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Abstract

We present the first accelerated randomized algorithm for solving linear systems
in Euclidean spaces. One essential problem of this type is the matrix inversion
problem. In particular, our algorithm can be specialized to invert positive definite
matrices in such a way that all iterates (approximate solutions) generated by the
algorithm are positive definite matrices themselves. This opens the way for many
applications in the field of optimization and machine learning. As an application of
our general theory, we develop the first accelerated (deterministic and stochastic)
quasi-Newton updates. Our updates lead to provably more aggressive approxima-
tions of the inverse Hessian, and lead to speed-ups over classical non-accelerated
rules in numerical experiments. Experiments with empirical risk minimization
show that our rules can accelerate training of machine learning models.

1 Introduction

Consider the optimization problem
min
w∈Rn

f(w), (1)

and assume f is sufficiently smooth. A new wave of second order stochastic methods are being
developed with the aim of solving large scale optimization problems. In particular, many of these
new methods are based on stochastic BFGS updates [29, 35, 20, 21, 6, 8, 3]. Here we develop a new
stochastic accelerated BFGS update that can form the basis of new stochastic quasi-Newton methods.

Another approach to scaling up second order methods is to use randomized sketching to reduce the
dimension, and hence the complexity of the Hessian and the updates involving the Hessian [26, 38], or
subsampled Hessian matrices when the objective function is a sum of many loss functions [5, 2, 1, 37].

The starting point for developing second order methods is arguably Newton’s method, which performs
the iterative process

wk+1 = wk − (∇2f(wk))−1∇f(wk), (2)
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where∇2f(wk) and∇f(wk) are the Hessian and gradient of f , respectively. However, it is inefficient
for solving large scale problems as it requires the computation of the Hessian and then solving a
linear system at each iteration. Several methods have been developed to address this issue, based on
the idea of approximating the exact update.

Quasi-Newton methods, in particular BFGS [4, 10, 11, 30], have been the leading optimization
algorithm in various fields since the late 60’s until the rise of big data, which brought a need for
simpler first order algorithms. It is well known that Nesterov’s acceleration [22] is a reliable way
to speed up first order methods. However until now, acceleration techniques have been applied
exclusively to speeding up gradient updates. In this paper we present an accelerated BFGS algorithm,
opening up new applications for acceleration. The acceleration in fact comes from an accelerated
algorithm for inverting the Hessian matrix.

To be more specific, recall that quasi-Newton rules aim to maintain an estimate of the inverse Hessian
Xk, adjusting it every iteration so that the inverse Hessian acts appropriately in a particular direction,
while enforcing symmetry:

Xk(∇f(wk)−∇f(wk−1)) = wk − wk−1, Xk = X>k . (3)

A notable research direction is the development of stochastic quasi-Newton methods [15], where the
estimated inverse is equal to the true inverse over a subspace:

Xk∇2f(wk)Sk = Sk, Xk = X>k , (4)

where Sk ∈ Rn×τ is a randomly generated matrix.

In fact, (4) can be seen as the so called sketch-and-project iteration for inverting ∇2f(wk). In this
paper we first develop the accelerated algorithm for inverting positive definite matrices. As a direct
application, our algorithm can be used as a primitive in quasi-Newton methods which results in a
novel accelerated (stochastic) quasi-Newton method of the type (4). In addition, our acceleration
technique can also be incorporated in the classical (non stochastic) BFGS method. This results in
the accelerated BFGS method. Whereas the matrix inversion contribution is accompanied by strong
theoretical justifications, this does not apply to the latter. Rather, we verify the effectiveness of this
new accelerated BFGS method through numerical experiments.

1.1 Sketch-and-project for linear systems

Our accelerated algorithm can be applied to more general tasks than only inverting matrices. In
its most general form, it can be seen as an accelerated version of a sketch-and-project method in
Euclidean spaces which we present now. Consider a linear system Ax = b such that b ∈ Range (A).
One step of the sketch-and-project algorithm reads as:

xk+1 = argminx ‖xk − x‖2B subject to S>k Ax = S>k b, (5)

where ‖x‖2B = 〈Bx, x〉 for some B � 0 and Sk is a random sketching matrix sampled i.i.d at each
iteration from a fixed distribution.

Randomized Kaczmarz [16, 33] was the first algorithm of this type. In [13], this sketch-and-project
algorithm was analyzed in its full generality. Note that the dual problem of (5) takes the form of a
quadratic minimization problem [14], and randomized methods such as coordinate descent [23, 36],
random pursuit [31, 32] or stochastic dual ascent [14] can thus also be captured as special instances
of this method. Richtárik and Takáč [28] adopt a new point of view through a theory of stochastic
reformulations of linear systems. In addition, they consider the addition of a relaxation parameter,
as well as mini-batch and accelerated variants. Acceleration was only achieved for the expected
iterates, and not in the L2 sense as we do here. We refer to Richtárik and Takáč [28] for interpretation
of sketch-and-project as stochastic gradient descent, stochastic Newton, stochastic proximal point
method, and stochastic fixed point method.

Gower [15] observed that the procedure (5) can also be applied to find the inverse of a matrix. Assume
the optimization variable itself is a matrix, x = X , b = I , the identity matrix, then sketch-and-
project converges (under mild assumptions) to a solution of AX = I . Even the symmetry constraint
X = X> can be incorporated into the sketch-and-project framework since it is a linear constraint.

There has been recent development in speeding up the sketch-and-project method using the idea of
Nesterov’s acceleration [22]. In [18] an accelerated Kaczmarz algorithm was presented for special
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sketches of rank one. Arbitrary sketches of rank one where considered in [31], block sketches in [24]
and recently, Tu and coathors [34] developed acceleration for special sketching matrices, assuming
the matrix A is square. This assumption, along with any assumptions on A, was later dropped
in [27]. Another notable way to accelerate the sketch-and-project algorithm is by using momentum
or stochastic momentum [19].

We build on recent work of Richtárik and Takáč [27] and further extend their analysis by studying
accelerated sketch-and-project in general Euclidean spaces. This allows us to deduce the result for
matrix inversion as a special case. However, there is one additional caveat that has to be considered
for the intended application in quasi-Newton methods: ideally, all iterates of the algorithm should be
symmetric positive definite matrices. This is not the case in general, but we address this problem by
constructing special sketch operators that preserve symmetry and positive definiteness.

2 Contributions

We now present our main contributions.

Accelerated Sketch and Project in Euclidean Spaces. We generalize the analysis of an accelerated
version of the sketch-and-project algorithm [27] to linear operator systems in Euclidean spaces. We
provide a self-contained convergence analysis, recovering the original results in a more general
setting.

Faster Algorithms for Matrix Inversion. We develop an accelerated algorithm for inverting positive
definite matrices. This algorithm can be seen as a special case of the accelerated sketch-and-project
in Euclidean space, thus its convergence follows from the main theorem. However, we also provide a
different formulation of the proof that is specialized to this setting. Similarly to [34], the performance
of the algorithm depends on two parameters µ and ν that capture spectral properties of the input
matrix and the sketches that are used. Whilst for the non-accelerated sketch-and-project algorithm
for matrix inversion [15] the knowledge of these parameters is not necessary, they need to be given
as input to the accelerated scheme. When employed with the correct choice of parameters, the
accelerated algorithm is always faster than the non-accelerated one. We also provide a theoretical
rate for sub-optimal parameters µ, ν, and we perform numerical experiments to argue the choice of
µ, ν in practice.

Randomized Accelerated Quasi-Newton. The proposed iterative algorithm for matrix inversion is
designed in such a way that each iterate is a symmetric matrix. This means, we can use the generated
approximate solutions as estimators for the inverse Hessian in quasi-Newton methods, which is a
direct extension of stochastic quasi-Newton methods. To the best of our knowledge, this yields the
first accelerated (stochastic) quasi-Newton method.

Accelerated Quasi-Newton. In the standard BFGS method the updates to the Hessian estimate
are not chosen randomly, but deterministically. Based on the intuition gained from the accelerated
random method, we propose an accelerated scheme for BFGS. The main idea is that we replace the
random sketching of the Hessian with a deterministic update. The theoretical convergence rates do
not transfer to this scheme, but we demonstrate by numerical experiments that it is possible to choose
a parameter combination which yields a slightly faster convergence. We believe that the novel idea
of accelerating BFGS update is extremely valuable, as until now, acceleration techniques were only
considered to improve gradient updates.

2.1 Outline

Our accelerated sketch-and-project algorithm for solving linear systems in Euclidean spaces is
developed and analyzed in Section 3, and is used later in Section 4 to analyze an accelerated sketch-
and-project algorithm for matrix inversion. The accelerated sketch-and-project algorithm for matrix
inversion is then used to accelerate the BFGS update, which in turn leads to the development of an
accelerated BFGS optimization method. Lastly in Section 5, we perform numerical experiments to
gain different insights into the newly developed methods. Proofs of all results and additional insights
can be found in the appendix.
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3 Accelerated Stochastic Algorithm for Matrix Inversion

In this section we propose an accelerated randomized algorithm to solve linear systems in Euclidean
spaces. This is a very general problem class which comprises the matrix inversion problem as well.
Thus, we will use the result of this section later to analyze our newly proposed matrix inversion
algorithm, which we then use to estimate the inverse of the Hessian within a quasi-Newton method.2

Let X and Y be finite dimensional Euclidean spaces and let A : X 7→ Y be a linear operator. Let
L(X ,Y) denote the space of linear operators that map from X to Y. Consider the linear system

Ax = b, (6)

where x ∈ X and b ∈ Range (A) . Consequently there exists a solution to the equation (6). In
particular, we aim to find the solution closest to a given initial point x0 ∈ X :

x∗
def
= arg min

x∈X
1
2‖x− x0‖

2 subject to Ax = b. (7)

Using the pseudoinverse and Lemma 22 item vi, the solution to (7) is given by

x∗ = x0 −A†(Ax0 − b) ∈ x0 + Range (A∗) , (8)

where A† and A∗ denote the pseudoinverse and the adjoint of A, respectively.

