

u(x, y, y′, h′,w) ≡ 1−m(x, y, y′, h′,w)

Let u ≡ u(x, y, 〈fw′(x)〉,w). Simultaneously for all (x, y) ∈ S, we have:

E
w′∼Q(w)

[
d(y, 〈fw′(x)〉

]
= E

w′∼Q(w)

[
d(y, 〈fw′(x)〉) 1[u ≥ 0] + d(y, 〈fw′(x)〉) 1[u < 0]

]
≤ E

w′∼Q(w)

[
d(y, 〈fw′(x)〉) 1[u ≥ 0] + 1[u < 0]

]
(13.a)

= E
w′∼Q(w)

[
d(y, 〈fw′(x)〉 1[u ≥ 0]

]
+ P

w′∼Q(w)
[u < 0]

≤ E
w′∼Q(w)

[
d(y, 〈fw′(x)〉 1[u ≥ 0]

]
+‖w‖22 /n (13.b)

= E
w′∼Q(w)

[
d(y, 〈fw′(x)〉 1

[
u(x, y, 〈fw′(x)〉,w) ≥ 0

]]
+‖w‖22 /n

= E
(y′,h′)∼Q(w,x)

[
d(y, y′, h′) 1

[
u(x, y, y′, h′,w) ≥ 0

]]
+‖w‖22 /n

(13.c)

≤ max
(ŷ,ĥ)∈Yx×Hx

d(y, ŷ, ĥ) 1
[
u(x, y, ŷ, ĥ,w) ≥ 0

]
+‖w‖22 /n (13.d)

where the step in eq.(13.a) holds since d : Y × Y ×H → [0, 1]. The step in eq.(13.b) fol-
lows from Lemma 1 which states that Pw′∼Q(w)[u(x, y, 〈fw′(x)〉,w) < 0] ≤‖w‖22 /n for α =

γ
√

8 log (rn/‖w‖22), for all (x, y) ∈ S and all w ∈ W . By the definition in eq.(12), then the step
in eq.(13.c) holds. Let λ : Y ×H → [0, 1] be some arbitrary function, the step in eq.(13.d) uses the
fact that E(y,h)[λ(y, h)] ≤ max(y,h) λ(y, h).

By eq.(11) and eq.(13.d), we prove our claim.

A.2 Proof of Theorem 2

Proof. The proof follows similar steps to that of Theorem 1. Note that the relaxed margin, m̃, also
fulfills the bound in Lemma 1. Hence, following the steps of Proof A.1 we obtain an upper bound
with same constants.
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A.3 Proof of Theorem 3

Here, we provide the proof of Theorem 3. First, we derive an intermediate lemma needed for the
final proof.

Lemma 2. Let ∆ ∈ R` be a random variable with ‖∆‖2 ≤ 2γ, and w ∈ R` be a constant. If
E[∆] ·w ≤ 1/2 then we have:

P[∆ ·w > 1] ≤ exp

(
−1

128γ2‖w‖22

)

Proof. Let t > 0, we have that:

P[∆ ·w > 1] = P[(∆− E[∆]) ·w > 1− E[∆] ·w]

≤ P[(∆− E[∆]) ·w ≥ 1/2] (14.b)

= P[exp
(
t(∆− E[∆]) ·w

)
≥ et/2]

≤ e−t/2 E[exp
(
t(∆− E[∆]) ·w

)
] (14.c)

≤ exp
(
−t/2 + 8t2γ2‖w‖22

)
(14.d)

The step in eq.(14.b) follows from E[∆] · w ≤ 1/2 and thus 1− E[∆] ·w ≥ 1/2. The
step in eq.(14.c) follows from Markov’s inequality. The step in eq.(14.d) follows from Ho-
effding’s lemma and the fact that the random variable z = (∆− E[∆]) ·w fulfills E[z] = 0
as well as z ∈ [−4γ‖w‖2,+4γ‖w‖2]. In more detail, note that ‖∆‖2 ≤ 2γ and by Jensen’s
inequality ‖E[∆]‖2 ≤ E[‖∆‖2] ≤ 2γ. Then, note that by Cauchy-Schwarz inequality
|(∆− E[∆]) ·w| ≤

