Supplementary Material

A Proof of Theorem 1 and Corollary 1

Lemma 1. Let $A, B \in \mathbb{R}^{n \times n}$ be symmetric and positive semidefinite. Then, $\langle A, B \rangle \ge 0$.

Proof. We can write B as $B = \sum_{i=1}^{n} \lambda_i u_i u_i^{\top}$, where $\lambda_i \ge 0$ for all $i \in [n]$ and $u_i^{\top} u_j = 0$ if $i \ne j$. Then,

$$\langle A, B \rangle = \operatorname{trace} \left\{ AB \right\} = \operatorname{trace} \left\{ A \sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{\top} \right\} = \sum_{i=1}^{n} \lambda_{i} u_{i}^{\top} A u_{i} \ge 0.$$

Lemma 2. Let $f : \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}$ be a linear map defined as $f(X) = \sum_{i=1}^{L} A_i X B_i$, where $A_i \in \mathbb{R}^{m \times m}$ and $B_i \in \mathbb{R}^{n \times n}$ are symmetric positive semidefinite matrices for all $i \in [L]$. Then, for every nonzero $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$, the largest eigenvalue of f satisfies

$$\lambda_{\max}(f) \ge \frac{1}{\|u\|_2^2 \|v\|_2^2} \sum_{i=1}^L (u^\top A_i u) (v^\top B_i v).$$

Proof. First, we show that f is symmetric and positive semidefinite. Given two matrices $X, Y \in \mathbb{R}^{m \times n}$, we can write

$$\langle X, f(Y) \rangle = \operatorname{trace} \left\{ \sum_{i} X^{\top} A_{i} Y B_{i} \right\} = \operatorname{trace} \left\{ \sum_{i} B_{i} Y^{\top} A_{i} X \right\} = \langle Y, f(X) \rangle$$

$$\langle X, f(X) \rangle = \operatorname{trace} \left\{ \sum_{i} X^{\top} A_{i} X B_{i} \right\} = \sum_{i} \langle X^{\top} A_{i} X, B_{i} \rangle \ge 0,$$

where the last inequality follows from Lemma 1. This shows that f is symmetric and positive semidefinite. Then, for every nonzero $X \in \mathbb{R}^{m \times n}$, we have

$$\lambda_{\max}(f) \ge \frac{1}{\langle X, X \rangle} \langle X, f(X) \rangle.$$

In particular, given two nonzero vectors $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$,

$$\lambda_{\max}(f) \ge \frac{1}{\langle uv^{\top}, uv^{\top} \rangle} \langle uv^{\top}, f(uv^{\top}) \rangle = \frac{1}{\|u\|_2^2 \|v\|_2^2} \sum_{i=1}^L (u^{\top} A_i u) (v^{\top} B_i v).$$

Proof of Theorem 1. The cost function in Theorem 1 can be written as

$$\frac{1}{2}\operatorname{trace}\left\{\left(W_{L}\cdots W_{1}-R\right)^{\top}\left(W_{L}\cdots W_{1}-R\right)\right\}.$$

Let E denote the error in the estimate, i.e. $E = W_L \cdots W_1 - R$. The gradient descent yields

$$W_{i}[k+1] = W_{i}[k] - \delta W_{i+1}^{\top}[k] \cdots W_{L}^{\top}[k] E[k] W_{1}^{\top}[k] \cdots W_{i-1}^{\top}[k] \quad \forall i \in [L].$$
(1)

By multiplying the update equations of $W_i[k]$ and subtracting R, we can obtain the dynamics of E as

$$E[k+1] = E[k] - \delta \sum_{i=1}^{L} A_i[k] E[k] B_i[k] + o(E[k]),$$
(2)

where $o(\cdot)$ denotes the higher order terms, and

$$A_{i} = W_{L}W_{L-1} \cdots W_{i+1}W_{i+1}^{\top} \cdots W_{L-1}^{\top}W_{L}^{\top} \quad \forall i \in [L],$$
$$B_{i} = W_{1}^{\top}W_{2}^{\top} \cdots W_{i-1}^{\top}W_{i-1} \cdots W_{2}W_{1} \quad \forall i \in [L].$$