3.1 The algorithm

Let Z be a Euclidean space and consider a random linear operator Sk ∈ L(Y,Z) chosen from some
distribution D over L(Y,Z) at iteration k. Our method is given in Algorithm 1, where Zk ∈ L(X ) is
a random linear operator given by the following compositions

Zk = Z(Sk)
def
= A∗S∗k(SkAA∗S∗k)†SkA. (9)

The updates of variables gk and xk+1 on lines 8 and 9, respectively, correspond to what is known as
the sketch-and-project update:

xk+1 = arg min
x∈X

1
2‖x− yk‖

2 subject to SkAx = Skb, (10)

which can also be written as the following operation

xk+1 − x∗ = (I − Zk)(yk − x∗). (11)

This follows from the fact that b ∈ Range (A), together with item i of Lemma 22. Furthermore,
note that the adjoint A∗ and the pseudoinverse in Algorithm 1 are taken with respect to the norm
in (7).

Algorithm 1 Accelerated Sketch-and-Project for solving (10) [27]
1: Parameters: µ, ν > 0, D = distribution over random linear operators.
2: Choose x0 ∈ X and set v0 = x0, β = 1−

√
µ
ν , γ =

√
1
µν , α = 1

1+γν .

3: for k = 0, 1, . . . do
4: yk = αvk + (1− α)xk
5: Sample an independent copy Sk ∼ D
6: gk = A∗S∗k(SkAA∗S∗k)†Sk(Ayk − b) = Zk(yk − x∗)
7: xk+1 = yk − gk
8: vk+1 = βvk + (1− β)yk − γgk
9: end for

Algorithm 1 was first proposed and analyzed by Richtárik and Takáč [27] for the special case when
X = Rn and Y = Rm. Our contribution here is in extending the algorithm and analysis to the more
abstract setting of Euclidean spaces. In addition, we provide some further extensions of this method
in Sections D and E, allowing for a non-unit stepsize and variable α, respectively.

2Quasi-Newton methods do not compute an exact matrix inverse, rather, they only compute an incremental
update. Thus, it suffices to apply one step of our proposed scheme per iteration. This will be detailed in Section 4.
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3.2 Key assumptions and quantities

Denote Z = Z(S) for S ∼ D. Assume that the exactness property holds

Null (A) = Null (E [Z]) ; (12)

this is also equivalent to Range (A∗) = Range (E [Z]). The exactness assumption is of key
importance in the sketch-and-project framework, and indeed it is not very strong. For example, it
holds for the matrix inversion problem with every sketching strategy we consider. We further assume
that A 6= 0 and E [Z] is finite. First we collect a few observation on the Z operator
Lemma 1. The Z operator (9) is a self-adjoint positive projection. Consequently E [Z] is a self-
adjoint positive operator.

The two parameters that govern the acceleration are

µ
def
= inf

x∈Range(A∗)
〈E[Z]x,x〉
〈x,x〉 , ν

def
= sup

x∈Range(A∗)

〈E[ZE[Z]†Z]x,x〉
〈E[Z]x,x〉 . (13)

The supremum in the definition of ν is well defined due to the exactness assumption together with
A 6= 0.

Lemma 2. We have
1 ≤ ν ≤ 1

µ = ‖E [Z]
†‖. (14)

Moreover, if Range (A∗) = X , we have
Rank(A∗)
E[Rank(Z)] ≤ ν. (15)

3.3 Convergence and change of the norm

For a positive self-adjoint G ∈ L(X ) and x ∈ X let ‖x‖G
def
=
√
〈x, x〉G

def
=
√
〈Gx, x〉. We now

informally state the convergence rate of Algorithm 1. Theorem 3 generalizes the main theorem from
[27] to linear systems in Euclidean spaces.
Theorem 3. Let xk, vk be the random iterates of Algorithm 1. Then

E
[
‖vk − x∗‖2E[Z]†

+ 1
µ‖xk − x∗‖

2
]
≤
(

1−
√

µ
ν

)k
E
[
‖v0 − x∗‖2E[Z]†

+ 1
µ‖x0 − x∗‖

2
]
.

This theorem shows the accelerated Sketch-and-Project algorithm converges linearly with a rate of(
1 −

√
µ
ν

)
, which translates to a total of O(

√
ν/µ log (1/ε)) iterations to bring the given error in

Theorem 3 below ε > 0. This is in contrast with the non-accelerated Sketch-and-Project algorithm
which requires O((1/µ) log (1/ε)) iterations, as shown in [13] for solving linear systems. From (14),
we have the bounds 1/

√
µ ≤

√
ν/µ ≤ 1/µ. On one extreme, this inequality shows that the iteration

complexity of the accelerated algorithm is at least as good as its non-accelerated counterpart. On the
other extreme, the accelerated algorithm might require as little as the square root of the number of
iterations of its non-accelerated counterpart. Since the cost of a single iteration of the accelerated
algorithm is of the same order as the non-accelerated algorithm, this theorem shows that acceleration
can offer a significant speed-up, which is verified numerically in Section 5. It is also possible to get
the convergence rate of accelerated sketch-and-project where projections are taken with respect to a
different weighted norm. For technical details, see Section B.4 of the Appendix.

3.4 Coordinate sketches with convenient probabilities

Let us consider a simple example in the setting for Algorithm 1 where we can understand parameters
µ, ν. In particular, consider a linear system Ax = b in Rn where A is symmetric positive definite.
Corollary 4. Choose B = A and S = ei with probability proportional to Ai,i. Then

µ = λmin(A)
Tr(A) =: µP and ν = Tr(A)

mini Ai,i
=: νP (16)

and therefore the convergence rate given in Theorem 3 for the accelerated algorithm is(
1−

√
µ
ν

)k
=

(
1−
√
λmin(A)mini Ai,i

Tr(A)

)k
. (17)
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Rate (17) of our accelerated method is to be contrasted with the rate of the non-accelerated method:
(1 − µ)k = (1 − λmin(A)/Tr (A)))k. Clearly, we gain from acceleration if the smallest diagonal
element of A is significantly larger than the smallest eigenvalue.

In fact, parameters µP , νP above are the correct choice for the matrix inversion algorithm, when
symmetry is not enforced, as we shall see later. Unfortunately, we are not able to estimate the
parameters while enforcing symmetry for different sketching strategies. We dedicate a section in
numerical experiments to test, if the parameter selection (16) performs well under enforced symmetry
and different sketching strategies, and also how one might safely choose µ, ν in practice.

4 Accelerated Stochastic BFGS Update

The update of the inverse Hessian used in quasi-Newton methods (e.g., in BFGS) can be seen as
a sketch-and-project update applied to the linear system AX = I , while X = X> is enforced,
and where A denotes and approximation of the Hessian. In this section, we present an accelerated
version of these updates. We provide two different proofs: one based on Theorem 3 and one based on
vectorization. By mimicking the updates of the accelerated stochastic BFGS method for inverting
matrices, we determine a heuristic for accelerating the classic deterministic BFGS update. We then
incorporate this acceleration into the classic BFGS optimization method and show that the resulting
algorithm can offer a speed-up of the standard BFGS algorithm.

4.1 Accelerated matrix inversion

Consider the symmetric positive definite matrix A ∈ Rn×n and the following projection problem
A−1 = arg min

X
‖X‖2F (A) subject to AX = I, X = X>, (18)

where ‖X‖F (A)
def
= Tr

(
AX>AX

)
= ‖A1/2XA1/2‖2F . This projection problem can be cast as an

instantiation of the general projection problem (7). Indeed, we need only note that the constraint
in (18) is linear and equivalent to A(X)

def
=
(

AX
X−X>

)
= ( I0 ) . The matrix inversion problem can be

efficiently solved using sketch-and-project with a symmetric sketch [15]. The symmetric sketch is
given by SkA(X) =

(
S>k AX

X−X>

)
, where Sk ∈ Rn×τ is a random matrix drawn from a distribution D

and τ ∈ N. The resulting sketch-and-project method is as follows
Xk+1 = arg min

X
‖X −Xk‖2F (A) subject to S>k AX = S>k , X = X>, (19)

the closed form solution of which is
Xk+1 = Sk(S>k ASk)−1S>k +

(
I − Sk(S>k ASk)−1S>k A

)
Xk

(
I −ASk(S>k ASk)−1S>k

)
. (20)

By observing that (20) is the sketch-and-project algorithm applied to a linear operator equation, we
have constructed an accelerated version in Algorithm 2. We can also apply Theorem 3 to prove that
Algorithm 2 is indeed accelerated.

Theorem 5. Let Lk
def
= ‖Vk −A−1‖2M + 1

µ‖Xk −A−1‖2F (A). The iterates of Algorithm 2 satisfy

E [Lk+1] ≤
(

1−
√

µ
ν

)
E [Lk] , (21)

where ‖X‖2M = Tr
(
A1/2X>A1/2E [Z]

†
A1/2XA1/2

)
. Furthermore,

µ
def
= inf

X∈Rn×n

〈E[Z]X,X〉
〈X,X〉 = λmin(E [Z]), ν

def
= sup

X∈Rn×n

〈E[ZE[Z]†Z]X,X〉
〈E[Z]X,X〉 , (22)

where
Z

def
= I ⊗ I − (I − P )⊗ (I − P ), P

def
= A1/2S(S>AS)−1S>A1/2, (23)

and Z : X ∈ Rn×n → Rn×n is given by Z(X) = X − (I − P )X (I − P ) = XP + PX(I − P ).
Moreover, 2λmin(E [P ]) ≥ λmin(E [Z]) ≥ λmin(E [P ]).