∥∥∆− E[∆]
∥∥

2
‖w‖2 ≤ (‖∆‖2 +

∥∥E[∆]
∥∥

2
)‖w‖2 ≤ 4γ‖w‖2. Finally, let g(t) =

−t/2 + 8t2γ2‖w‖22. By making ∂g/∂t = 0, we get the optimal setting t∗ = 1/(32γ2‖w‖22). Thus,
g(t∗) = −1/(128γ2‖w‖22) and we prove our claim.

Next, we provide the final proof.

Proof of Theorem 3. Note that sampling from the distribution Q(w, x) as defined in eq.(12) is
NP-hard in general, thus our plan is to upper-bound the expectation in eq.(13.c) by using the
maximum over random structured outputs and latent variables sampled independently from a proposal
distribution R(w, x) with support on Yx ×Hx.

Let T (w, x) be a set of n′ i.i.d. random structured outputs and latent variables drawn from
the proposal distribution R(w, x), i.e., T (w, x) ∼ R(w, x)n

′
. Furthermore, let T(w) be the

collection of the n sets T (w, x) for all (x, y) ∈ S, i.e. T(w) ≡ {T (w, x)}(x,y)∈S and thus
T(w) ∼ {R(w, x)n

′}(x,y)∈S . For clarity of presentation, define:

v(x, y, y′, h′,w) ≡ d(y, y′, h′) 1
[
m̃(x, y, y′, h′,w) ≤ 1

]
For sets T (w, x) of sufficient size n′, our goal is to upper-bound eq.(13.c) in the following form for
all parameters w ∈ W:

1

n

∑
(x,y)∈S

E
(y′,h′)∼Q(w,x)

[v(x, y, y′, h′,w)] ≤ 1

n

∑
(x,y)∈S

max
(ŷ,ĥ)∈T (w,x)

v(x, y, ŷ, ĥ,w) +O(log2 n/
√
n)

Note that the above expression would produce a tighter upper bound than the
maximum loss over all possible structured outputs and latent variables since
max(ŷ,ĥ)∈T (w,x) v(x, y, ŷ, ĥ,w) ≤ max(ŷ,ĥ)∈Yx×Hxv(x, y, ŷ, ĥ,w). For analysis purposes,
we decompose the latter equation into two quantities:

A(w, S) ≡ 1

n

∑
(x,y)∈S

 E
(y′,h′)∼Q(w,x)

[v(x, y, y′, h′,w)]− E
T (w,x)∼R(w,x)n′

[
max

(ŷ,ĥ)∈T (w,x)
v(x, y, ŷ, ĥ,w)

]
(15)
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B(w, S,T(w)) ≡ 1

n

∑
(x,y)∈S

 E
T (w,x)∼R(w,x)n′

[
max

(ŷ,ĥ)∈T (w,x)
v(x, y, ŷ, ĥ,w)

]
− max

(ŷ,ĥ)∈T (w,x)
v(x, y, ŷ, ĥ,w)


(16)

Thus, we will show that A(w, S) ≤
√

1/n and B(w, S,T(w)) ≤ O(log2 n/
√
n) for

all parameters w ∈ W , any training set S and all collections T(w), and therefore
A(w, S) +B(w, S,T(w)) ≤ O(log2 n/

√
n). Note that while the value of A(w, S) is deter-

ministic, the value of B(w, S,T(w)) is stochastic given that T(w) is a collection of sampled random
structured outputs.

