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Additional notation For simplicity, we shall write ¢ = a+binstead of ¢ € [a — b, a + b] whenever
appropriate. We use @ 2 b and a < b to denote a > b(1 + o(1)) and a < b(1 + o(1)), respectively.

1 Minimax prediction: lower bound

A standard argument for lower bounding the minimax prediction risk is
PR“(2) = min max pi*(P, P) > min Epn[os"(P, P)),
p Pez p

where I is a prior distribution over &?. The advantage of this approach is that the optimal estimator
that minimizes IEp.11[pX" (P, P)] can often be computed explicitly.

Perhaps the simplest prior is the uniform distribution over some subset of &?. Consider the uniform
distribution over £g C &, say U(Ps), the following lemma shows an explicit way of computing

the optimal estimator for E p..i7( 2 [pK" (P, P)] when P is finite.

Lemma 1 Let P* be the optimal estimator that minimizes Ep v ()P (P, P)], then for any
x" € [k|"™ and any symbol i € [k],
- P@) |
riy= Y ) p o).
Pg;?s ZPIEQS P’(Jj )

Clearly, computing P~ for all the possible sample sequences " may be unrealistic. Instead, let /7,
be an arbitrary subset of [k]™, we can lower bound

pXU(P, P) = Exnp|[DkL(Pxn, Pxn)]
by
pRU(P, P; #7,) := Exnp[ D (Pxn, Pxn)lxnex,].
This yields
PR P) = mgnEPNU(@s)[pEL(Pa P; )]

The key to apply the above arguments is to find a proper pair (¥g, #;). The rest of this section
is organized as follows. In Subsection we present our construction of Zg and .#;,. In Sub-
section [I.2] we find the exact form of the optimal estimator using Lemma[I] Then we analyze its
prediction risk over %, in Subsection where we further partition J%;, into smaller subsets K (i),
and lower bound the KL-divergence over K, () and the probability P(X"™ € K,(i)) in Lemma
and@ respectively. Finally, we consolidate all the previous results and prove the desired lower bound
on p-(2).
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1.1 Prior construction

Without loss of generality, we assume that & is an even integer. For notational convenience, we denote
by wy, the uniform distribution over [k] and define

(b—a «a a a

a a
P2 b—po a a a a
a a b—a a a a
Mn(anp4a L) 7Pk) = a a P4 b7p4 e a a )
a a a a ... b—a a
| @ a a a Pr b—pi]

where @ := L and b := 1 — £=2_ In addition, let

1 1
Vn::{ 7 te]Nand1<t§70gn }
log"n 2loglogn

Given n, we set
s = {(M) € M* : u = uy and M = M, (p2, ps, ..., pr), Where p; € V,,,Vi € [k]°}.

Then, we choose %, to be the collection of sequences =™ € [k]™ whose last appearing state didn’t
transition to any other symbol. In other words, for any state ¢ € [k], let i represent an arbitrary state
other than 7, then

Hy ={a" e[k a" =" i e [kl,n—1>£>1}.

According to both the last appearing state and the number of times it transitions to itself, we can
partition %, as

Sy = Uy K(i), where Ky(i) == {a™ € [k]" : 2" = i" "},
1.2 The optimal estimator

Let P* denote the optimal estimator that minimizes I Pt (25) [PRE(P, P;.#,)]. The following
lemma presents the exact form of P,

Lemma 2 For any x™ € %, there exists a unique K;(i) that contains it. Consider P, we have:

1. Ifi € [k]°, then
a j>torj<i—1
Pini) = { Soer (b= 0/ Soey, =) =i
Zvev,, (b—v)~ly/ Zvev,,, (b—v)t j=i-1

2. Ifi € [K]°, then

j>idorjy<i
—a j=1
Proof Given (M) € Pg, consider X™ ~ (M),
1 "1.71
Pr(X" = 3 H L
1€k 1€k

By Lemma for any 2" € K,(i) and j € [k], P*

xmn

> My I IT M

_ (Mezs i1 €[k] 51 €[K]

> I I M

(M)€ZPs i1€[k] j1E[K]

(j) evaluates to




Noting that 2™ € K,(¢) implies N;; = ¢ — 1 and N,; = 0,V # i. Besides, for any j; € [k] and
i1 € [k)\ {j1,j1 + 1}, M;,;, is uniquely determined by 41 and j; for all (M) € Pg.

Thus, for s = 0 or 1, we can rewrite M;” [, ¢y ]_[jle[k]MN"“'1

1171 as

k
Clam k)M [T [Mege—] ™ M),

t=2
t even

where C'(z™, k) is a constant that only depends on z™ and k.

Hence, for any 2™ € K,(i),

k
> My ] [May—y] "7 [Myg) Ve
N (M)Ek@s t=2

P;" (]) _ Zeven

> 11 [Mt(tfl)]Nm*l) (M N

(M)es =2
t even

Below we show how to evaluate P;n (j) for j =i € [k]®, and other cases can be derived similarly.