Notice that preserving symmetry yields µ = λmin(E [Z]) , which can be up to twice as large as
λmin(E [P ]), which is the value of the µ parameter of the method without preserving symmetry. This
improved rate is new, and was not present in the algorithm’s debut publication [15]. In terms of
parameter estimation, once symmetry is not preserved, we fall back onto the setting from Section 3.4.
Unfortunately, we were not able to quantify the effect of enforcing symmetry on the parameter ν.
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Algorithm 2 Accelerated BFGS matrix inversion (solving (18))
1: Parameters: µ, ν > 0, D = distribution over random linear operators.
2: Choose X0 ∈ X and set V0 = X0, β = 1−

√
µ
ν , γ =

√
1
µν , α = 1

1+γν

3: for k = 0, 1, . . . do
4: Yk = αVk + (1− α)Xk

5: Sample an independent copy S ∼ D
6: Xk+1 = Yk + (YkA− I)S(S>AS)−1S> − S(S>AS)−1S>AYk
7: +S(S>AS)−1S>AYkAS(S>AS)−1S>

8: Vk+1 = βVk + (1− β)Yk − γ(Yk −Xk+1)
9: end for

4.2 Vectorizing—a different insight

In the previous section we argued that Theorem 5 follows from the more general convergence result
established in Theorem 3 for Euclidean spaces. We now show an alternative way to prove Theorem 5.
Define Vec : Rn×n → Rn2

to be a vectorization operator of column-wise stacking and denote
x

def
= Vec (X). It can be shown that the sketch-and-project operation for matrix inversion (4.2) is

equivalent to

xk+1 = arg min
x
‖x− xk‖2A⊗A subject to (I ⊗ S>k )(I ⊗A)x = (I ⊗ S>k )Vec (I) , Cx = 0,

where C is defined so that Cx = 0 if and only if X = X>. The above is a sketch-and-project
update for a linear system in Rn2

, which allows to obtain an alternative proof of Theorem 5, without
using our results from Euclidean spaces. The details are provided in Section H.2 of the Appendix.

4.3 Accelerated BFGS as an optimization algorithm

As a tweak in the stochastic BFGS allows for a faster estimation of Hessian inverse and therefore
more accurate steps of the method, one might wonder if a equivalent tweak might speed up the
standard, deterministic BFGS algorithm for solving (1). The mentioned tweaked version of standard
BFGS is proposed as Algorithm 3. We do not state a convergence theorem for this algorithm—due
to the deterministic updates the analysis is currently elusive—nor propose to use it as a default
solver, but we rather introduce it as a novel idea for accelerating optimization algorithms. We leave
theoretical analysis for the future work. For now, we perform several numerical experiments, in order
to understand the potential and limitations of this new method.

Algorithm 3 BFGS method with accelerated BFGS update for solving (1)
1: Parameters: µ, ν > 0, stepsize η.
2: Choose X0 ∈ X , w0 and set V0 = X0, β = 1−

√
µ
ν , γ =

√
1
µν , α = 1

1+γν .

3: for k = 0, 1, . . . do
4: wk+1 = wk − ηXk∇f(wk)
5: sk = wk+1 − wk, ζk = ∇f(wk+1)−∇f(wk)
6: Yk = αVk + (1− α)Xk

7: Xk+1 =
δkδ
>
k

δ>k ζk
+
(
I − δkζ

>
k

δ>k ζk

)
Yk

(
I − ζkδ

>
k

δ>k ζk

)
8: Vk+1 = βVk + (1− β)Yk − γ(Yk −Xk+1)
9: end for

To better understand Algorithm 3, recall that the BFGS updates an estimate of the inverse Hessian via

Xk+1 = argminX ‖X −Xk‖2F (A) subject to Xζk = δk, X = X>, (24)

where δk = wk+1 − wk and ζk = ∇f(wk+1)−∇f(wk). The above has the following closed form

solutionXk+1 =
δkδ
>
k

δ>k ζk
+
(
I − δkζ

>
k

δ>k ζk

)
Xk

(
I − ζkδ

>
k

δ>k ζk

)
. This update appears on line 7 of Algorithm 3

with the difference being that it is applied to a matrix Yk.
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5 Numerical Experiments

We perform extensive numerical experiments to bring additional insight to both the performance of
and to parameter selection for Algorithms 2 and 3. More numerical experiments can be found in
Section A of the appendix. We first test our accelerated matrix inversion algorithm, and subsequently
perform experiments related to Section 4.3.

5.1 Accelerated Matrix Inversion

We consider the problem of inverting a symmetric positive matrix A. We focus on a few particular
choices of matrices A (specified when describing each experiment), that differ in their eigenvalue
spectra. Three different sketching strategies are studied: Coordinate sketches with convenient
probabilities (S = ei with probability proportional to Ai,i), coordinate sketches with uniform
probabilities (S = ei with probability 1

n ) and Gaussian sketches (S ∼ N (0, I)). As matrices to be
inverted, we use both artificially generated matrices with the access to the spectrum and also Hessians
of ridge regression problems from LIBSVM.

We have shown earlier that µ, ν can be estimated as per (16) for coordinate sketches with convenient
probabilities without enforcing symmetry. We use the mentioned parameters for the other sketching
strategies while enforcing the symmetry. Since in practice one might not have an access to the exact
parameters µ, ν for given sketching strategy, we test sensitivity of the algorithm to parameter choice .
We also test test for ν chosen by (16), µ = 1

100ν and µ = 1
10000ν .
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Figure 1: From left to right: (i) Eigenvalues of A ∈ R100×100 are 1, 103, 103, . . . , 103 and coordinate sketches
with convenient probabilities are used. (ii) Eigenvalues of A ∈ R100×100 are 1, 2, . . . , n and Gaussian sketches
are used. Label “nsym” indicates non-enforcing symmetry and “-a” indicates acceleration. (iii) Epsilon dataset
(n = 2000), coordinate sketches with uniform probabilities. (iv) SVHN dataset (n = 3072), coordinate sketches
with convenient probabilities. Label “h” indicates that λmin was not precomputed, but µ was chosen as described
in the text.

For more plots, see Section A in the appendix as here we provide only a tiny fraction of all plots.
The experiments suggest that once the parameters µ, ν are estimated exactly, we get a speedup
comparing to the nonaccelerated method; and the amount of speedup depends on the structure of A
and the sketching strategy. We observe from Figure 1 that we gain a great speedup for ill conditioned
problems once the eigenvalues are concentrated around the largest eigenvalue. We also observe
from Figure 1 that enforcing symmetry combines well with µ, ν computed by (16), which does
not consider the symmetry. On top of that, choice of µ, ν per (16) seems to be robust to different
sketching strategies, and in worst case performs as fast as the nonaccelerated algorithm.

5.2 BFGS Optimization Method

We test Algorithm 3 on several logistic regression problems using data from LIBSVM [7]. In all
our tests we centered and normalized the data, included a bias term (a linear intercept), and choose
the regularization parameter as λ = 1/m, where m is the number of data points. To keep things as
simple as possible, we also used a fixed stepsize which was determined using grid search. Since
our theory regarding the choice for the parameters µ and ν does not apply in this setting, we simply
probed the space of parameters manually and reported the best found result, see Figure 2. In the
legend we use BFGS-a-µ-ν to denote the accelerated BFGS method (Alg 3) with parameters µ and ν.

On all four datasets, our method outperforms the classic BFGS method, indicating that replacing
classic BFGS update rules for learning the inverse Hessian by our new accelerated rules can be
beneficial in practice. In A.4 in the appendix we also show the time plots for solving the problems in
Figure 2, and show that the accelerated BFGS method also converges faster in time.
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Figure 2: Algorithm 3 (BFGS with accelerated matrix inversion quasi-Newton update) vs standard
BFGS. From left to right: phishing, mushrooms, australian and splice dataset.

6 Conclusions and Extensions

We developed an accelerated sketch-and-project method for solving linear systems in Euclidean
spaces. The method was applied to invert positive definite matrices, while keeping their symmetric
structure for all iterates. Our accelerated matrix inversion algorithm was then incorporated into an
optimization framework to develop both accelerated stochastic and accelerated deterministic BFGS,
which to the best of our knowledge, are the first accelerated quasi-Newton updates.

We show that under a careful choice of the parameters of the method—depending on the problem
structure and conditioning—acceleration might result into significant speedups both for the matrix
inversion problem and for the stochastic BFGS algorithm. We confirm experimentally that our
accelerated methods can lead to speed-ups when compared to the classical BFGS algorithm.

As a future line of research it might be interesting to study the accelerated BFGS algorithm (either
deterministic or stochastic) further, and provide a convergence analysis on a suitable class of functions.
Another interesting area of research might be to combine accelerated BFGS with limited memory [17]
or engineer the method so that it can efficiently compete with first order algorithms for some empirical
risk minimization problems, such as, for example [12].

As we show in this work, Nesterov’s acceleration can be applied to quasi-Newton updates. We
believe this is a surprising fact, as quasi-Newton updates have not been understood as optimization
algorithms, which prevented the idea of applying acceleration in this context.

Since since second-order methods are becoming more and more ubiquitous in machine learning
and data science, we hope that our work will motivate further advances at the frontiers of big data
optimization.
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tle=Advances in Neural Information Processing Systems. A multi-batch l-bfgs method for
machine learning.

[4] Charles G Broyden. Quasi-Newton methods and their application to function minimisation.
Mathematics of Computation, 21(99):368–381, 1967.