Lyapunov's indirect method of stability (Khalil, 2002; Sastry, 1999) states that given a dynamical system x[k+1] = F(x[k]), its equilibrium x^* is stable in the sense of Lyapunov only if the linearization of the system around x^*

$$(x[k+1] - x^*) = (x[k] - x^*) + \left. \frac{\partial F}{\partial x} \right|_{x=x^*} (x[k] - x^*)$$

does not have any eigenvalue larger than 1 in magnitude. By using this fact for the system defined by (1)-(2), we can observe that an equilibrium $\{W_j^*\}_{j \in [L]}$ with $W_L^* \cdots W_1^* = \hat{R}$ is stable in the sense of Lyapunov only if the system

$$\left(E[k+1] - \hat{R} + R\right) = \left(E[k] - \hat{R} + R\right) - \delta \sum_{i=1}^{L} A_i \Big|_{\{W_j^*\}} \left(E[k] - \hat{R} + R\right) B_i \Big|_{\{W_j^*\}}$$

does not have any eigenvalue larger than 1 in magnitude, which requires that the mapping

$$f(\tilde{E}) = \sum_{i=1}^{L} A_i \Big|_{\{W_j^*\}} \tilde{E}B_i \Big|_{\{W_j^*\}}$$
(3)

does not have any real eigenvalue larger than $(2/\delta)$. Let u and v be the left and right singular vectors of \hat{R} corresponding to its largest singular value, and let p_j and q_j be defined as in the statement of Theorem 1. Then, by Lemma 2, the mapping f in (3) does not have an eigenvalue larger than $(2/\delta)$ only if

$$\sum_{i=1}^{L} p_{i-1}^2 q_{i+1}^2 \le \frac{2}{\delta}$$

which completes the proof.

Proof of Corollary 1. Note that

$$q_{i+1}p_i = \|u^{\top}W_LW_{L-1}\cdots W_{i+1}\|_2 \|W_i\cdots W_2W_1v\|_2 \ge \|u^{\top}W_L\cdots W_1v\|_2 = \rho(R)$$

As long as $\rho(R) \neq 0$, we have $p_i \neq 0$ for all $i \in [L]$, and therefore,

$$p_{i-1}^2 q_{i+1}^2 \ge \frac{p_{i-1}^2}{p_i^2} \rho(R)^2.$$
(4)

Using inequality (4), the bound in Theorem 1 can be relaxed as

$$\delta \le 2 \left(\sum_{i=1}^{L} \frac{p_{i-1}^2}{p_i^2} \rho(R)^2 \right)^{-1}.$$
(5)

Since $\prod_{i=1}^{L} (p_i/p_{i-1}) = \rho(R) \neq 0$, we also have the inequality

$$\sum_{i=1}^{L} \frac{p_{i-1}^2}{p_i^2} \rho(R)^2 \ge \sum_{i=1}^{L} \frac{\rho(R)^2}{\left(\rho(R)^{1/L}\right)^2} = L\rho(R)^{2(L-1)/L},$$

and the bound in (5) can be simplified as

$$\delta \le \frac{2}{L\rho(R)^{2(L-1)/L}}.$$

B Proof of Theorem 2

Lemma 3. Let $\lambda > 0$ be estimated as a multiplication of the scalar parameters $\{w_i\}_{i \in [L]}$ by minimizing $\frac{1}{2}(w_L \cdots w_2 w_1 - \lambda)^2$ via gradient descent. Assume that $w_i[0] = 1$ for all $i \in [L]$. If the step size δ is chosen to be less than or equal to

$$\delta_c = \left\{ \begin{array}{ll} L^{-1}\lambda^{-2(L-1)/L} & \text{if } \lambda \in [1,\infty), \\ (1-\lambda)^{-1}(1-\lambda^{1/L}) & \text{if } \lambda \in (0,1), \end{array} \right.$$

then $|w_i[k] - \lambda^{\frac{1}{L}}| \leq \beta(\delta)^k |1 - \lambda^{\frac{1}{L}}|$ for all $i \in [L]$, where

$$\beta(\delta) = \begin{cases} 1 - \delta(\lambda - 1)(\lambda^{1/L} - 1)^{-1} & \text{if } \lambda \in (1, \infty), \\ 1 - \delta L \lambda^{2(L-1)/L} & \text{if } \lambda \in (0, 1]. \end{cases}$$