Combining M ; Nii with M j; in the nominator,

> Mg

(M)eZs

[Mt(t—l)]Nt(tfl) [My] N

oo
<l >
QN

~
3

Pr(i) = =
So M T M) ¥ (M)
(M)eZs t=2
t even
t#£]

k
Z (b—")* H N (b — )N
=2

veV,

_ e e
o k
Z (b—o)t H pNee-1 (b — ) Nee
v/eVn tt_2
VeV, gen
k
(S, =] 3 T e -
veV, t=2
t even
_ t#]
B k
(S, 0=t 3 T oo - o)
’ veV, t=2
t even
t#

_ ZUeVn (b - U)e
Dvev, (b—0)"1

This completes the proof.

1.3 Analysis

Next, for any 2" € K (i), we lower bound Dy (Pyn, P%,) in terms of M;(;—1y and P (i—1).



Lemma 3 Forany (M) € Pg and x™ € K(3),

DKL(Pmﬂr,P;n) Z Mi(’ifl) ( 1 +1 g AM) .
Pr.(i— 1)

Proof By the previous lemma,
Mz(z 1)

Mii
D an P”c" M“ log ——— + Mz i— 10 U TE—
KL ( )= gp* (i) (i—-1) P* (i — 1)

T

Noting that —#5 < log(z + 1) forall x > —1,

M;; M;; — Pra(1
M;;log — N M;; log (13*() + 1)

w" ¢ ()
> Mu - Px"( )
= (b= Mi1) — (b= Pr(i— 1))
> —M;—1y-

This completes the proof.

Let V) := {m |t e N1 <t< 41@%;;”} be a subset of V;, whose size is §|V},|. For

M;;—1y € V,;, we further lower bound Mi(i,l)/fD;‘n (¢ — 1) in terms of n.

Let {1 (M) := Mli - Ioglogn and £2(M) = Mf,(li_l) log log n, we have

Lemmad4 For any (M) € P, a" € K,(i) where i € [k]°, M;;_1) = € V), and

sufficiently large n, if

1
(log )™

OL(M) << Ua(M),
then,

M, 1
D > OB (1 (1)),
Pr(i—1) 8loglogn

€ V!, where m € [1, 728" _|,

Proof  Consider M;(;_q) = » Toglogn

1
(ogn)™
Note that for 2™ € K,(i), the value of P, (i — 1) only depends on ¢, we can define
1(7, 1)

Fg = =
Pr(i—1)
‘We have
5> A+ X+ Cy
"= B+ X, + Dy
where

¢
k—2 1
Xg =(1- - . y
n (logm)™

—1 l
k—2 1
Ae= .Z (1 B <1ogn>i) ’

( f <>)

m— 4
1 m—1

_logmn

2Toglogn k—2 1 Y/
d D, := 1-—=—_—— ) m=i,
wd Dei= ( o gy ) toen)

1=m-+1

Cy:

|
Muﬁ

We have the following bounds on these quantities.



Bounds for X,

¢
k—2 1
0<X,=1|(1 — <1
n (logn)™
Bounds for A,
m—1 ¢
k—2 1
- §< n (logn)’>
Bounds for D,
Torio; p
2loglogn
k—2 1 1 1
osois > (-2 ) - o
i=m+1 n (logn) logn logn
Bounds for C;
Note that
1 m
{logn)™ < ¢ < (logn)™loglogn
loglogn
and

(logn)™ < \/n.

Consider a single term of Cy, we have

1 k—2 1 t > (1 k—2 1 (log n)™ log log n
n (logn)* ) — n (logn)?

k—2
k—2 1 >1«—2+11(n +(1T1W)(10gn)m log log

1—-— - n T (log n)?

n (logn)?

k= +710;;n) loglogn

I T B G
1— E _ # ¥+(1Tln>i
n (logn)?

(k—2)loglogn 4 loglogn

<

|
SO
.

v

where we use the inequality ¢ > m + 1 and (1 — %)”’ > % for x > 2.

Hence,
logn logn 1 Toxtoen [ 1 ¢ ToshEn logn
i RO T D DI f e T B DR B
8loglogn  4loglogn 2 = n (logn) e 2log log 1



Bounds for B,

Similarly, consider a single term of B, without the factor (log n)m’i,

(log )™

k—2 1\ k—2 1 Teelesm
1- = ) < (1= R
n (logn)? n (logn)?

1\ e (et
)’i

(log)*

1 ﬁ ((101g)i
) oyt m
( (log n)i>

(ogmn)™—" i
Tog Tog 10

IN

IN

INA
o |~
\_/

(logm)™—*—~ i-1

log log n

)

(-
l
(
(

where we use the inequality (1 — 1)* < 1 forz > 2.