[5] Richard H Byrd, Gillian M Chin, Will Neveitt, and Jorge Nocedal. On the use of stochastic hes-
sian information in optimization methods for machine learning. SIAM Journal on Optimization,
21(3):977–995, 2011.

[6] Richard H Byrd, Samantha L Hansen, Jorge Nocedal, and Yoram Singer. A stochastic quasi-
Newton method for large-scale optimization. SIAM Journal on Optimization, 26(2):1008–1031,
2016.

[7] Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector machines. ACM
Trans. Intell. Syst. Technol., 2(3):27:1–27:27, May 2011.

9



[8] Frank Curtis. A self-correcting variable-metric algorithm for stochastic optimization. In
International Conference on Machine Learning, pages 632–641, 2016.

[9] Charles A Desoer and Barry H Whalen. A note on pseudoinverses. Journal of the Society of
Industrial and Applied Mathematics, 11(2):442–447, 1963.

[10] Roger Fletcher. A new approach to variable metric algorithms. The computer journal, 13(3):317–
322, 1970.

[11] Donald Goldfarb. A family of variable-metric methods derived by variational means. Mathe-
matics of computation, 24(109):23–26, 1970.

[12] Robert M Gower, Donald Goldfarb, and Peter Richtárik. Stochastic block BFGS: Squeezing
more curvature out of data. In International Conference on Machine Learning, pages 1869–1878,
2016.

[13] Robert M Gower and Peter Richtárik. Randomized iterative methods for linear systems. SIAM
Journal on Matrix Analysis and Applications, 36(4):1660–1690, 2015.

[14] Robert M Gower and Peter Richtárik. Stochastic dual ascent for solving linear systems.
arXiv:1512.06890, 2015.

[15] Robert M Gower and Peter Richtárik. Randomized quasi-Newton updates are linearly convergent
matrix inversion algorithms. SIAM Journal on Matrix Analysis and Applications, 38(4):1380–
1409, 2017.

[16] Stefan Kaczmarz. Angenäherte Auflösung von Systemen linearer Gleichungen. Bulletin
International de l’Académie Polonaise des Sciences et des Lettres, 35:355–357, 1937.

[17] Dong C Liu and Jorge Nocedal. On the limited memory BFGS method for large scale optimiza-
tion. Mathematical programming, 45(1-3):503–528, 1989.

[18] Ji Liu and Stephen J Wright. An accelerated randomized Kaczmarz algorithm. Math. Comput.,
85(297):153–178, 2016.

[19] Nicolas Loizou and Peter Richtárik. Momentum and stochastic momentum for stochastic gradi-
ent, Newton, proximal point and subspace descent methods. arXiv preprint arXiv:1712.09677,
2017.

[20] Aryan Mokhtari and Alejandro Ribeiro. Global convergence of online limited memory BFGS.
The Journal of Machine Learning Research, 16:3151–3181, 2015.

[21] Philipp Moritz, Robert Nishihara, and Michael Jordan. A linearly-convergent stochastic L-BFGS
algorithm. In Artificial Intelligence and Statistics, pages 249–258, 2016.

[22] Yurii Nesterov. A method of solving a convex programming problem with convergence rate
O(1/k2). Soviet Mathematics Doklady, 27(2):372–376, 1983.

[23] Yurii Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.
SIAM Journal on Optimization, 22(2):341–362, 2012.

[24] Yurii Nesterov and Sebastian U Stich. Efficiency of the accelerated coordinate descent method
on structured optimization problems. SIAM Journal on Optimization, 27(1):110–123, 2017.

[25] Gert K Pedersen. Analysis Now. Graduate Texts in Mathematics. Springer New York, 1996.

[26] Mert Pilanci and Martin J Wainwright. Newton sketch: A near linear-time optimization
algorithm with linear-quadratic convergence. SIAM Journal on Optimization, 27(1):205–245,
2017.

[27] Peter Richtárik and Martin Takáč. Stochastic reformulations of linear systems: accelerated
method. Manuscript, October 2017, 2017.
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A Further Experiments with Accelerated quasi-Newton Updates

In this section, we test the the empirical rate of convergence of Algorithm 2, the accelerated BFGS
update for inverting positive definite matrices. Only vector sketches are considered, as the standard
quasi-Newton methods also update the inverse Hessian only according to the action in one direction.
We compare the speed of the accelerated method with precomputed estimates of the parameters µ, ν
to the nonaccelerated method. The precomputed estimates of µP , νP are set as per (16):

µP =
λmin(A)

Tr (A)
, νP =

Tr (A)

mini(Ai,i)
,

which is the optimal choice for coordinate sketches with convenient probabilities without enforcing
symmetry. In practice we might not have an access to λmin(A), thus we cannot compute µP exactly.
Therefore we also test sensitivity of the algorithm to the choice of parameters, and we run some
experiments where we only guess parameter µP .

Lastly, the tests are performed on both artificial examples and LIBSVM [7] data. We shall also explain
the legend of plots: “a” indicates acceleration, “nsym” indicates the algorithm without enforcing
symmetry and “h” indicates the setting when νP is not known, and a naive heuristic choice is casted.

A.1 Simple and well understood artificial example

Let us consider inverting the matrix A = αI + β11> for α > 0 and β ≥ −αn so as in this case we
have control over both µ and ν. This artificial example was considered in [34] for solving linear
systems. In particular, we show that for coordinate sketches with convenient probabilities (which is
indeed the same as uniform probabilities in this example), we have

µP
def
= λmin(E [P ]) =

min (α, α+ nβ)

n(α+ β)
,

νP
def
= λmax

(
E
[
E [P ]

− 1
2 PE [P ]

−1
PE [P ]

− 1
2

])
= n.

Due to the fact that we do not have a theoretical justification of µ, ν for n > 2 when enforcing
symmetry, we set µ = µP and ν = νP for Gaussian sketches as well.
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Figure 3: Parameter choice: α = 1 + 10−1, β = −n−1, n = 100. From left to right we have:
Coordinate sketch with uniform (convenient) probabilities and Gaussian sketch respectively.
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Figure 4: Parameter choice: α = 1 + 10−3, β = −n−1, n = 100. From left to right we have:
Coordinate sketch with uniform (convenient) probabilities and Gaussian sketch respectively.

0 5 10 15
time (s)

0.85

0.9

0.95

1

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

0 5 10 15
time (s)

10-2

10-1

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

Figure 5: Parameter choice: α = 1 + 10−5, β = −n−1, n = 100. From left to right we have:
Coordinate sketch with uniform (convenient) probabilities and Gaussian sketch, respectively.

As expected from the theory, as the matrix to be inverted becomes more ill conditioned, the accelerated
method performs significantly better compared to the nonaccelerated method for coordinate sketches.
In fact, an arbitrary speedup can be obtained by setting β = −n−1 and α → 1 for the coordinate
sketches setup. On the other hand, Gaussian sketches report the slowing of the algorithm, most likely
caused by the fact that the theoretical parameters µ, ν for Gaussian sketches with enforced symmetry
are different to µP , νP , which are estimated for coordinate sketches without enforced symmetry. In
the case of coordinate sketches with symmetry enforced, we suspect a great speedup even though the
parameters µ, ν were set to µP , νP .

A.2 Random artificial example

We randomly generate an orthonormal matrix U , choose diagonal matrix D, and set A = UDU>.
Clearly, diagonal elements of D are eigenvalues of A. We set them in the following way:

• Uniform grid. The eigenvalues are set to 1, 2, . . . , n.

• One small, the rest larger. The smallest eigenvalue is 1, remaining eigenvalues are all 10 in
the first example, all 100 in the second example and all 1000 in the third example in this
category.

• One large, the rest small. The largest eigenvalue is 104, the remaining eigenvalues are all 1.

Firstly, consider coordinate sketches with convenient probabilities. Notice that we can easily estimate
νP , µP due to the results from Section 3.4 since we have control of λmin(A) and therefore also of µ.
Therefore, we set µ = µP = minDi,i and ν = νP for Algorithm 2. Then, we consider coordinate
sketches with uniform probabilities and Gaussian sketches. In both cases, we set the parameters µ, ν
as for coordinate sketches with convenient probabilities.
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Figure 6: Eigenvalues set to 1, 2, 3, . . . n. From left to right we have: Coordinate sketch with conve-
nient probabilities, coordinate sketch with uniform probabilities and Gaussian sketch respectively.
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Figure 7: Eigenvalues set to 1, 10, 10, . . . 10. From left to right we have: Coordinate sketch
with convenient probabilities, coordinate sketch with uniform probabilities and Gaussian sketch
respectively.
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Figure 8: Eigenvalues set to 1, 100, 100, . . . 100. From left to right we have: Coordinate sketch
with convenient probabilities, coordinate sketch with uniform probabilities and Gaussian sketch
respectively.
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Figure 9: Eigenvalues set to 1, 1000, 1000, . . . 1000. From left to right we have: Coordinate sketch
with convenient probabilities, coordinate sketch with uniform probabilities and Gaussian sketch
respectively.
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Figure 10: Eigenvalues set to 10000, 1, 1, . . . 1. From left to right we have: Coordinate sketch
with convenient probabilities, coordinate sketch with uniform probabilities and Gaussian sketch
respectively.

The numerical experiments in this section indicate that one might choose µ, ν as per Section 3.4. In
other words, one might pretend to be in the setting when symmetry is not enforced and coordinate
sketches with convenient probabilities are used. In fact, the practical speedup coming from the
acceleration depends very strongly on the structure of matrix A. Another message to be delivered is
that both preserving symmetry and acceleration yield a better convergence and they combine together
well.