Fix a specific w ∈ W . If data is separable then v(x, y, y′, h′,w) = 0 for all (x, y) ∈ S and
(y′, h′) ∈ Yx ×Hx. Thus, we have A(w, S) = B(w, S,T(w)) = 0 and we complete our proof for
the separable case.2 In what follows, we focus on the non-separable case.

Bounding the Deterministic Expectation A(w, S). Here, we show that in eq.(15),
A(w, S) ≤

√
1/n for all parameters w ∈ W and any training set S, provided that we use a suf-

ficient number n′ of random structured outputs sampled from the proposal distribution.

By well-known identities, we can rewrite:

A(w, S) =
1

n

∑
(x,y)∈S

∫ 1

0

(
P

(y′,h′)∼R(w,x)
[v(x, y, y′, h′,w) < z]n

′
− P

(y′,h′)∼Q(w,x)
[v(x, y, y′, h′,w) < z]

)
dz

(17.a)

≤ 1

n

∑
(x,y)∈S

P
(y′,h′)∼R(w,x)

[v(x, y, y′, h′,w) < 1]n
′

=
1

n

∑
(x,y)∈S

P
(y′,h′)∼R(w,x)

[d(y, y′, h′) < 1 ∨ m̃(x, y, y′, h′,w) > 1]n
′

≤ 1

n

∑
(x,y)∈S

(1− P
(y′,h′)∼R(w,x)

[d(y, y′, h′) = 1]

)
+ P

(y′,h′)∼R(w,x)
[m̃(x, y, y′, h′,w) > 1]

n′

≤

β + exp

(
−1

128γ2‖w‖22

)n′

(17.b)

=
√

1/n (17.c)
where the step in eq.(17.a) holds since for two independent random variables g, h ∈ [0, 1],
we have E[g] = 1−

∫ 1

0
P[g < z]dz and P[max (g, h) < z] = P[g < z]P[h < z]. Therefore,

E[max (g, h)] = 1 −
∫ 1

0
P[g < z]P[h < z]dz. For the step in eq.(17.b), we used Assumption A

for the first term in the sum. For the second term in the sum, let ∆ ≡ Φ(x, y, h∗)− Φ(x, y′, h′)
where h∗ = argmaxh∈H̃x Φ(x, y, h) ·w, then m̃(x, y, y′, h′,w) = ∆ ·w. From ‖Φ(x, y, h)‖2 ≤ γ,
we have that ‖∆‖2 ≤ 2γ. By Assumption B, we have that ‖E[∆]‖2 ≤ 1/(2

√
n) ≤ 1/(2‖w‖2). By

Cauchy-Schwarz inequality we have E[∆] ·w ≤
∥∥E[∆]

∥∥
2
‖w‖2 ≤‖w‖2 /(2‖w‖2) ≤ 1/2. Since

E[∆] ·w ≤ 1/2 and ‖∆‖2 ≤ 2γ, we apply Lemma 2 in the step in eq.(17.b). For the step
in eq.(17.c), let λ ≡ 1

log(1/(β+e
−1/(128γ2‖w‖22)))

. Furthermore, let n′ = 1
2λ log n. Therefore,(

β + exp
(

−1
128γ2‖w‖22

))n′
=
√

1/n.

Bounding the Stochastic Quantity B(w, S,T(w)). Here, we show that in eq.(16),
B(w, S,T(w)) ≤ O(log2 n/

√
n) for all parameters w ∈ W , any training set S and all collections

2 The same result can be obtained for any subset of S for which the “separability” condition holds. Therefore,
our analysis with the “non-separability” condition can be seen as a worst case scenario.
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T(w). For clarity of presentation, define:

g(x, y, T,w) ≡ max
(ŷ,ĥ)∈T

v(x, y, ŷ, ĥ,w)

Thus, we can rewrite:

B(w, S,T(w)) =
1

n

∑
(x,y)∈S

(
E

T (w,x)∼R(w,x)n′
[g(x, y, T (w, x),w)]− g(x, y, T (w, x),w)