S|
\_/

Hence,
m—1 4
k—2 1 )
B, = 1l—-— —— | (1 m=t
‘=2 (1=~ o) e
mol g S |
< - 1 m—1
()

(logn)m—i—1 2(logn)™ i1

m—1 aoen) 2(ogmn)
1 3log log n (1 3log log n
- 1 m—i [ *

k—

2 ) (logn)™

n ) Toglogn

i) o

n log log n

2logn
) 3Toglog n

(logn)™m—i—1 2(log n)m—i—1
1 log llog n m—2 1 ?;glog log n 3 1 OSgl:g log n
== logn + g — (logn)™ " —
n - n n
i=1
1 log n 2logn
1\ Toslogn m=2 1) 3loglogn logglogn 1) 3loglogn lgogn
<|(- logn + E — (logn)™| —
n - n n
i=1
1 2logn
1 loglogn 3 log log n log n 1 3loglogn
S — logn + E (log n) 4loglogn | —
n n
1 og n
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where we use the inequality x — 2(log x)? > 0 for x > 1.

Putting everything together:

logn
AZ + XZ + CZ > 0 + Slogglogn — IOgn
B+ X, + Dy +1+ 8loglogn’

Fy=
2loglogn

log n
This completes the proof.

Another quantity that will be appear later is Pr(X™ € K,(i)) where X" ~ (M) € &Zs. We need
the following lower bound.

Lemma 5 For X™ ~ (M) € Ps andi € [k]°,

N k=11 k—2 -

Proof By our construction of Pg, for X" ~ (M) € Pg and i € [k]°, we have the following
observations.

1. The probability that the initial state is not ¢ is %

2. The probability of transitioning from some state j # i to some state that is not 7 is 1 — %

3. The probability of transitioning from some state j # i to state i is +.
n

4. The probability of transitioning from state i to itself is 1 — £=2 — M1y

n

Therefore,

Pr(X" € Ky(i)) = ——

v
‘PT‘
\
_
SR I
= |

This completes the proof.

Now we turn back to pXl(Z?). According to the previous derivations,

(2 > m;HEPNU(%)[PEL(P, P; )

Xn~P
T EHy,

= EPNU(@s) [ Z Pr (Xn = x")DKL(PIn,P;,L)

Z ZZ > [XE){P(XR:xn)DKL(mePIn)}

(M)egzsl 1ie[k]zmeK,o(i
05 (M)

CX X X Y B (X =aDa(Pe, P

(M)egzs (=01 (M) i€[k]e 2 €Ky (3)

Noting that all ™ € K,(¢) have the same P~ and P;n, thus, the last formula can be written as

L2 (M)

Z 3 Z[ Pr (X" € Ke(i)) Diw(Pon, P ng())}

(M)e@s e=t,(M)i€lk




By Lemma 3|and 4} for £1 (M) < ¢ < £5(M) and M;(;_1y € V,,,

M)
DKL(Pzn Pxn,x EK[( )) ZMZ(’L—l) _].“FlogAi
P:(i—1)

logn
> Moo 141 _oen
~ ARG 1)< +log (810g10gn>>

= M;(;—1)loglogn.

By Lemma 3]
-1
. k=11 k-2
Therefore,
£2(M)
KL n ;
PP 2 o S Y Y [P (0 € KD (P Pl € K()

(M)ePs L=t (M) ic[k]e
ZQ(M

S (k—1)loglogn Z 1 Z Z 1 M g_;/[
~ enk et |=@S‘ i(i—1) i(i—1)

(M)eZs =01 (M
and M;(;_1)€V,,

1 loglogn

-1
k—1)logl k—2
AR Y e Y ()
7 n
e ' 1)6‘// 5_; Toglogn log n

where the last step follows by symmetry
Next, we show that for any v = Togn)™ n) eV,

Lloglogn (—1

! k—2

T, = Z (1— - —v) v 21
=14

v loglogn
Noting that T}, is simply the summation of a geometric sequence, we can compute it as follows

1 (logn)™ log log n k—9 1 /-1
Ly k=2
(logn)™ n (logn)™

= (log n)™
" loglogn

(ogm)™

1_k=2___1 log log n
1 n  (logn)™ logn )
2

~ (logn)™ 1 (1 h

) (logn)™ log logn

~T )
n (logn)™

(log n)™

B 1 L k-2 1 e
-~ (k=2)(logm)™ , 4 n (log n)m

n

1 k—2 1 (logn)™ loglog n
n (logn)™ :

To provide a lower bound for 7;,,, we use the following inequalities:

1 S 1 1
(k—2)(log n)™ -

_— logn 1
N e T G P R e LA

n



(1+ (k=2)(log m)™ )

(log n)™

o)1 -1
NLEE S S B B —
n  (logn)™ n  (logn)™

(k72)\/ﬁ)1 11
oglogn

1\ = 1\ 2roiorn
> - > = =1,
= (s) = (5)

E_2 1 (log n)™ log log n
1
n  (logn)™

1
_ 1 k-2 1 B2 gy
n  (logn)™

1 loglogn 1
< | - = .
— \e logn

Consolidating these three inequalities, the sum 7},, can be lower bounded by

1
Toglog n

and

~| (7(1672)(:@ n)™ +1) loglogn

1
T, >1(1 - =1
R =)
Finally,
k —1)loglogn 1
KL > (— _— 1— o1
ic[k]e VeV,

_ (k—1)loglogn k |V;|
B enk 2 |V,
~ (k—1)loglogn
N den '

2 Minimax prediction: upper bound

The proof makes use of the following lemma, which provides a uniform upper bound for the hitting
probability of any k-state Markov chain.