We also consider a problem where we pretend to not have access to λmin(A), therefore we cannot
choose µ = µP . Instead, we naively choose µ = 1

100ν and µ = 1
10000ν .
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Figure 11: Eigenvalues set to 1, 2, . . . , n. From left to right we have: Coordinate sketch with conve-
nient probabilities, coordinate sketch with uniform probabilities and Gaussian sketch respectively.
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Figure 12: Eigenvalues set to 1, 10, 10, . . . 10. Coordinate sketch with convenient probabilities,
coordinate sketch with uniform probabilities and Gaussian sketch respectively.
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Figure 13: Eigenvalues set to 1, 100, 100, . . . 100. From left to right we have: Coordinate sketch
with convenient probabilities, coordinate sketch with uniform probabilities and Gaussian sketch
respectively.
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Figure 14: Eigenvalues set to 1, 1000, 1000, . . . 1000. From left to right we have: Coordinate sketch
with convenient probabilities, coordinate sketch with uniform probabilities and Gaussian sketch
respectively.
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Figure 15: Eigenvalues set to 10000, 1, 1, . . . 1. From left to right we have: Coordinate sketch
with convenient probabilities, coordinate sketch with uniform probabilities and Gaussian sketch
respectively.

Notice that once the acceleration parameters are not set exactly (but they are still reasonable), we
observe that the performance of the accelerated algorithm is essentially the same as the performance
of the nonaccelerated algorithm. We have observed the similar behavior when setting µ = µP for
Gaussian sketches.

A.2.1 Sensitivity to the acceleration parameters

Here we investigate the sensitivity of the accelerated BFGS to the parameters µ and ν. First
we compute νP , µP and from this we extract the following exponential grids: µi = 2i−4µ and
νi = 5i−4ν for i = 1, 2, . . . 7. To gauge the gain is using acceleration with a particular (µ, ν) pair, we
run the accelerated algorithm for a fixed time then store the error of the final iterate. We then compute
average per iteration decrease and divide it by average per iteration decrease of nonaccelerated
algorithm. Thus if the resulting difference is less than one, then the accelerated algorithm was faster
to nonaccelerated.

In the plots below, n = 200 was chosen. We focused on 2 problems described in the previous
section—when the eigenvalues are uniformly distributed and when the the largest eigenvalue have
multiplicity n− 1.
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Figure 16: Sensitivity to acceleration parameters. Eigenvalues of A are set to 1, 2 . . . , n. From left to
right we have: Coordinate sketches with convenient probabilities, coordiante sketches with uniform
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instance was run for 5 seconds.
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Figure 18: Sensitivity to acceleration parameters. Eigenvalues ofA are set to 1, 1000, 1000, . . . , 1000.
From left to right we have: Coordinate sketches with convenient probabilities, coordiante sketches
with uniform probabilities and Gaussian sketches. Choice of parameters as per (16) in the middle of
plots. Each instance was run for 10 seconds.
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The crucial aspect to make the accelerated algorithm to converge is to set ν large enough. In fact,
combination of both small ν and small µ leads almost always to non-convergent algorithm. On the
other hand, it seems that once ν is chosen correctly, big enough µ leads to fast convergence. This
indicates how to compute µ in practice (recall that computing ν is feasible)—one needs just to choose
it small enough (definitely smaller than 1

ν ).

A.3 Experiments with LIBSVM

Next we investigate if the accelerated BFGS update improves upon the standard BFGS update when
applied to the Hessian∇2f(x) of ridge regression problems of the form

min
x∈Rn

f(x)
def
=

1

2
‖Ax− b‖22 +

λ

2
‖x‖22, ∇2f(x) = A>A+ λI, (25)

using data from LIBSVM [7]. Datapoints (rows of A) were normalized such that ‖Ai:‖2 = 1 for all i
and the regularization parameter was chosen as λ = 1

m .

First, we run the experiments on smaller problems when parameters µ, ν are precomputed for
coordinate sketches with convenient probabilities (16).
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Figure 19: Dataset aloi: n = 128. From left to right we have: Coordinate sketch with convenient
probabilities, coordinate sketch with uniform probabilities and Gaussian sketch respectively.

0 100 200 300 400
time (s)

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

0 100 200 300 400
time (s)

10-8

10-6

10-4

10-2

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

0 100 200 300 400
time (s)

10-4

10-3

10-2

10-1

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

Figure 20: Dataset w1a: n = 300. From left to right we have: Coordinate sketch with convenient
probabilities, coordinate sketch with uniform probabilities and Gaussian sketch respectively.
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Figure 21: Dataset w2a: n = 300. From left to right we have: Coordinate sketch with convenient
probabilities, coordinate sketch with uniform probabilities and Gaussian sketch respectively.
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Figure 22: Dataset mushrooms: n = 112. From left to right we have: Coordinate sketch with conve-
nient probabilities, coordinate sketch with uniform probabilities and Gaussian sketch respectively.
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Figure 23: Dataset protein: n = 357. From left to right we have: Coordinate sketch with convenient
probabilities, coordinate sketch with uniform probabilities and Gaussian sketch respectively.
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Figure 24: Dataset phishing: n = 68. From left to right we have: Coordinate sketch with convenient
probabilities, coordinate sketch with uniform probabilities and Gaussian sketch respectively.

In the vast majority of examples, the accelerated method performed significantly better than the
nonaccelerated method for coordinate sketches (with both convenient and uniform probabilities),
however the methods were comparable for Gaussian sketches. We believe that this is due to the fact
that choice of parameters as per (16) is close to the optimal parameters for coordinate sketches, and
further for Gaussian sketches. However, the experiments on coordinate sketches indicates that for
some classes of problems, accelerated algorithms with finely tuned parameters bring a great speedup
compared to nonaccelerated ones.

We also consider a problem where we do not compute λmin(A), and therefore we cannot choose
µ = µP in (16). Instead, we choose µ = 1

100ν and µ = 1
10000ν .
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Figure 25: Dataset madelon: n = 500. From left to right we have: Coordinate sketch with convenient
probabilities, coordinate sketch with uniform probabilities and Gaussian sketch respectively.
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Figure 26: Dataset epsilon: n = 2000. From left to right we have: Coordinate sketch with convenient
probabilities, coordinate sketch with uniform probabilities and Gaussian sketch respectively.
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Figure 27: Dataset svhn: n = 3072. From left to right we have: Coordinate sketch with convenient
probabilities, coordinate sketch with uniform probabilities and Gaussian sketch respectively.
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Figure 28: Dataset gisette: n = 5000. From left to right we have: Coordinate sketch with convenient
probabilities, coordinate sketch with uniform probabilities and Gaussian sketch respectively.

Notice that once the acceleration parameters are not set exactly (but they are still reasonable), we
observe that the performance of the accelerated algorithm is essentially the same as the performance
of the nonaccelerated algorithm, which is essentially the same conclusion as for artificially generated
examples.

A.4 Additional optimization experiments

In Figure 29 we solve the same problems with the same setup as in 29, but now we plot the time
versus the residual (as opposed to iterations versus the residual). Despite the more costly iterations,
the accelerated BFGS method can still converge faster than the classic BFGS method.
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Figure 29: Algorithm 3 (BFGS with accelerated matrix inversion quasi-Newton update) vs standard
BFGS. From left to right: phishing, mushrooms, australian and splice dataset.
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We also give additional experiments with the same setup to the ones found in Section 5.2. Much
like the phishing problem in Figure 2, the problems madelon, covtype and a9a in Figures 30, 31
and 32 did not benefit that much from acceleration. Indeed, we found in our experiments that even
when choosing extreme values of µ and ν, the generated inverse Hessian would not significantly
deviate from the estimate that one would obtain using the standard BFGS update. Thus on these two
problems there is apparently little room for improvement by using acceleration.
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Figure 30: madelon:
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Figure 31: covtype
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Figure 32: a9a

B Proofs for Section 3

B.1 Proof of Lemma 2

First note that Z is a self-adjoint positive operator and thus so is E [Z] . Consequently.

µ
(13)
= inf

x∈Range(A∗)

〈E [Z]x, x〉
〈x, x〉

(12)
= inf

x∈Range(E[Z])

〈E [Z]x, x〉
〈x, x〉

Lemma 22 item ii
= inf

x∈X

〈E [Z]E [Z]
†
x,E [Z]

†
x〉

〈E [Z]
†
x,E [Z]

†
x〉

Lemma 22 item i
= inf

x∈X

〈E [Z]
†
x, x〉

〈E [Z]
†
x,E [Z]

†
x〉

Lemma 18
= inf

z∈Range((E[Z]†)1/2)

〈z, z〉
〈E [Z]

†
z, z〉

(set z = (E [Z]
†
)1/2x)

(71)
=

1

‖E [Z]
†‖
. (26)

For the bounds (14) we have that

ν
(13)
= sup

x∈Range(A∗)

E
[
〈E [Z]

†
Zx,Zx〉

]
〈E [Z]x, x〉

≤ sup
x∈Range(A∗)

‖E [Z]
†‖E

[
‖Zx‖22

]
〈E [Z]x, x〉

= ‖E [Z]
†‖

(26)
≤ 1

µ
.

To bound ν from below we use that E [Z]
† is self adjoint together with that the map X 7→

〈XE [Z]
†
Xx, x〉 is convex over the space of self-adjoint operators X ∈ L(X ) and for a fixed

x ∈ X . Consequently by Jensen’s inequality

E
[
〈ZE [Z]

†
Zx, x〉

]
≥ 〈E [Z]E [Z]

†
E [Z]x, x〉 Lemma 22 item i

= 〈E [Z]x, x〉. (27)
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Finally

ν
(27)
≥ sup

x∈Range(A∗)

〈E [Z]x, x〉
〈E [Z]x, x〉

= 1.

