
Supplementary Material

A Proof of Theorem 1 and Corollary 1

Lemma 1. Let A,B ∈ Rn×n be symmetric and positive semidefinite. Then, 〈A,B〉 ≥ 0.

Proof. We can write B as B =
∑n

i=1 λiuiu
>
i , where λi ≥ 0 for all i ∈ [n] and u>i uj = 0 if i 6= j.

Then,
〈A,B〉 = trace {AB} = trace

{
A
∑n

i=1
λiuiu

>
i

}
=
∑n

i=1
λiu
>
i Aui ≥ 0. �

Lemma 2. Let f : Rm×n → Rm×n be a linear map defined as f(X) =
∑L

i=1AiXBi, where
Ai ∈ Rm×m and Bi ∈ Rn×n are symmetric positive semidefinite matrices for all i ∈ [L]. Then, for
every nonzero u ∈ Rm and v ∈ Rn, the largest eigenvalue of f satisfies

λmax(f) ≥ 1

‖u‖22‖v‖22

∑L

i=1
(u>Aiu)(v>Biv).

Proof. First, we show that f is symmetric and positive semidefinite. Given two matrices X,Y ∈
Rm×n, we can write

〈X, f(Y )〉 = trace
{∑

i
X>AiY Bi

}
= trace

{∑
i
BiY

>AiX
}

= 〈Y, f(X)〉,

〈X, f(X)〉 = trace
{∑

i
X>AiXBi

}
=
∑

i
〈X>AiX,Bi〉 ≥ 0,

where the last inequality follows from Lemma 1. This shows that f is symmetric and positive
semidefinite. Then, for every nonzero X ∈ Rm×n, we have

λmax(f) ≥ 1

〈X,X〉
〈X, f(X)〉.

In particular, given two nonzero vectors u ∈ Rm and v ∈ Rn,

λmax(f) ≥ 1

〈uv>, uv>〉
〈uv>, f(uv>)〉 =

1

‖u‖22‖v‖22

∑L

i=1
(u>Aiu)(v>Biv). �

Proof of Theorem 1. The cost function in Theorem 1 can be written as

1

2
trace

{
(WL · · ·W1 −R)>(WL · · ·W1 −R)

}
.

Let E denote the error in the estimate, i.e. E = WL · · ·W1 −R. The gradient descent yields

Wi[k + 1] = Wi[k]− δW>i+1[k] · · ·W>L [k]E[k]W>1 [k] · · ·W>i−1[k] ∀i ∈ [L]. (1)

By multiplying the update equations of Wi[k] and subtracting R, we can obtain the dynamics of E as

E[k + 1] = E[k]− δ
∑L

i=1
Ai[k]E[k]Bi[k] + o(E[k]), (2)

where o(·) denotes the higher order terms, and

Ai = WLWL−1 · · ·Wi+1W
>
i+1 · · ·W>L−1W>L ∀i ∈ [L],

Bi = W>1 W
>
2 · · ·W>i−1Wi−1 · · ·W2W1 ∀i ∈ [L].

Lyapunov’s indirect method of stability (Khalil, 2002; Sastry, 1999) states that given a dynamical
system x[k + 1] = F (x[k]), its equilibrium x∗ is stable in the sense of Lyapunov only if the
linearization of the system around x∗

(x[k + 1]− x∗) = (x[k]− x∗) +
∂F

∂x

∣∣∣∣
x=x∗

(x[k]− x∗)

1



does not have any eigenvalue larger than 1 in magnitude. By using this fact for the system defined by
(1)-(2), we can observe that an equilibrium {W ∗j }j∈[L] with W ∗L · · ·W ∗1 = R̂ is stable in the sense of
Lyapunov only if the system(

E[k + 1]− R̂+R
)