Lemma 6 [[I]] For any Markov chain over [k] and any two states i, j € [k], if n > k, then
k
n

Pri(r(j) =n) <

Let %7, be the same as is in the previous section. Recall that
pEL(P7 pv%) = Z P(.’l?n)DKL(Pa:n,pwn),
T EH,

we denote the partial minimax prediction risk over J,, by

PR-(2; ) = min max pi"(P, P; ).
p PeP

Let 7, := [k]" \ ., we define pK“(P, P; ;) and pX“(22; #,) in the same manner. As the
consequence of P being a function from [£]™ to Ay, we have the following triangle inequality,

pRH(P) < pRU( P ) + PR 25 ).

Turning back to Markov chains, the next lemma upper bounds pX-(IM*; J7;,).



Lemma 7 Let P2 denote the estimator that maps X™ ~ (M) to M+ (X,,-), then

max pXL(P, P2, ) < O <1>

PeMF -

which implies

Proof The proof of this lemma is essentially a combination of the upper bounds’ proofs in [2]
and in Section E} Instead of using the fact that M;; are bounded away from 0 (see Section E]), we
partition ., into different subsets according to how close the counts are to their expected values, the
number of times that the last appearing state transitioning to itself, and the number of times that the
last appearing state transitioning to other states. Then, we bound the estimator’s expected loss over
each set of the partition by Oy, (1/n). We omit the proof for the sake of brevity.

Recall the following lower bound,

loglogn
pRHD) = 0 (FECET ).

n

Th1s together with Lemma [3] and the triangle inequality above shows that an upper bound on
pKL(IMPF; #;,) also suffices to bound the leading term of pX™(IM*). The following lemma provides
such an upper bound. Recall that for any i € [k], K,(i) is defined as {z" € [k]" : 2" = i"~¢i*}.

Lemma 8 For any a™ € ¢, there exists a unique pair ({,1) such that ™ € K,(i). Consider the
following estimator

I
N
[
\%
3 |3

1
Pzn(l) = {1_{10gn eg
and
_ i , .
= TEo1 Vi € [k]\ {i},
then we have

22 log |
LM ) < max pKL(P, Py ) < 2h1oslogn
PeMFk n

Proof Leti € [k] be an arbitrary state. For simplicity of illustration, we use the following notation:

for any 2" = " i, denote py := Pyn; for any (M) € IM*, denote p; := M(i,-); for any £ < n,
denote h; ¢ := Pr(r ( ) =1{). By Lemma@, the hitting probability h; ¢ is upper bounded by k/¢ for
all £ > k. We can write

P P % Z thn 4 pz 1DKL(pi>]§£)'

i€[k] £=1

10



Now, we break the right hand side into two sums according to whether £ is greater than n/2 or not.
For ¢ > n/2, we have

Z Z hln gpl z 1DKL(p1apl)

i€lk] (=241

<32 5 o ks (25 + S (22222

1
i€[k] t=5+1 U JFi

Y S bl ) (1o (-

ic[k] é=2+1

<y Z hin—e(pi(i)* 1<1f%+(1—pi(’i))2€(/€—1)>

i€k] L=2+1

<> Z B e( + ())f‘l(l—pi(z'))%(k_n)

i€lk] b=2+1

<z§]e—z;+1hm Z< (“11) ak_l))
<> e(”“)

i€[k] b=2+1

) (1 - puli)) log (€K — 1)1 —piw))))

=

= Z—Pr [1,n/2—1])§%.

n
i€ (k]

Similarly, for £ < n/2, we have

Z i hin—e(pi (i) Dxo(pi, Be)
i€[k] £=1
< Z Z hi,n—é(pi(i))ffl <10g (1_11> (1 — pz( )) IOg (é(k — 1)(1 — pl( )) 1og n))

i€[k] £=1 llogn

< X 3 ) (g + (1 PP = 1)+ (1 () oglog

i€[k] £=1
o (G 2 3 o o 2
<D 2 o 2 @) T = pa@)* (k= 1)+ ) (i) (1 - pi(i)) loglog
ic[k] s Lt _
< Z %(2+(/€—1)+loglogn)
em "

_ 2k2loglogn

n

This completes the proof.

3 Minimax estimation: lower bound

The proof of the lower bound makes use of the following concentration inequality, which upper
bounds the probability that a binomial random variable exceeds its mean.

11



Lemma9 [3] Let Y be a binomial random variable with parameters m € N and p € [0, 1], then
foranye € (0,1),
Pr(Y > (1 + e)mp) < exp (—€*mp/3) .

3.1 Prior construction
Again we use the following standard argument to lower bound the minimax risk,

L . L ~ . L ~
e (M) =min max e/ (M,M)>minE 5~ eq (M, M)],
n(A) in, max n( ) in B Utts)En ( )]

where .#s C A and U (M) is the uniform distribution over .#s. Setting .4 = ]M’g > we outline
the construction of .#g as follows.