)
Let rx ≡ |Yx ×Hx| and thus Yx ×Hx ≡ {(y1, h1) . . . (yrx , hrx)}. Let π(x) = (π1 . . . πrx) be a
permutation of {1 . . . rx} such that Φ(x, yπ1

, hπ1
) · w < · · · < Φ(x, yπrx , hπrx ) · w. Let Π

be the collection of the n permutations π(x) for all (x, y) ∈ S, i.e. Π = {π(x)}(x,y)∈S . From
Assumption C, we have that R(π(x), x) ≡ R(w, x). Similarly, we rewrite T (π(x), x) ≡ T (w, x)
and T(Π) ≡ T(w).

Furthermore, letWΠ,S be the set of all w ∈ W that induce Π on the training set S. For the parameter
spaceW , collection Π and training set S, define the function class GW,Π,S as follows:

GW,Π,S ≡ {g(x, y, T,w) | w ∈ WΠ,S and (x, y) ∈ S}
Note that since |Yx ×Hx| ≤ r for all (x, y) ∈ S, then | ∪(x,y)∈S Yx ×Hx| ≤

∑
(x,y)∈S |Yx ×Hx| ≤ nr.

Note that each ordering of the nr structured outputs completely determines a collection Π and thus the
collection of proposal distributions R(w, x) for each (x, y) ∈ S. Note that since | ∪(x,y)∈S Px| ≤ `,
we consider Φ(x, y, h) ∈ R`. Although we can consider w ∈ R`, the vector w is sparse with at most
s non-zero entries. Thus, we take into account all possible subsets of s features from ` possible
features. From results in [2, 3, 8], we can conclude that there are at most (nr)2(s−1) linearly inducible
orderings, for a fixed set of s features. Therefore, there are at most

(
`
s

)
(nr)2(s−1) ≤ `s(nr)2s

collections Π.

Fix δ ∈ (0, 1). By Rademacher-based uniform convergence3 and by a union bound over all `s(nr)2s

collections Π, with probability at least 1− δ/2 over the choice of n sets of random structured outputs,
simultaneously for all parameters w ∈ W:

B(w, S,T(w)) ≤ 2 RT(Π)(GW,Π,S) + 3

√
s(log `+ 2 log (nr)) + log (4/δ)

n
(18)

where RT(Π)(GW,Π,S) is the empirical Rademacher complexity of the function class GW,Π,S
with respect to the collection T(Π) of the n sets T (π(x), x) for all (x, y) ∈ S. Let σ be an
n-dimensional vector of independent Rademacher random variables indexed by (x, y) ∈ S, i.e.,
P[σ(x,y) = +1] = P[σ(x,y) = −1] = 1/2. The empirical Rademacher complexity is defined as:

RT(Π)(GW,Π,S) ≡ E
σ

 sup
g∈GW,Π,S

 1

n

∑
(x,y)∈S

σ(x,y)g(x, y, T (π(x), x),w)




= E
σ

 sup
w∈WΠ,S

 1

n

∑
(x,y)∈S

σ(x,y) max
(ŷ,ĥ)∈T (π(x),x)

d(y, ŷ, ĥ) 1
[
1− m̃(x, y, ŷ, ĥ,w) ≥ 0

]


= E
σ

 sup
w∈WΠ,S

 1

n

∑
(x,y)∈S

σ(x,y) max
(ŷ,ĥ)∈T (π(x),x)

d(y, ŷ, ĥ) 1

[
1 ≥ max

h∈H̃x
Φ(x, y, h) ·w − Φ(x, ŷ, ĥ) ·w

]


= E
σ

 sup
w∈R`\{0}

 1

n

∑
i∈{1...n}

σi max
j∈{1...n′}

dij 1

[
1 ≥ max

h∈{1...|H̃x|}
z′ih ·w − zij ·w

]


(19.a)