=
(
E[k]− R̂+R

)
− δ

∑L

i=1
Ai

∣∣∣
{W∗

j }

(
E[k]− R̂+R

)
Bi

∣∣∣
{W∗

j }

does not have any eigenvalue larger than 1 in magnitude, which requires that the mapping

f(Ẽ) =
∑L

i=1
Ai

∣∣∣
{W∗

j }
ẼBi

∣∣∣
{W∗

j }
(3)

does not have any real eigenvalue larger than (2/δ). Let u and v be the left and right singular vectors
of R̂ corresponding to its largest singular value, and let pj and qj be defined as in the statement of
Theorem 1. Then, by Lemma 2, the mapping f in (3) does not have an eigenvalue larger than (2/δ)
only if ∑L

i=1
p2i−1q

2
i+1 ≤

2

δ
,

which completes the proof. �

Proof of Corollary 1. Note that

qi+1pi = ‖u>WLWL−1 · · ·Wi+1‖2‖Wi · · ·W2W1v‖2 ≥ ‖u
>WL · · ·W1v‖2 = ρ(R).

As long as ρ(R) 6= 0, we have pi 6= 0 for all i ∈ [L], and therefore,

p2i−1q
2
i+1 ≥

p2i−1
p2i

ρ(R)2. (4)

Using inequality (4), the bound in Theorem 1 can be relaxed as

δ ≤ 2

(∑L

i=1

p2i−1
p2i

ρ(R)2
)−1

. (5)

Since
∏L

i=1(pi/pi−1) = ρ(R) 6= 0, we also have the inequality∑L

i=1

p2i−1
p2i

ρ(R)2 ≥
∑L

i=1

ρ(R)2(
ρ(R)1/L

)2 = Lρ(R)2(L−1)/L,

and the bound in (5) can be simplified as

δ ≤ 2

Lρ(R)2(L−1)/L
. �

B Proof of Theorem 2

Lemma 3. Let λ > 0 be estimated as a multiplication of the scalar parameters {wi}i∈[L] by
minimizing 1

2 (wL · · ·w2w1 − λ)2 via gradient descent. Assume that wi[0] = 1 for all i ∈ [L]. If the
step size δ is chosen to be less than or equal to

δc =

{
L−1λ−2(L−1)/L if λ ∈ [1,∞),
(1− λ)−1(1− λ1/L) if λ ∈ (0, 1),

then |wi[k]− λ 1
L | ≤ β(δ)k|1− λ 1

L | for all i ∈ [L], where

β(δ) =

{
1− δ(λ− 1)(λ1/L − 1)−1 if λ ∈ (1,∞),
1− δLλ2(L−1)/L if λ ∈ (0, 1].

Proof. Due to symmetry, wi[k] = wj [k] for all k ∈ N for all i, j ∈ [L]. Denoting any of them by
w[k], we have

w[k + 1] = w[k]− δwL−1[k](wL[k]− λ).
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To show that w[k] converges to λ1/L, we can write

w[k + 1]− λ1/L = µ(w[k])(w[k]− λ1/L),

where
µ(w) = 1− δwL−1

∑L−1

j=0
wjλ(L−1−j)/L.

If there exists some β ∈ [0, 1) such that

0 ≤ µ(w[k]) ≤ β for all k ∈ N, (6)

then w[k] is always larger or always smaller than λ1/L, and its distance to λ1/L decreases by a factor
of β at each step. Since µ(w) is a monotonic function in w, the condition (6) holds for all k if it holds
only for w[0] = 1 and λ1/L, which gives us δc and β(δ). �

Proof of Theorem 2. There exists a common invertible matrix U ∈ Rn×n that can diagonalize all
the matrices in the system created by the gradient descent: R = UΛRU

>, Wi = UΛWiU
> for all

i ∈ [L]. Then the dynamical system turns into n independent update rules for the diagonal elements
of ΛR and {ΛWi}i∈[L]. Lemma 3 can be applied to each of the n systems involving the diagonal
elements. Since δc in Lemma 3 is monotonically decreasing in λ, the bound for the maximum
eigenvalue of R guarantees linear convergence. �

C Proof of Theorem 3

Lemma 4. Assume that λ < 0 and wi[0] = 1 is used for all i ∈ [L] to initialize the gradient descent
algorithm to solve

min
(w1,...,wL)∈RL

1

2
(wL . . . w2w1 − λ)

2
.

Then, each wi converges to 0 unless δ > (1− λ)
−1.