We adopt the notation in [4]] and denote the L, ball of radius r around w1, the uniform distribution
over [k — 1], by
Bip_1(r) :=={p € Ag—1: Loo(p,ur—1) <7},

where L (+,-) is the Lo, distance between two distributions. For simplicity, define

/
p = (pb P2, -, pk71)7
— % — % — %
. T T T .
P=\s—1Tr—1 "k-0v")
and
T T 7* *
R—1 k-1 =17
T T s *
E—1 k-1 E—1 ™
/
M (p') = : SR
T* 7* 7* *
R=1 Rl k=T ™
_ — — *
T p1 P2 T Pk—1 T

where 7 = 1 — 7* and Zi:ll pi =1

Givennand € € (0,1), let n/ := (n(1 + €)7*)/%. We set
Ms={(M) €M} . : p=p*and M = M,(p'), where p’ € Bj_1(1/n)}.

Noting that the uniform distribution over .#s, U(.#s), is induced by U(Bj;,_1(1/n’)), the uniform
distribution over By_1(1/n’) and thus is well-defined.

An important property of the above construction is that for a sample sequence X" ~ (M) € s,
N, the number of times that state k£ appears in X, is a binomial random variable with parameters n
and 7*. Therefore, Lemma[9]implies that Ny, is highly concentrated around its mean nz*.

3.2 Ls-divergence lower bound

Let us first consider th; Lo-distance. Similar to Lemma M *, the estimator that minimizes
E(vny~v (as)le5? (M, M), can be computed exactly. In particular, we have the following lemma.

Lemma 10 There exists an estimator M* with
M. (i,) = p*,Vi € [k — 1],

xn

and .
M. (k k) =7",

such that M* minimizes Ey~vas)les? (M, M)
Based on the above lemma, we can relate the minimax estimation risk of Markov chains to the

minimax prediction risk of i.i.d. processes. For simplicity, denote %;;, := {(p) € D~ . pE
Byj,_1(1/n')}. The following lemma holds.

12



Lemma 11 For any 2™ € [k]"™, let I(x™) be the collection of indexes j € [n] such that x; = k. Then,

Eon~vas) Exn~oan[Le(M(E,-), M. (k, Dy xny=1,]]

= C(]Io, ﬂ'*’p*7 Tl) mgn EPNU(:@[_;_(/,) [p|L]I§| (P, P)L

where 1 is an arbitrary non-empty subset of [n] and C (I, 7*,p*, n) is a constant whose value only
depends on ly, 7*, p*, and n.

Proof We first consider the inner expectation on the left-hand side of the equality. For any
(M) € .#s, we have

EXnN(M)[LQ(M(k")7M§("(k"))‘ﬂﬂ(xn):ﬂﬂ]
= > P@@")Lo(M(k,-), MEn (k. )

zn:I(z™)=Io
n—1
= S e [T M) La(M(E, ), N (K, ).
zn:I(z™)=Io t=1

Let us partition Iy into two parts: the collection of indexes m € Iy N [n — 1] such that m € I and

m+ 1 ¢& Iy, say {m1,..., ms}, and the remaining elements in I. By the construction of .#s, we
have
n—1
S wlan) [ M@, 2ip1) La(M (R, ), Ma (K, )
()=l t=1

* n—s—|Io| s .
- (5) S T MOk i) LaM (k. ), N (k).

k-1 zn:d(zm)=Ip t=1

For any z™, let 2™ \ I denote the subsequence z;,, . . . iy —s such that j1 < j2... < Jp_j1o|—s>
je € Tgand j; — 1 &€ {my,..., ms},Vt. We can further partition the last summation according to
a™ \ T as follows.

S LMk ) Ea 1R ). VT (. )

zn:l(zm)=Iy t=1

S

— Z Z HM k s Tmy+1 LQ(M(k7) M;"(k7))

yn—Mol=s¢[k—1]n—ITol—s a™ixj=kVijely t=1
and 2" \Ip=y"~ ol —s

Fixing ynol=s ¢ [k — 1]*~ITol=5  there is a bijective mapping from S(To, 3" Tol=%) .= {z™ :

= k,Vj €Iy and 2"\ = y"Ml=5} to [k—1]*, say g(-). Furthermore, we have M*(k, k) =
Hence we can denote qg(w) = M for " € S(Iy,y™ "ol=%) and treat it as a mapping
from [k —1]° to Ag_1. Also, (M) € .#s implies that M (k, [k —1]) = p’ for some p’ € By_1(1/n’).
Thus,