3 Note that for the analysis of B(w, S,T(w)), the training set S is fixed and randomness stems from the
collection T(w). Also, note that for applying McDiarmid’s inequality, independence of each set T (w, x) for all
(x, y) ∈ S is a sufficient condition, and identically distributed sets T (w, x) are not necessary.
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≤
∑

j∈{1...n′}

E
σ

 sup
w∈R`\{0}

 1

n

∑
i∈{1...n}

σi dij 1

[
1 ≥ max

h∈{1...|H̃x|}
z′ih ·w − zij ·w

]


(19.b)

≤
∑

j∈{1...n′}

E
σ

 sup
w∈R`\{0}

 1

n

∑
i∈{1...n}

σi 1

[
1 ≥ max

h∈{1...|H̃x|}
z′ih ·w − zij ·w

]


(19.c)

≤
∑

j∈{1...n′}

E
σ

 sup
w̃∈R`(|H̃|+1)+1\{0}

 1

n

∑
i∈{1...n}

σi 1
[
zH̃ij · w̃ ≥ 0

]
 (19.d)

≤ 2n′
√

(2s + 1) log (`(nr̃ + 1) + 1) log (n+ 1)

n
(19.e)

where in the step in eq.(19.a), the terms σi, dij , z′ih, zij correspond to σ(x,y), d(y, ŷ, ĥ), Φ(x, y, h) and
Φ(x, ŷ, ĥ) respectively. Thus, we assume that index i corresponds to the training sample (x, y) ∈ S,
and that index j corresponds to the structured output and latent variable (ŷ, ĥ) ∈ T (π(x), x). Note
that since Φ(x, y, h) ∈ R`, thus the step in eq.(19.a) considers w, z′ih, zij ∈ R` \ {0} without loss
of generality. The step in eq.(19.b) follows from the fact that for any two function classes G andH,
we have that R({max (g, h) | g ∈ G and h ∈ H}) ≤ R(G) + R(H). The step in eq.(19.c) follows
from the composition lemma and the fact that dij ∈ [0, 1] for all i and j. The step in eq.(19.d)
considers a larger function class, we consider w̃, zH̃ij ∈ R`(|H̃|+1)+1 \ {0}. More detailed, for a

fixed i, j, and w ∈ R`, we can construct the vectors zH̃ij = (1,−z′i1, . . . ,−z′i|H̃|, zij) and w̃(t) =

(1,w(1), . . . ,w(|H̃|),w), where w(l) = w if l = t, and w(l) = 0 otherwise. The step in eq.(19.e)
follows from the Massart lemma, the Sauer-Shelah lemma and the VC-dimension of sparse linear

classifiers. That is, for any function class G, we have that R(G) ≤
√

2V C(G) log (n+1)
n where V C(G)

is the VC-dimension of G. Finally, note that |H̃x| ≤ r̃,∀(x, y) ∈ S, and |H̃| = | ∪(x,y)∈S H̃x| ≤ nr̃.
Also, since w is s-sparse, we have that w̃ is (2s + 1)-sparse. Then, by Theorem 20 of [18],
V C(G) ≤ 2(2s + 1) log (`(|H̃|+ 1) + 1) for the class G of sparse linear classifiers on R`(|H̃|+1)+1,

with 3 ≤ 2s + 1 ≤ 9
20

√
`(|H̃|+ 1) + 1.

By eq.(11), eq.(13.c), eq.(17.c), eq.(18) and eq.(19.e), we prove our claim.