Proof. Due to symmetry, $w_i[k] = w_j[k]$ for all $k \in \mathbb{N}$ for all $i, j \in [L]$. Denoting any of them by w[k], we have

$$w[k+1] = w[k] - \delta w^{L-1}[k](w^{L}[k] - \lambda).$$

To show that w[k] converges to $\lambda^{1/L}$, we can write

$$w[k+1] - \lambda^{1/L} = \mu(w[k])(w[k] - \lambda^{1/L}),$$

where

$$\mu(w) = 1 - \delta w^{L-1} \sum_{j=0}^{L-1} w^j \lambda^{(L-1-j)/L}$$

If there exists some $\beta \in [0, 1)$ such that

$$0 \le \mu(w[k]) \le \beta \text{ for all } k \in \mathbb{N},\tag{6}$$

then w[k] is always larger or always smaller than $\lambda^{1/L}$, and its distance to $\lambda^{1/L}$ decreases by a factor of β at each step. Since $\mu(w)$ is a monotonic function in w, the condition (6) holds for all k if it holds only for w[0] = 1 and $\lambda^{1/L}$, which gives us δ_c and $\beta(\delta)$.

Proof of Theorem 2. There exists a common invertible matrix $U \in \mathbb{R}^{n \times n}$ that can diagonalize all the matrices in the system created by the gradient descent: $R = U\Lambda_R U^{\top}$, $W_i = U\Lambda_{W_i} U^{\top}$ for all $i \in [L]$. Then the dynamical system turns into n independent update rules for the diagonal elements of Λ_R and $\{\Lambda_{W_i}\}_{i \in [L]}$. Lemma 3 can be applied to each of the n systems involving the diagonal elements. Since δ_c in Lemma 3 is monotonically decreasing in λ , the bound for the maximum eigenvalue of R guarantees linear convergence.

C Proof of Theorem 3

Lemma 4. Assume that $\lambda < 0$ and $w_i[0] = 1$ is used for all $i \in [L]$ to initialize the gradient descent algorithm to solve

$$\min_{(w_1,\ldots,w_L)\in\mathbb{R}^L}\frac{1}{2}\left(w_L\ldots w_2w_1-\lambda\right)^2.$$

Then, each w_i converges to 0 unless $\delta > (1 - \lambda)^{-1}$.

Proof. We can write the update rule for any weight w_i as

$$w[k+1] = w[k] \left(1 - \delta \sigma w^{L-2}[k] \left(w^{L}[k] - \lambda\right)\right)$$

which has one equilibrium at $w^* = \lambda^{1/L}$ and another at $w^* = 0$. If $0 < \delta \le 1/\sigma(1-\lambda)$ and w[0] = 1, it can be shown by induction that

$$0 \le 1 - \delta \sigma w^{L-2}[k] \left(w^L[k] - \lambda \right) < 1$$

for all $k \ge 0$. As a result, w[k] converges to 0.

Proof of Theorem 3. Similar to the proof of Theorem 2, the system created by the gradient descent can be decomposed into *n* independent systems of the diagonal elements of the matrices Λ_R and $\{\Lambda_{W_i}\}_{i \in [L]}$. Then, Lemma 3 and Lemma 4 can be applied to the systems with positive and negative eigenvalues of *R*, respectively.

D Proof of Theorem 4

To find a necessary condition for the convergence of the gradient descent algorithm to (\hat{W}, \hat{V}) , we analyze the local stability of that solution in the sense of Lyapunov. Since the analysis is local and the function g is fixed, for each point x_i we can use a matrix G_i that satisfies $G_i(\hat{V}x_i - b) = g(\hat{V}x_i - b)$. Note that G_i is a diagonal matrix and all of its diagonal elements are either 0 or 1. Then, we can write the cost function around an equilibrium as

$$\frac{1}{2} \sum_{i=1}^{N} \operatorname{trace} \left\{ \left[WG_i(Vx_i - b) - f(x_i) \right]^\top \left[WG_i(Vx_i - b) - f(x_i) \right] \right\}.$$