LQ(M(k’ )5 M;” (kv )) = (ﬁ*)2L2(p/’ q;(;pn)),

S S

HM(k7x7ﬂt+1)L2(M(k’ )7M;" (/4;, )) = Hp (xmt-&-l)( ) L2(p Qg(z"))
t=1 t=1

13



and

ST TL M 2 Ea(M (), N (5, )

wnES(]Io,y"_MO‘_S) t=1

= Z Hp Tm,41)(7°)2 Lo (P, qq(w”))

x"GS(]on —|Ig|— s) =1
= > Hp 2)(7)? La(p/, )
zsg[h—1]° t=1
= Ezonon [(7°)°L2(p', 422,
where (p’) is an i.i.d. process whose underlying distribution is p’.
By definition, M/* minimizes E)~v (as)les? (M, M) and for each 2™ € [k]", its value MZ,
is completely determined by z". Besides, {S (I, y" ™I=%) : Iy C [n]and y"Tol=5 ¢ [k —
1}"‘“10‘_9} forms a partition of [k:] Therefore, by the linearity of expectatlon and the definition

of ¢*, the estimator ¢* also minimizes B, v (5, _, (1/n)[Ez:~pn [(7*)?L2(p', qz+)]], where the
minimization is over all the possible mappings ¢ from [k — 1]° to A;_1. Equivalently, we have

Ep (s (1/n) B zn o) [(7*) 2 La(p, g0 )] = m};n Ep v (,.)(7)[pE2(P, P)].

This immediately yields the lemma.

For any (M) € .#s, denote by Ny ((M),n) the number of times that state k appears in X ~ (M),
which is a random variable induced by (M) and n. Lemma we can deduce that

Lemma 12

min B s en” (M, M)] 2 By (as) | (72 min Ep @ 03, () (P P |-

By Lemma [9]and our construction of .#g, the probability that Ny ((M),n) > (14 e)nm™ is at most
exp(—e*nn*/3) for any (M) € .#s and € € (0, 1). This together with Lemmaand

1_#

m}%n IEPNU(@,:,‘.J.)[pan2 (Pa P)] 2 ( b

—_— 1
T+ oynn =, Vm < (1 +€)nm

from [4] yields
Lemma 13 Foralle € (0,1),

3.3 Lower bound for ordinary f-divergences

Now we proceed from the Lo-distance to ordinary f-divergences. The following lemma from [4]
shows that D¢ (p, ¢) decreases if we move ¢ closer to p.

Lemma 14 Forp; > q1, p2 < g2 and d < min{p; — q1,q2 — p2},

P P2 P1 P2
Q1f<ql> +112f<q2> > (¢ +d)f(q1 n d) + (g2 — d)f(q2 = d)-

Based on the above lemma, we show that for any ™ € [k]™, the value of the optimal estimator is
always close to (up_17*, 7*).

Let p. := Mz, (k,-). Forany 2" € [k]™, we claim that either p*., (j) > (25— 2)7*,Vj € [k—1]
and pi. (k) > 7 OR pin(4) < (ﬁJrn,)ﬂ' Ve [k— 1] andpxn( ) < m*. Otherwise, Lemma

implies that we can reduce the estimation risk by moving %, closer to (uy_17*, 7*).
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1
Vj € [k — 1] and pin (k) < 7 + E=2a* Similarly, if pZ. () < (75 +
Py (k) < 7%, then 3 (7) > (55 — 52)7, V) € [k — 1] and pja (k) >

n

If p2.(j) > (75 — 2)7%. Vj € [k — 1] and pia (k) > 7%, then pin (j) < (25 + E2)7%
k

Now we relate D (p, p*) to Lo (p, p*). For simplicity, denote p := M (k, -) and drop " from p...

Lemma 15 For sufficiently large n,

(k=1 f"(1)
2

Proof By the previous lemma, p}. (j) = (727 £ 552)7%, V) € [k—1] and pin (k) = 7* + L7,
Therefore,

. k ’ k

p(z) n—% n+% .
€| 2, p 8| Vi€ [k].
pr@) W+ =%

Let us denote the interval on the right hand side by 1.

For sufficiently large n, we can apply the second-order Taylor expansion to f at point 1.

Di(p.p") = Y 0*(0)f (5%)

i€[k]
_ iy (PO g P 6) (pG) N\
-2 (p()(ﬁ*(i) o+ ER(Eg 1) o
() [ p() | "
pr(@) ( (i) " p(%) ’ "
(1) (P
. 2 ie[Xk:l] (Z)<ﬁ*(2) 1>

Lemma I5|together with Lemma[13]yields

Lemma 16 For sufficiently large n,

k—2)f"(1
k) 2 (1 -7 EDID)

4 Minimax estimation: upper bound

4.1 Concentration of the counts

The proof of the upper bound relies on the following concentration inequality, which shows that for
any Markov chain in IM¥ and any state i € [k], with high probability N; stays close to (n — 1)m;, for
sufficiently large n.

Lemma 17 Given a sample sequence X™ from any Markov chain (M) € ]M’g, let N; denote the
number of times that symbol i appears in X"~ 1. Then for any t > 0,

2 —t*/C(9)
Pr(N; — (n — 1)m;| > t) < \/;exp (4((n — 1) +2C(6)) + 40t) ’
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where T is the stationary distribution of (M) and

C(6) = {‘m(lffa) + 1}.

Proof Given (M) € M, recall that P"*! denotes the distribution of X, | ; if we draw X"*! ~
(M). First, we show that
Dp,(P" 7)) <2(1—6)"
Let IT be the k x k matrix such that II(, -) = 7 for all ¢ € [k]. Noting that M (4, j) > 611(4, j), we
can define
M — 611

Ms :=
4 1-35 )
which is also a valid transition matrix.