Proof. We can write the update rule for any weight wi as

w[k + 1] = w[k]
(
1− δσwL−2[k]

(
wL[k]− λ

))
which has one equilibrium at w∗ = λ1/L and another at w∗ = 0. If 0 < δ ≤ 1/σ(1− λ) and
w[0] = 1, it can be shown by induction that

0 ≤ 1− δσwL−2[k]
(
wL[k]− λ

)
< 1

for all k ≥ 0. As a result, w[k] converges to 0. �

Proof of Theorem 3. Similar to the proof of Theorem 2, the system created by the gradient descent
can be decomposed into n independent systems of the diagonal elements of the matrices ΛR and
{ΛWi

}i∈[L]. Then, Lemma 3 and Lemma 4 can be applied to the systems with positive and negative
eigenvalues of R, respectively. �

D Proof of Theorem 4

To find a necessary condition for the convergence of the gradient descent algorithm to (Ŵ , V̂ ), we
analyze the local stability of that solution in the sense of Lyapunov. Since the analysis is local and the
function g is fixed, for each point xi we can use a matrix Gi that satisfies Gi(V̂ xi− b) = g(V̂ xi− b).
Note that Gi is a diagonal matrix and all of its diagonal elements are either 0 or 1. Then, we can
write the cost function around an equilibrium as

1

2

∑N

i=1
trace

{
[WGi(V xi − b)− f(xi)]

>
[WGi(V xi − b)− f(xi)]

}
.

Denoting the error WGi(V xi − b)− f(xi) by ei, the gradient descent gives

W [k + 1] = W [k]− δ
∑N

i=1
ei[k](V [k]xi − b)>GT

i ,
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V [k + 1] = V [k]− δ
∑N

i=1
G>i W [k]>ei[k]x>i .

Let e denote the vector (e>1 . . . e>N )>. Then we can write the update equation of ej as

ej [k + 1] = ej [k]− δW [k]Gj

∑
i
G>i W [k]>ei[k]x>i xj

−δ
∑

i
ei[k](V [k]xi − b)>G>i Gj(V [k]xj − b) + o(e[k]).

Similar to the proof of Theorem 1, the equilibrium (Ŵ , V̂ ) can be stable in the sense on Lyapunov
only if the system

ej [k+ 1] = ej [k]− δ
∑

i
ŴGjG

>
i Ŵ

>ei[k]x>i xj − δ
∑

i
ei[k](V̂ xi − b)>G>i Gj(V̂ xj − b) (7)

does not have any eigenvalue larger than 1 in magnitude. Note that the linear system in (7) can
be described by a symmetric matrix, whose eigenvalues cannot be larger in magnitude than the
eigenvalues of its sub-blocks on the diagonal, in particular those of the system

ej [k + 1] = ej [k]− δŴGjG
>
j Ŵ

>ej [k]x>j xj − δej [k](V̂ xj − b)>G>j Gj(V̂ xj − b). (8)

The eigenvalues of the system (8) are less than 1 in magnitude only if the eigenvalues of the system

h(u) = ŴGjG
>
j Ŵ

>ux>j xj + u(V̂ xj − b)>G>j Gj(V̂ xj − b)

are less than (2/δ). This requires that for all j ∈ [N ] for which f̂(xj) 6= 0,

2

δ
≥ 〈f̂(xj), h(f̂(xj))〉

〈f̂(xj), f̂(xj)〉

=
1

‖f̂(xj)‖2
(
‖G>j Ŵ>f̂(xj)‖2‖xj‖2 + ‖f̂(xj)‖2‖Gj(V̂ xj − b)‖2

)
≥ 1

‖f̂(xj)‖2
‖(V̂ xj − b)>G>j G>j Ŵ>f̂(xj)‖2

‖(V̂ xj − b)>G>j ‖2
‖xj‖2 + ‖Gj(V̂ xj − b)‖2

=
1

‖Gj(V̂ xj − b)‖2
‖f̂(xj)‖2‖xj‖2 + ‖Gj(V̂ xj − b)‖2

≥ 2‖f̂(xj)‖‖xj‖.

As a result, Lyapunov stability of the solution (Ŵ , V̂ ) requires

1

δ
≥ max

i
‖f̂(xi)‖‖xi‖. �
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