Denoting the error $WG_i(Vx_i - b) - f(x_i)$ by e_i , the gradient descent gives

$$W[k+1] = W[k] - \delta \sum_{i=1}^{N} e_i[k] (V[k]x_i - b)^{\top} G_i^T,$$

$$V[k+1] = V[k] - \delta \sum_{i=1}^{N} G_{i}^{\top} W[k]^{\top} e_{i}[k] x_{i}^{\top}.$$

Let e denote the vector $(e_1^{\top} \dots e_N^{\top})^{\top}$. Then we can write the update equation of e_j as

$$e_{j}[k+1] = e_{j}[k] - \delta W[k]G_{j} \sum_{i} G_{i}^{\top} W[k]^{\top} e_{i}[k]x_{i}^{\top}x_{j} -\delta \sum_{i} e_{i}[k](V[k]x_{i}-b)^{\top}G_{i}^{\top}G_{j}(V[k]x_{j}-b) + o(e[k])$$

Similar to the proof of Theorem 1, the equilibrium (\hat{W}, \hat{V}) can be stable in the sense on Lyapunov only if the system

$$e_{j}[k+1] = e_{j}[k] - \delta \sum_{i} \hat{W}G_{j}G_{i}^{\top}\hat{W}^{\top}e_{i}[k]x_{i}^{\top}x_{j} - \delta \sum_{i} e_{i}[k](\hat{V}x_{i}-b)^{\top}G_{i}^{\top}G_{j}(\hat{V}x_{j}-b)$$
(7)

does not have any eigenvalue larger than 1 in magnitude. Note that the linear system in (7) can be described by a symmetric matrix, whose eigenvalues cannot be larger in magnitude than the eigenvalues of its sub-blocks on the diagonal, in particular those of the system

$$e_{j}[k+1] = e_{j}[k] - \delta \hat{W} G_{j} G_{j}^{\top} \hat{W}^{\top} e_{j}[k] x_{j}^{\top} x_{j} - \delta e_{j}[k] (\hat{V} x_{j} - b)^{\top} G_{j}^{\top} G_{j} (\hat{V} x_{j} - b).$$
(8)

The eigenvalues of the system (8) are less than 1 in magnitude only if the eigenvalues of the system

$$h(u) = \hat{W}G_jG_j^{\top}\hat{W}^{\top}ux_j^{\top}x_j + u(\hat{V}x_j - b)^{\top}G_j^{\top}G_j(\hat{V}x_j - b)$$

are less than $(2/\delta)$. This requires that for all $j \in [N]$ for which $\hat{f}(x_j) \neq 0$,

$$\begin{aligned} \frac{2}{\delta} &\geq \frac{\langle \hat{f}(x_j), h(\hat{f}(x_j)) \rangle}{\langle \hat{f}(x_j), \hat{f}(x_j) \rangle} \\ &= \frac{1}{\|\hat{f}(x_j)\|^2} \left(\|G_j^\top \hat{W}^\top \hat{f}(x_j)\|^2 \|x_j\|^2 + \|\hat{f}(x_j)\|^2 \|G_j(\hat{V}x_j - b)\|^2 \right) \\ &\geq \frac{1}{\|\hat{f}(x_j)\|^2} \frac{\|(\hat{V}x_j - b)^\top G_j^\top G_j^\top \hat{W}^\top \hat{f}(x_j)\|^2}{\|(\hat{V}x_j - b)^\top G_j^\top\|^2} \|x_j\|^2 + \|G_j(\hat{V}x_j - b)\|^2 \\ &= \frac{1}{\|G_j(\hat{V}x_j - b)\|^2} \|\hat{f}(x_j)\|^2 \|x_j\|^2 + \|G_j(\hat{V}x_j - b)\|^2 \\ &\geq 2\|\hat{f}(x_j)\|\|x_j\|. \end{aligned}$$

As a result, Lyapunov stability of the solution (\hat{W}, \hat{V}) requires

$$\frac{1}{\delta} \ge \max_{i} \|\hat{f}(x_i)\| \|x_i\|.$$