By induction, we can show
M"=(1-(1-=68"IT+(1—-0)"Mj.
Let us rearrange the terms:
M"—T1=(1-8)"(My —1I).
Hence, let | - | denote the L; norm, we have
Dy, (P"* Y 7) = |p(M™ —=T0)| = [(1 = §)"p(M§' — )| < 2(1 - §)".

This implies that we can upper bound ¢, by C(0).

The remaining proof follows from Proposition 3.4, Theorem 3.4, and Proposition 3.10 of [5] and is
omitted here for the sake of brevity.

Noting that Pr(|N; — (n — 1)m;| > (n — 1)) = 0, we have

2 —t2
Pr(|N; — (n— )| > t) <4/ = .
f(INs = (n = Lmi] > ¢) \/;exp (40(5)(11(n— 1) +2C(6))>
Informally, we can express the above inequality as
Pr(|N; — (n = 1)m;| > t) < O5(exp(©5(—t*/n))),

which is very similar to the Hoeffding’s inequality for the i.i.d. processes. As an important implication,
the following lemma bounds the moments of |N; — (n — 1)m;]|.

Lemma 18 For N; defined in Lemmaand anym € Z.F,

E[IN; — (n — 1)mf") < "E2)

n— me2,
S gy WO —1)+2009))) ’

Proof The statement follows from

EHNZ — (TL — 1)7T1|m] = PI‘(|NZ — (n — 1)7_(_Z|m > t) dt

0\8 0\8

Pr(|N; — (n — 1)m;| > tY/™)dt

\/go/” P (40(5)(1_1i/r 20(5))> dt

TV
mI(m/2)

N S n m/~
= g (C@) 110 +20()) 2

IN

(40(5)(11n+20(5)))m/2/e vym/2-1 gy
0
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4.2 A modified add-/ estimator

The difficulty with analyzing the performance of the original add-3 estimator is that the chain’s initial
distribution could be far away from its stationary distribution and finding a simple expression for
E[N;] and E[N;;] could be hard. To overcome such difficulty, we ignore the first few sample points
and construct a new add-/3 estimator based on the remaining sample points. To be more specific, let
X™ be a length-n sample sequence drawn from the Markov chain (M). Removing the first m sample
points, X | := X, 41, ..., X, can be viewed as a length-(n—m) sample sequence drawn from
(M) whose initial distribution z’ satisfies

Li(y,7) <2(1—9)™ L

Setting m = \/n, we have Ly (i, 7) < 1/n?. Noting that /n < n for sufficiently large n, without
loss of generality, we assume that the original distribution y already satisfies Lq (u1, 7) < 1/n?. If
not, we can simply replace X" by X", NRE

To prove the upper bound, we consider the following (modified) add-/3 estimator:

M, 5) = <2

m, Vi, j € [K],

where 8 > 0 is a fixed constant.

We can compute the expected values of these counts as

E[N;] = n—lm—FZ Lx,=i] —m)

=(n-Dm+ 0(1/(n 9))

and
n—1
E[Ny] = (n — 1)miM, Z (L =ilx, =] — miMi;)
n—1
= (n—1)mM, Z [Mx,—i] — m) My

4.3 Analysis

For notational convenience, let us re-denote n/ :=n — 1.

By Lemmal[I7]
Pr(|N; — n'm;| > t) < O5(exp(0Os(—t%/n)))

and
Pr(|N;; — n'mM;;| > t) < Os(exp(O5(—t*/n))).

The second inequality follows from the fact that IV;; can be viewed as the sum of counts from the
following two Markov chains over [k] x [k] whose transition probabilities are greater than §2:

(XlaXQ)a (X3;X4), e

and
(X27X3)7 (X4’X5)7 csen

In other words, N; and V;; are highly concentrated around n’m; and n'm; M;;, respectively. Let A;
denote the event that N; = n'm;(1 £ 6/2) and N;; = n/m;M;;(1 £ 6/2), V5 € [k]. Let AY denote
the event that A; does not happen. Applying the union bound, we have

E[l4¢] = Pr(Af) < O5(exp(©5(—n))).
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Now consider

Di(p,g) =Y Q(i)f<§8>,

i€ [k]
the corresponding estimation risk of M5 over a particular sate ¢ € [k] can be decomposed as
E[D(M(i, ), M2 (i, )La) + BID(M(i, ), ML (i, )L ge].
Noting that

M, ) =

Nij +8 c B4
N; + kB n+ kB’
and M;; € [6, 1], we have

n+ 3

D Mia'aMJrE i7' <k- ’ tax
| Dy (M (i), My (i, )| < kB yeldk+n/B)

().

Hence, we can bound the second term as

E[Dy(M(i,-), M7 (i, )1 se] <

' -E[1
B ye[ﬂ?—ﬁ/g]f(y) [ Aic]

B 'ye[ﬁi);/ﬂ] f(y) - ©s(exp(©5(—n)))
1)

IN

where the last step follows from our assumption that f is sub-exponential.