A.4 Proof of Claim i

Proof. For all (x, y) ∈ S and w ∈ W , by definition of the total variation distance, we have for any
event A(x, y, y′, h′,w):∣∣∣∣∣ P
(y′,h′)∼R(w,x)

[A(x, y, y′, h′,w)]− P
(y′,h′)∼R′(w,x)

[A(x, y, y′, h′,w)]

∣∣∣∣∣ ≤ TV (R(w, x)‖R′(w, x))

Let the eventA(x, y, y′, h′,w) : d(y, y′, h′) = 1 and 1−m(x, y, y′, h′,w) ≥ 0. SinceR(w, x) ful-
fills Assumption A with value β1 and since TV (R(w, x)‖R′(w, x)) ≤ β2, we have that for all
(x, y) ∈ S and w ∈ W:

P
(y′,h′)∼R′(w,x)

[A(x, y, y′, h′,w)] ≥ P
(y′,h′)∼R(w,x)

[A(x, y, y′, h′,w)]− TV (R(w, x)‖R′(w, x))

≥ 1− β1 − β2

which proves our claim.

A.5 Proof of Claim ii

Proof. Since Yx is the set of all permutations of v elements, then |Yx| = v!. In addition, since
d(y, y′, h) = 1

v

∑v
i=1 1

[
yi 6= y′i

]
and since R(x) is a uniform proposal distribution with support on

17



Yx ×Hx, we have:
P

(y′,h′)∼R(x)
[d(y, y′, h′) = 1] = P

y′
[d(y, y′) = 1]

=
F (v)

v!
(20.a)

≥ 1− 2/3.

For a fixed y, the function F (v) in step eq.(20.a) represents the number of permutations y′ ∈ Yx
such that d(y, y′, h) = 1. Moreover, F (v) can be computed through the following recursion:
F (v) = (v−1)!×(1+

∑v−2
i=1

F (i)
i! ). The probability is thenF (v)/v!, it can be seen that this probability

converges as v →∞ through the following: limv→∞
F (v+1)
(v+1)! −

F (v)
v! = 0. The probability converges

to 0.3679 approximately, while achieving a minimum value of 1/3 at v = 3. Hence β = 2/3.

A.6 Proof of Claim iii

Proof. Let ∆ ≡ Φ(x, y, h∗)− Φ(x, y′, h′). Let p ∈ Px be a superindex denoting the partitions, i.e.,
for all p ∈ Px, let ∆p ≡ Φ(x, y, h∗)− Φ(x, y′, h′) for some (y′, h′) ∈ Υp

x. By assumption, since
(y′, h′) ∈ Υp

x then |∆p
p| ≤ b and (∀q 6= p) ∆p

q = 0. Therefore:∥∥∥∥∥ E
(y′,h′)∼R(x)

[∆]

∥∥∥∥∥
2

=

√∑
q∈Px

E
(y′,h′)∼R(x)

[
∆q

]2
≤
√∑
q∈Px

E
(y′,h′)∼R(x)

[
|∆q|

]2

=

√√√√√∑
q∈Px

∑
p∈Px

P
(y′,h′)∼R(x)

[(y′, h′) ∈ Υp
x] |∆p

q |

2

=

√√√√∑
q∈Px

(
P

(y′,h′)∼R(x)
[(y′, h′) ∈ Υq

x] |∆q
q|

)2

≤

√
|Px|

(
b

|Px|

)2

= b/
√
|Px|

where we used the fact that for a uniform proposal distribution R(x), we have
P(y′,h′)∼R(w,x)[(y

′, h′) ∈ Υq
x] = 1/|Px|. Finally, since we assume that n ≤ |Px|/(4b2), we have

b/
√
|Px| ≤ 1/(2

√
n) and we prove our claim.

A.7 Proof of Claim iv

Proof. Let ∆ ≡ Φ(x, y, h∗)− Φ(x, y′, h′). By assumption |∆p| ≤ b/|Px| for all p ∈ Px. Therefore:∥∥∥∥∥ E
(y′,h′)∼R(w,x)

[∆]

∥∥∥∥∥
2

=

√∑
p∈Px

E
(y′,h′)∼R(w,x)

[
∆p

]2
≤
√∑
p∈Px

E
(y′,h′)∼R(w,x)

[
|∆p|

]2
≤

√
|Px|

(
b

|Px|

)2

= b/
√
|Px|

Finally, since we assume that n ≤ |Px|/(4b2), we have b/
√
|Px| ≤ 1/(2

√
n) and we prove our

claim.
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A.8 Proof of Claim v

Proof. Algorithm 1 depends solely on the linear ordering induced by the parameter w and the
mapping Φ(x, ·). That is, at any point in time, Algorithm 1 executes comparisons of the form
Φ(x, y, h) ·w > Φ(x, ŷ, ĥ) ·w for any two pair of structured outputs and latent variables (y, h) and
(ŷ, ĥ).