Lastly, to show (15) we have

Rank (A∗) (12)
= Rank (E [Z])

Lemma 17+ Lemma 22 (v)
= Tr

(
E [Z]E [Z]

†
)

= E
[
Tr
(
ZE [Z]

†
)]

= E
[
Tr
(
ZE [Z]

†
Z
)]

≤ νE [Tr (Z)]
Lemma 17

= νE [Rank (Z)] ,

where we used that 〈E
[
ZE [Z]

†
Z
]
u, u〉 ≤ ν〈E [Z]u, u〉 for every u ∈ Range (E [Z]) =

Range (A∗) = X .

Proof that X 7→ 〈XE [Z]
†
Xx, x〉 = ‖Xx‖2

E[Z]†
is convex: Let G = E [Z]

† then

‖(λX + (1− λ)Y )x‖2G = λ2‖Xx‖2G + (1− λ)2‖Y x‖2G + 2λ(1− λ)〈xXGY, x〉
= −λ(1− λ)‖(X − Y )x‖2G

+λ‖Xx‖2G + (1− λ)‖Y x‖2G
≤ λ‖Xx‖2G + (1− λ)‖Y x‖2G.

B.2 Technical lemmas to prove Theorem 3

Lemma 6. For all k ≥ 0, the vectors yk − x∗, xk − x∗ and vk − x∗ belong to Range (A∗) .

Proof. Note that x0 = y0 = x0 and in view of (8) we have x∗ ∈ x0 + Range (A∗) . So y0 −
x∗ ∈ Range (A∗) , v0 − x∗ ∈ Range (A∗) and x0 − x∗ ∈ Range (A∗) . Assume by induction
that yk − x∗ ∈ Range (A∗) , vk − x∗ ∈ Range (A∗) and xk − x∗ ∈ Range (A∗) . Since
gk ∈ Range (A∗) and xk+1 = yk − gk we have

xk+1 − x∗ = (yk − x∗)− gk ∈ Range (A∗) .

Moreover,

vk+1 − x∗ = β(vk − x∗) + (1− β)(yk − x∗)− γgk ∈ Range (A∗) .

Finally

yk+1− x∗ = αvk+1 + (1−α)xk+1− x∗ = α(vk+1− x∗) + (1−α)(xk+1− x∗) ∈ Range (A∗) .

Lemma 7.
E
[
‖Zk(yk − x∗)‖2E[Z]†

| yk
]
≤ ν‖yk − x∗‖2E[Z] (28)

Proof. Since yk − x∗ ∈ Range (A∗) we have that

E
[
‖Zk(yk − x∗)‖2E[Z]†

| yk
]

= 〈E
[
ZkE [Z]

†
Zk

]
(yk − x∗), (yk − x∗)〉

(13)
≤ ν〈E [Z] (yk − x∗), (yk − x∗)〉
= ν‖yk − x∗‖2E[Z].

Lemma 8.
‖yk − x∗‖2E[Z] = ‖yk − x∗‖2 −E

[
‖xk+1 − x∗‖2 | yk

]
(29)
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Proof.

E
[
‖xk+1 − x∗‖2 | yk

]
= E

[
‖(I − Zk)(yk − x∗)‖2 | yk

]
= 〈(I −E [Z])(yk − x∗), yk − x∗〉
= ‖yk − x∗‖2 − ‖yk − x∗‖2E[Z].

B.3 Proof of Theorem 3

Let rk
def
= ‖vk − x∗‖2E[Z]†

. It follows that

r2k+1 = ‖vk+1 − x∗‖2E[Z]†

= ‖βvk + (1− β)yk − x∗ − γZk(yk − x∗)‖2E[Z]†

= ‖βvk + (1− β)yk − x∗‖2E[Z]†︸ ︷︷ ︸
I

+γ2 ‖Zk(yk − x∗)‖2E[Z]†︸ ︷︷ ︸
II

−2γ 〈β(vk − x∗) + (1− β)(yk − x∗),E [Z]
†
Zk(yk − x∗)〉︸ ︷︷ ︸

III

= I + γ2II − 2γIII. (30)

The first term can be upper bounded as follows

I = ‖β(vk − x∗) + (1− β)(yk − x∗)‖2E[Z]†

= β2‖vk − x∗‖2E[Z]†
+ (1− β)2‖yk − x∗‖2E[Z]†

+ 2β(1− β)〈vk − x∗, yk − x∗〉E[Z]†

(32)
= β‖vk − x∗‖2E[Z]†

+ (1− β)‖yk − x∗‖2E[Z]†
− β(1− β)‖vk − yk‖2E[Z]†

≤ βr2k + (1− β)‖yk − x∗‖2E[Z]†
, (31)

where in the third equality we used a form of the parallelogram identity

2〈u, v〉 = ‖u‖2 + ‖v‖2 − ‖u− v‖2, (32)

with u = vk − x∗ and v = yk − x∗.
Taking expectation with to Sk in the third term in (30) gives

E [III | yk, vk, xk] = 〈βvk + (1− β)yk − x∗,E [Z]
†
E [Z] (yk − x∗)〉

= 〈βvk + (1− β)yk − x∗, yk − x∗〉 (33)

= 〈β
[

1

α
yk −

1− α
α

xk

]
+ (1− β)yk − x∗, yk − x∗〉

= 〈yk − x∗ + β
1− α
α

(yk − xk), yk − x∗〉

= ‖yk − x∗‖2 + β
1− α
α
〈yk − xk, yk − x∗〉

= ‖yk − x∗‖2 − β
1− α

2α

(
‖xk − x∗‖2 − ‖yk − xk‖2 − ‖yk − x∗‖2

)
(34)

where in the second equality (33) we used that yk − x∗ ∈ Range (A∗) (12)
= Range (E [Z]) together

with a defining property of pseudoinverse operators E [Z]
†
E [Z]w = w for all w ∈ Range (E [Z]) .

In the last equality (34) we used yet again the identity (32) with u = yk − xk and v = yk − x∗.
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Plugging (31) and (34) into (30) and taking conditional expectation gives

E
[
r2k+1 | yk, vk, xk

]
= I + γ2E [II | yk]− 2γE [III | yk, vk, xk]

(31)+(34)+(28)
= βr2k + (1− β)‖yk − x∗‖2E[Z]†

+ γ2ν‖yk − x∗‖2E[Z]

+2γ

(
−‖yk − x∗‖2 + β

1− α
2α

(
‖xk − x∗‖2 − ‖yk − xk‖2 − ‖yk − x∗‖2

))
(29)+(14)
≤ βr2k +

1− β
µ
‖yk − x∗‖2 + γ2ν

(
‖yk − x∗‖2 −E

[
‖xk+1 − x∗‖2 | yk

])
+2γ

(
−‖yk − x∗‖2 + β

1− α
2α

(
‖xk − x∗‖2 − ‖yk − x∗‖2

))
. (35)

Therefore we have that

E
[
r2k+1 + γ2ν‖xk+1 − x∗‖2 | yk, vk, xk

]
≤ β

r2k + γ
1− α
α︸ ︷︷ ︸
P1

‖xk − x∗‖2



+

1− β
µ
− 2γ + γ2ν − βγ 1− α

α︸ ︷︷ ︸
P2

 ‖yk − x∗‖2.
To establish a recurrence, we need to choose the free parameters γ, α and β so that P1 = γ2ν
and P2 = 0. Furthermore we should try to set β as small as possible so as to have a fast rate of
convergence. Choosing β = 1−

√
µ
ν , γ =

√
1
µν , α = 1

1+γν gives P2 = 0, γ2ν = 1/µ and

E
[
r2k+1 + 1

µ‖xk+1 − x∗‖2 | yk, vk, xk
]
≤

(
1−

√
µ

ν

)(
r2k + 1

µ‖xk − x∗‖
2
)
. (36)

Taking expectation and using the tower rules gives the result.

B.4 Changing norm

Given an invertible positive self-adjoint B ∈ L(X ), suppose we want to find the least norm solution
of (7) under the norm defined by ‖x‖B

def
=
√
〈Bx, x〉 as the metric in X . That is, we want to solve

x∗
def
= arg min

x∈X
1
2‖x− x0‖

2
B , subject to Ax = b. (37)

By changing variables x = B−1/2z we have that the above is equivalent to solving

z∗
def
= arg min

z∈X
1
2‖z − z0‖

2, subject to AB−1/2z = b, (38)

with x∗ = B−1/2z∗, and B1/2 is the unique symmetric square root of B (see Lemma 18). We can
now apply Algorithm 1 to solve (38) where AB−1/2 is the system matrix. Let xk and vk be the
resulting iterates of applying Algorithm 1. To make explicit this change in the system matrix we
define the matrix

ZB
def
= B−1/2A∗S∗k(SkAB−1A∗S∗k)†SkAB−1/2,

and the constants

µB
def
= inf

x∈Range(B−1/2A∗)

〈E [ZB ]x, x〉
〈x, x〉

(39)

and

νB
def
= sup

x∈Range(B−1/2A∗)

〈E
[
ZBE [ZB ]

†
ZB

]
x, x〉

〈E [ZB ]x, x〉
. (40)
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Theorem 3 then guarantees that

E

[
‖vk+1 − z∗‖2E[ZB ]†

+
1

µB
‖xk+1 − z∗‖2

]
≤
(

1−
√
µB
νB

)
E

[
‖vk − z∗‖2E[ZB ]†

+
1

µB
‖xk − z∗‖2

]
.