Appendix B Discussion, Further Examples and Details of Experiments

B.1 Discussion

In this section, we discuss in more detail the inference problem. We also briefly discuss the non-
convexity of the formulation in eq.(6).

Inference on Test Data. The upper bound in Theorem 3 holds simultaneously for all parameters
w ∈ W . Therefore, our result implies that after learning the optimal parameter ŵ ∈ W in eq.(6)
from training data, we can bound the decoder distortion when performing exact inference on test data.
More formally, Theorem 3 can be additionally invoked for a test set S′, also with probability at least
1− δ. Thus, under the same setting as of Theorem 3, the Gibbs decoder distortion is upper-bounded
with probability at least 1− 2δ over the choice of S and S′. In this paper, we focus on learning the
parameter of structured prediction models. We leave the analysis of approximate inference on test
data for future work.

A Non-Convex Formulation. As mentioned in Section 2, all formulations with latent variables
(eq.(4),eq.(5), and eq.(6)) are non-convex objectives. The motivation to use the margin re-scaling
approach in the work of Yu and Joachims [30] is that the non-convex objective leads to a difference
of two convex functions, which allows the use of CCCP [31]. In the case of models without latent
variables, Sarawagi and Gupta [24] propose a method to reduce the problem of slack re-scaling
to a series of modified margin re-scaling problems. However, there are two main caveats in their
approach. First, the optimization is only heuristic, that is, it is not guaranteed to solve the slack
rescaling objective exactly. Second, their method is specific to the cutting plane training algorithm
and does not easily extend to stochastic algorithms. Choi et al. [4] propose efficient methods for
finding the most-violating-label in a slack re-scaling formulation, given an oracle that returns the
most-violating-label in a (slightly modified) margin re-scaling formulation. However, in the case of
latent models, it is still unclear if this sort of reductions are possible for the slack re-scaling approach
because of the maximization in the margin with respect to the latent space.

We also note that one way to make the objective in eq.(5) convex is to replace the maximization in the
margin by the latent variable ĥ. However, this not only results in a looser upper bound of the Gibbs
decoder distortion but also under performs with respect to the methods mentioned in this paper.

Randomizing the Latent Space. We note that in the definition of the margin, there is a maximiza-
tion over the latent space H. In this paper, we sample structured outputs and latent variables from
some proposal distribution and these samples are used in the outer maximization in eq.(6). While
sampling latent variables from some proposal distribution in the maximization of the margin might be
computationally appealing, the main issue is that this will lead to a looser upper bound of the Gibbs
decoder distortion.

B.2 Further examples for Assumption A

For completeness, we present the examples provided in [11] since we make use of the suggested β
values in our synthetic experiments. Although their proofs are given without using latent variables, it
is straightforward to extend their claims by marginalizing on h.

Any type of structured output for binary distortion functions. Let Yx ×Hx be an arbi-
trary countable set of feasible decodings of x, such that |Yx| ≥ 2 for all (x, y) ∈ S. Let
d(y, y′, h) = 1

[
y 6= y′

]
. The uniform proposal distribution R(w, x) = R(x) with support on

Yx ×Hx fulfills Assumption A with β = 1/2.
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Directed spanning trees for a distortion function that returns the number of different edges.
Let Yx be the set of directed spanning trees of v nodes. Let A(y) be the adjacency matrix
of y ∈ Yx. Let d(y, y′, h) = 1

2(v−1)

∑
ij |A(y)ij −A(y′)ij |. The uniform proposal distribution

R(w, x) = R(x) with support on Yx ×Hx fulfills Assumption A with β = v−2
v−1 .