Reversing our change of variables x̄k = B−1/2xk and v̄k = B−1/2vk in the above displayed equation
gives

E

[
‖v̄k+1 − x∗‖2B1/2E[ZB ]†B1/2 +

1

µB
‖x̄k+1 − x∗‖2B

]
≤
(

1−
√
µB
νB

)
E

[
‖v̄k − x∗‖2B1/2E[ZB ]†B1/2 +

1

µB
‖x̄k − x∗‖2B

]
. (41)

Thus we recover the same exact from the main theorem in [27], but in a much more general setting.

C Proof of Corollary 4

Clearly, Z = 1
Ai,i

A
1
2SS>A

1
2 , and hence E [Z] = A

Tr(A) and µP = λmin(A)
Tr(A) . After simple algebraic

manipulations we get

E
[
E [Z]

− 1
2 ZE [Z]

−1
ZE [Z]

− 1
2

]
= Tr (A)

2
E
[

1
A2

i,i
SS>SS>

]
= Tr (A)Diag

(
A−1i,i

)
,

and therefore νP = λmaxE
[
E [Z]

− 1
2 ZE [Z]

−1
ZE [Z]

− 1
2

]
= Tr(A)

mini Ai,i
.

D Adding a stepsize ω

In this section we enrich Algorithm 1 with several additional parameters and study their effect on
convergence of the resulting method.

First, we consider an extension of Algorithm 1 to a variant which uses a stepsize parameter 0 < ω < 2.
That is, instead of performing the update

xk+1 = yk − gk, (42)

we perform the update
xk+1 = yk − ωgk. (43)

Parameters α, β, γ are adjusted accordingly. The resulting method enjoys the rate

O
((

1−
√

ν
µω(2− ω)

)k)
, recovering the rate from Theorem 3 as a special case for ω = 1.

The formal statement follows.

Theorem 9. Let 0 < ω < 2 be an arbitrary stepsize and define

η
def
= 2ω − ω2 ≥ 0 . (44)

Consider a modification of Algorithm 1 where instead of (42) we perform the update (43). If we use
the parameters

α = 1
1+γν β = 1−

√
µη
ν γ =

√
η
µν , (45)

then the iterates {vk, xk}k≥0 of Algorithm 1 satisfy

E
[
‖vk − x∗‖2E[Z]†

+ 1
µ‖xk − x∗‖

2
]
≤
(

1−
√

µη
ν

)k
E
[
‖v0 − x∗‖2E[Z]†

+ 1
µ‖x0 − x∗‖

2
]
.

Proof. See Appendix F.
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E Allowing for different α

In this section we study how the choice of the key parameter α affects the convergence rate.

This parameter determines how much the sequence yk = αvk + (1− α)xk resembles the sequence
given by xk or by vk. For instance, when α = 0, yk ≡ xk, i.e., we recover the steps of the
non-accelerated method, and thus one would expect to obtain the same convergence rate as the non-
accelerated method. Similar considerations hold in the other extreme, when α→ 1. We investigate
this hypothesis, and especially discuss how β and γ must be chosen as a function of α to ensure
convergence.

The following statement is a generalization of Theorem 3. For simplicity, we assume that the optional
stepsize that was introduced in Theorem 9 is set to one again, ω ≡ 1.

Theorem 10. Let 0 < α < 1 be fixed. Then the iterates {vk, xk}k≥0 of Algorithm 1 with parameters

β(s) =
1 + s− s

√
ν+4µs−2νs+νs2

νs2

2s
, γ(s) =

1

(1− sβ(s))ν
. (46)

where τ
def
= 1−α

α and s
def
= τ

βγ , satisfy

E
[
‖vk − x∗‖2E[Z]†

+ γτ‖xk − x∗‖2
]
≤ ρkE

[
‖v0 − x∗‖2E[Z]†

+ γτ‖x0 − x∗‖2
]
.

(or put differently):

E
[
‖vk − x∗‖2E[Z]†

+ (1− α)γ‖xk − x∗‖2
]
≤ ρkE

[
‖v0 − x∗‖2E[Z]†

+ (1− α)γ‖x0 − x∗‖2
]
.

where ρ = max{β(s), sβ(s)} ≤ 1.

We can now exemplify a few special parameter settings.

Example 11. For α = 1, i.e., if s→ 0, we get the rate ρ = 1− µ
ν with β = 1− µ

ν , γ = 1
ν .

Example 12. For α→ 0, i.e., in the limit s→∞, we get the rate ρ = 1− µ
ν .

Example 13. The rate ρ is minimized for s = 1, i.e., β = 1 −
√

ν
µ and γ =

√
1
µν ; recovering

Theorem 3.

The best case, in terms of convergence rate for both non-unit stepsize and a variable parameter choice
happened to be the default parameter setup. The non-optimal parameter choice was studied in order
to have theoretical guarantees for a wider class of parameters, as in practice one might be forced to
rely on sub-optimal / inexact parameter choices.

F Proof of Theorem 9

The proof follows by slight modifications of the proof of Theorem 3.

First we adapt Lemma 8. As we have xk+1 − x∗ = (1 − ωZk)(yk − x∗) the following statement
follows by the same arguments as in the proof of Lemma 8.

Lemma 14 (Lemma 8’).

η‖yk − x∗‖2E[Z] = ‖yk − x∗‖2 −E
[
‖xk+1 − x∗‖2 | yk

]
(47)

Proof.

E
[
‖xk+1 − x∗‖2 | yk

]
= E

[
‖(I − Zk)(yk − x∗)‖2 | yk

]
= E [〈(I − ωZk)(yk − x∗), (I − ωZk)yk − x∗〉]
= ‖yk − x∗‖2 − η‖yk − x∗‖2E[Z].
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We now follow the same steps as in proof of Theorem 3 in Section B.3. We observe, that the first
time Lemma 8 is applied is in equation (35). Using Lemma 14 instead, gives

E
[
r2k+1 | yk, vk, xk

]
≤ βr2k +

1− β
µ
‖yk − x∗‖2 +

γ2ν

η

(
‖yk − x∗‖2 −E

[
‖xk+1 − x∗‖2 | yk

])
+2γ

(
−‖yk − x∗‖2 + β

1− α
2α

(
‖xk − x∗‖2 − ‖yk − x∗‖2

))
. (48)

Therefore we have that

E
[
r2k+1 + γ2ν‖xk+1 − x∗‖2 | yk, vk, xk

]
≤ β

r2k + γ
1− α
α︸ ︷︷ ︸
P ′1

‖xk − x∗‖2



+

1− β
µ
− 2γ +

γ2ν

η
− βγ 1− α

α︸ ︷︷ ︸
P ′2

 ‖yk − x∗‖2.
Noting that 1−α

α = γν and γ2ν
η = γ(1−α)

ηα = 1
µ , we observe P ′2 = 0 and deduce the statement of

Theorem 9.

G Proof of Theorem 10

It suffices to study equation (35). We observe that for convergence the big bracket, P2, should be
negative,

(1− β)
1

µ
+ γ2ν − 2γ − γβ 1− α

α
≤ 0 (49)

The convergence rate is then

ρ
def
= max

{
β,

(1− α)β

αγν

}
. (50)

or in the notation of Theorem 10, ρ = max{β, sβ}.
This means, that in order to obtain the best convergence rate, we should therefore choose parameters
β and γ such that β is as small as possible. This observation is true regardless of the value of s (which
itself depends on γ).

With the notation τ = sγβ, we reformulate (49) to obtain
1

µ
+ γ2ν − 2γ ≤ β

(
1

µ
+ sγ2ν

)
(51)

Thus we see, that β cannot be chosen smaller than

β?(s, γ) =
1 + µγ2ν − 2µγ

1 + sµγ2ν
(52)

Minimizing this expression in γ gives

β?(s) =
1 + s− s

√
ν+4µs−2νs+νs2

νs2

2s
(53)

with γ?(s) = 1
(1−sβ?(s))ν .

We further observe that this parameter setting indeed guarantees convergence, i.e. ρ ≤ 1. From (53)
we observe (ν > 0, s ≥ 0, µ ≥ 0):

β?(s) ≤
1 + s−

√
ν−2νs+νs2

ν

2s
=

1 + s− (s− 1)

2s
=

1

s
(54)

Hence sβ?(s) ≤ 1. On the other hand, (1 − s) ≤
√

(1− s)2 + 4µs
ν and hence (1 + s) −√

(1− s)2 + 4µs
ν ≤ 2s, which shows β?(s) ≤ 1.
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H Proofs and Further Comments on Section 4

H.1 Proof of Theorem 5

We perform a change of coordinates since it is easier to work with the standard Frobenius norm as
opposed to the weighted Frobenius norm. Let X̂ = A1/2XA1/2 so that (18) and (20) become

X̂∗
def
= I = arg min‖X̂‖2F subject to X̂ = I, X̂ = X̂>, (55)

and
X̂k+1 = P + (I − P ) X̂k (I − P ) , (56)

respectively, where P = A1/2S(S>AS)−1S>A1/2. The linear operator that encodes the constaint
in (4.2) is given by Â(X) =

(
X, X −X>

)
the adjoint of which is given by Â∗(Y1, Y2) = Y1 +

Y2 − Y >2 . Since Â∗ is clearly surjective, it follows that Range
(
Â∗
)

= Rn×n.

Subtracting the identity matrix from both sides of (56) and using that P is a projection matrix, we
have that

X̂k+1 − I = (I − P ) (X̂k − I) (I − P ) . (57)
To determine the Z operator (9), from (11) and (57) we know that

(I − P ) (X̂k − I) (I − P ) = (I − Z)(X̂k − I).

Thus for every matrix X ∈ Rn×n we have that
Z(X) = X − (I − P )X (I − P ) = XP + PX(I − P ). (58)

Denote column-wise vectorization of X as x: x def
= Vec (X). To calculate a useful lower bound on µ,

note that
Tr
(
X>Z(X)

)
= Tr

(
X>XP

)
+ Tr

(
X>PX(I − P )

)
= x>Vec (XP ) + x>Vec (PX(I − P ))

= x>(P ⊗ I)x+ x>((I − P )⊗ P )x
(23)
= x>Zx, (59)

where we used that Tr
(
A>B

)
= Vec (A)

>
Vec (B) and Vec (AXB) = (B>⊗A)Vec (x) holds

for any A,B,X .

Consequently, µ is equal to

µ
(13)
= inf

X∈Rn×n

〈E [Z]X,X〉F
‖X‖2F

(59)
= inf

x∈Rn2×n2

x>E [Z]x

x>x
= λmin(E [Z]).

Notice that we have 2λmin(E [P ]) ≥ λmin(E [Z]) ≥ λmin(E [P ]) since (P ⊗ I) + (I ⊗ P ) ≥ Z ≥
(P ⊗ I).

In light of Algorithm 1, the iterates of the accelerated version of (56) are given by

Ŷk = αV̂k + (1− α)X̂k

Ĝk = Zk(Ŷk − I)

X̂k+1 = Ŷk − Ĝk
V̂k+1 = βV̂k + (1− β)Ŷk − γĜk (60)

where Ŷk, V̂k, Ĝ ∈ Rn×n. From Theorem 3 we have that V̂k and X̂k converge to the identity matrix
according to

E

[
‖V̂k+1 − I‖2E[Z]†

+
1

µ
‖X̂k+1 − I‖2F

]
≤
(

1−
√
µ

ν

)
E

[
‖V̂k − I‖2E[Z]†

+
1

µ
‖X̂k − I‖2F

]
,

(61)
where ‖X‖2

E[Z]†
= 〈E [Z]

†
X,X〉F . Changing coordinates back to X̂k = A1/2XkA

1/2 and defin-

ing Yk
def
= A−1/2ŶkA

−1/2, Vk
def
= A−1/2V̂kA

−1/2 and Gk
def
= A−1/2ĜkA

−1/2, we have that (61)
gives (21). Furthermore, using the same coordinate change applied to the iterates (60) gives Algo-
rithm 2.
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H.2 Matrix inversion as linear system

Denote x = Vec (X), i.e. x is n2 dimensional vector such that X(n(i−1)+1):ni = X:,i. Similarly,
denote e = Vec (I). System (6) can be thus rewritten as

(I ⊗A)x = e. (62)

Notice that all linear sketches of the original system AX = I can be written as

S0
>(I ⊗A)x = S0

>e (63)
for a suitable n2 × n2 matrix S0, therefore the setting is fairly general.

H.2.1 Alternative proof of Theorem 5

Let us now, for a purpose of this proof, consider sketch matrix S0 to capture only sketching the
original matrix system AX = I by left multiplying by S, i.e. S0 = (I ⊗ S), as those are the
considered sketches in the setting of Section 4.

As we have
Tr
(
BX>BX

)
= Vec (BXB)

>
x = x>(B ⊗B)x,

weighted Frobenius norm of matrices is equivalent to a special weighted euclidean norm of vectors.
Define also C to be a matrix such that Cx = 0 if and only if X = X>. Therefore, (4.2) is equivalent
to

xk+1 = arg min‖x− xk‖2A⊗A subject to (I ⊗ S>)(I ⊗A)x = (I ⊗ S>)e, Cx = 0, (64)
which is a sketch-and-project method applied on the linear system, with update as per (20):

xk+1 = xk − (H ⊗ I)((I ⊗A)x− e)− (I ⊗H)((I ⊗A)x− e) + (HA⊗H)((I ⊗A)x− e)

for H def
= S

(
S>AS

)−1
S>. Using substitution x̂ = (A

1
2 ⊗A 1

2 )x; Ŝ = A
1
2S and comparing to (11),

we get
Z = I ⊗ I − (I − P )⊗ (I − P )

for P as defined inside the statement of Theorem 5. Therefore, we have all necessary information to
apply the results from [27], recovering Theorem 5.

I Linear Operators in Euclidean Spaces

Here we provide some technical lemmas and results for linear operators in Euclidean space, that
we used in the main body of the paper. Most of these results can be found in standard textbooks of
analysis, such as [25]. We give them here for completion.

Let X ,Y,Z be Euclidean spaces, equipped with inner products. Formally, we should use a notation
that distinguishes the inner product in each space. But instead we use 〈·, ·〉 to denote the inner
product on all spaces, as it will be easy to determine from which space the elements are in. That is,
for x1, x2 ∈ X , we denote by 〈x1, x2〉 the inner product between x1 and x2 in X .
Let

‖T‖ def
= sup
‖x‖≤1

‖Tx‖,

denote the operator norm of T . Let 0 ∈ L(X ,Y) denote the zero operator and I ∈ L(X ,Y) the
identity map.

The adjoint. Let T ∗ ∈ L(Y,X ) denote the unique operator that satisfies
〈Tx, y〉 = 〈x, T ∗y〉,

for all x ∈ X and y ∈ Y. We say that T ∗ is the adjoint of T . We say T is self-adjoint if T = T ∗.
Since for all x ∈ X and s ∈ S,

〈x, (ST )∗s〉 = 〈STx, s〉S = 〈Tx, S∗s〉Y = 〈x, T ∗S∗s〉,
we have

(ST )∗ = T ∗S∗.
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Lemma 15. For T ∈ L(X ,Y) we have that Range (T ∗)
⊥

= Null (T ) . Thus

X = Range (T ∗)⊕Null (T ) (65)
Y = Range (T )⊕Null (T ∗) (66)

Proof. See 3.2.6 in [25].

I.1 Positive Operators

We say that G ∈ L(X ) is positive if it is self-adjoint and if 〈x,Gx〉 ≥ 0 for all x ∈ X . Let
(ej)

∞
j=1 ∈ X be an orthonormal basis. The trace of G is defined as

Tr (G)
def
=

∞∑
j=1

〈Gej , ej〉. (67)

The definition of trace is independent of the choice of basis due to the following lemma.

Lemma 16. If U is unitary and G ≥ 0 then Tr (UGU∗) = Tr (G) .

Proof. See 3.4.3 and 3.4.4 in [25].

Lemma 17. If P ∈ L(X ) is a projection matrix then Tr (P ) = dim(Range (P )) = Rank (P ) .

Proof. Let d = dim(Range (P )) which is possibly infinite. Given that P is a projection we have
that Range (P ) is a closed subspace and thus there exists orthonormal basis (ej)

d
j=1 of Range (P ).

Consequently, Tr (P )
(67)
=
∑d
j=1 1 = d = dim(Range (P )).

A square root of an operator G ∈ L(X ) is an operator R ∈ L(X ) such that R2 = G.

Lemma 18. If G : X → X is positive, then there exists a unique positive square root of G which we
denote by G1/2.

Proof. See 3.2.11 in [25].

Lemma 19. For any T ∈ L(X ,Y) and any G ∈ L(Y,Y) that is positive and injective,

Null (T ) = Null (T ∗GT ) , (68)

and
Range (T ∗) = Range (T ∗GT ). (69)

Proof. The inclusion Null (T ) ⊂ Null (T ∗GT ) is immediate. For the opposite inclusion, let
x ∈ Null (T ∗GT ) . Since G is positive we have by Lemma 18 that there exists a square root
with G1/2G1/2 = G. Therefore, 〈x, T ∗GTx〉 = 〈G1/2Tx,G1/2Tx〉 = 0, which implies that
G1/2Tx = 0. Since G is injective, it follows that G1/2 is injective and thus x ∈ Null (T ).
Finally (69) follows by taking the orthogonal complements of (68) and observing Lemma 15.

As an immediate consequence of (68) and (69) we have the following lemma.

Corollary 20. For G : X → X positive we have that

Null
(
G1/2

)
= Null (G) (70)

Range
(
G1/2

)
= Range (G) (71)
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I.2 Pseudoinverse

For a bounded linear operator T define the pseudoinverse of T as follows.
Definition 21. Let T ∈ L(X ,Y) such that Range (T ) is closed. T † : Y → X is said to be the
pseudoinverse if

i) T †Tx = x for all x ∈ Range (T ∗) .

ii) T †x = 0 for all x ∈ Null (T ∗) .

iii) If x ∈ Null (T ) and y ∈ Range (T ∗) then T †(x+ y) = T †x+ T †y.

It follows directly from the definition (see [9] for details) that T † is a unique bounded linear operator.
The following properties of pseudoinverse will be important.
Lemma 22 (Properties of pseudoinverse). Let T ∈ L(X ,Y) such that Range (T ) is closed. It
follows that

i) TT †T = T

ii) Range
(
T †
)

= Range (T ∗) and Null
(
T †
)

= Null (T ∗)

iii) (T ∗)† = (T †)∗

iv) If T is self-adjoint and positive then T † is self-adjoint and positive.

v) T †TT ∗ = T ∗, that is, T †T projects orthogonally onto Range (T ∗) and along Null (T ) .

vi) Consider the linear system Tx = d where d ∈ Range (T ). It follows that

T †d = arg minx∈X
1
2‖x‖

2 subject to Tx = d. (72)

vii) T † = T ∗(TT ∗)†

Proof. The proof of items i, ii, iii, iv, v can be found in [9]. The proof of item vi is alternative
characterization of the pseudoinverse and it can be established by using that d ∈ Range (T )
together with item i thus TT †d = d. The proof then follows by using the orthogonal decomposition
Range (T ∗) ⊕Null (T ) to show that T †d is indeed the minimum of (72). Finally item (vii) is a
direct consequence of the previous items.
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