Directed acyclic graphs for a distortion function that returns the number of different edges.
Let Yx be the set of directed acyclic graphs of v nodes and b parents per node, such that 2 ≤ b ≤ v − 2.
Let A(y) be the adjacency matrix of y ∈ Yx. Let d(y, y′, h) = 1

b(2v−b−1)

∑
ij |A(y)ij −A(y′)ij |.

The uniform proposal distribution R(w, x) = R(x) with support on Yx ×Hx fulfills Assumption A
with β = b2+2b+2

b2+3b+2 .

Cardinality-constrained sets for a distortion function that returns the number of different
elements. LetYx be the set of sets of b elements chosen from v possible elements, such that b ≤ v/2.
Let d(y, y′, h) = 1

2b (|y − y
′|+ |y′ − y|). The uniform proposal distribution R(w, x) = R(x) with

support on Yx ×Hx fulfills Assumption A with β = 1/2.

B.3 Additional Details of Experiments

Synthetic Experiments. We replaced the discontinuous 0/1 loss 1[z ≥ 0] with the convex hinge
loss max (0, 1 + z), as it is customary. Note however, that even by using the hinge loss, the objective
functions in eq.(4), eq.(5) and in eq.(6) are still non-convex with respect to w. This is due to the
maximization over the latent space in the definition of the margin. We used λ = 1/n as suggested
by Theorems 1 and 3, and we performed 30 iterations of the subgradient descent method with a
decaying step size 1/

√
t for iteration t. For sampling random structured outputs and latent variables

in eq.(6), we implemented Algorithm 1 for directed spanning trees, directed acyclic graphs and
cardinality-constrained sets. We performed the local changes in Algorithm 1 as follows. Given a pair
(ŷ, ĥ), making a local change to (ŷ, ĥ) consists on iterating through all pairs (y′, h′) where ŷ and y′

differ only in one edge/element, and where the single entries in ĥ and h′ are contiguous. Finally,
we used β = 0.67 for directed spanning trees, β = 0.84 for directed acyclic graphs, and β = 0.5 for
cardinality-constrained sets, as prescribed by the examples given in Section B.2.

Image Matching. Ground truth is provided in the Buffy Stickmen dataset for measuring per-
formance on a test set. The authors in [9, 27] did not use latent variables, and considered
the mapping Φ(x, y) = 1

18

∑18
i=1(ψ(I, i) − ψ(I ′, yi))

2, where ψ(I, k) ∈ R128 are the SIFT
descriptors at scale 5 evaluated at keypoint k. We properly centered the coordinates indepen-
dently on each frame to avoid modeling translations in h. We use the mapping Φ(x, y, h) =

(Φ(x, y), 1
18

∑18
i=1‖c(I, i)× h− c(I ′, yi)‖22), where c(I, k) ∈ R2 are the coordinates of keypoint k.

Intuitively, we are adding one extra feature that summarizes the change in rotation and scaling of the
keypoints, i.e., Φ(x, y, h) ∈ R129.

The learning is performed using the random formulation as in eq.(6), and using local changes as in
Algorithm 1 for sampling from the proposal distribution. As in the synthetic experiments, we also
replaced the discontinuous 0/1 loss 1[z ≥ 0] with the convex hinge loss max (0, 1 + z), and followed
the local changes in Algorithm 1 for sampling from the proposal distribution. The neighborhoods of
the structures and latent variables were defined as follow: for a given permutation y, we considered
y′ to be its neighbor, and vice versa, if they have only two mismatched entries. Similarly, for a given
h, we considered h′ to be its neighbor, and vice versa, if they have only one different entry.
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