By the definition of D and M5,

. N;
E{Df(M(Za)vM;g(l7>)]lA7] =E Z j_:_gf( zg+5>]lA
FE[K] i NiTkB

Let h(x) := f( = ), then A is thrice continuously differentiable around some neighborhood of
1+x

1
=h{——-1].
@ =n(3-1)
We apply Taylor expansion to & at point 0 and rewrite the expectation on the right-hand side as
Nz +6 Nz +6 MlN)+B( kMz)
E J 1y, =E J J 22 ) 1y,
2 N HS (Nwﬁ) . ZN+k5 < M (N; + kB) -

JELK] N;+kB
N+ p (Nij — M;;N;) + B(1 — kEM;;)
— E J h/ 0 J J J
jz[;] N; + kB [ © M;;(N; + kB)

point 0 and

I
+

(0) (N’Lj szN) + ﬁ( kMzg) ?
2 ( Mlj (Nl + kﬁ) >
M(0) ’(Nz‘j — M;;N;) + B(1 — kM) 3] N

+
6 M;;(N; + kB)

where by our definition of A;, we set



Now, we bound individual terms. Taking out 2’ (0), the first term evaluates to:

Nij + B (Nij — My;N;) + B(1 — kM;;)

E 14,
et N; + k8 M;;(N; + k) &
(Nij — My Ni) + B(1 — kM)
=E —n'mM;;) + (n'm Mg; + B8))——— 1y,
Z[ M)+l + o) = S
® Z — n'miMi;) Nig — n'mMi) + (W'miMij — My N;) + B(1 — kMy;) o
JE[k] Mij (Ni + k6)2
n (n'miMij + B) (Nij — Mi;N;) + B(1 — kM;;) 1.
Mij (NZ + kﬂ)Q K
_E Z —n'miMi;) (Nyg —n'miMy;) | (Nij — n'miMi;)(n'mi — Ni)
2 M, (NP (Vo + k5P
) (Nij — MiNyi) + B(1 — EM;;) | o(1)
+n'm; (N; + kB)? + "
- _E (Nz - n’m)Q E 1 (Nij - n'mMij)Q @
(N; + kp)? e M (Ni +kpB)? n
(N n' 7Tl —-n WzMzJ)2 0(1)
= -F— + K .
(n'm; + k)2 Z]\4 nm—i—kﬁ) + n

Taking out h”(0)/2, the second term evaluates to:

i

Nij+ B [ (Nij — My;N;) + B(1 — kM;;) >
B f+kﬁ< My (N + k) j>1

JE[K]
((Nij — My;Ny) + B(1 — kM;;))°
;[k](( 1] v z)+( 1] z"’ﬂ)) M%(N1+k5)3 A;
J
((Nij — My N;) + B(1 — kM)
=E > (N — M;;Ny) . _ T
ekl MZ(N; + kB)
((Nij — My Ny) + B(1 — kM;;))?
Mi; Ni T4,
_ A ((Nyj — Mi;N;) + B(1L — kMy)® | o(1)
=B Y (MiNi + ) MZ(N, § kB + =
JE[K] i
L (Nij = Mi;Ni)* (N — M;N;)B(1 — kM;5) | o(1)
B Y - Y MM o 5 (a4 ) N M NOS M)
S M (N; + k)2 eyt M2 (N; + kB) n
= 1 (Niyj —n'Mim; +n' Migm — Mi;N;)? + o(1)
e . 2
jek) W (Ni + kp) n
(N n'm;)? — W' Mym)?  o(1)
(N + kB)? ZM N+kﬁ) T
_ _pWNi—n'm)? 1 (Nij —n'miMi;)* | o(1)
J
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Finally, taking out M (0)/6, the last term can be bounded as

N + 8 — My N) + B(1 — kM) [°
D) . = 22| g,
%;] N; + kﬁ MU (N 1 kB) .
<4 I ! v
Z M3 (n m(1 — 5/2) + kzﬁ)?’ A
<4 Z 4IE |NZJ - Mi]"l’l,lﬂ'i‘ + 4M13]E |TI,/7TZ' - Ni‘s + ‘ﬁ(l - kMU)|3]l
= 3 (i (1 3 Ai
et Mij(” mi(1—0/2) + kpB)
o(1)
n )

where we have used the ineuqality (a + b)® < 4(|a|® + |b]?) twice.
By the definition of A(-), we have

h'(0) = —f'(0)
and

h”(O)
2

= f'(0) +
Hence, consolidating all the previous results,

=T m [y Y ey - man)? | 4 2

! 2
2(” T +k/8) jElk] 9 n
f"(0) 2 1 2 o(1)
=—- > | -EN; + ENS | + —.
I 2 2 . v
2(n'm; + kB) el M;, n
It remains to analyze EN? and ENZQJ
For EN?, we have
2
EN? =F (Z ]1Xt:,->
t<n
=E (Z ]lXt—i> + 21E< Z ]Ith—i]lth—z)
t<n t1<ta<n
= Pr(Xy=i)+2 Y Pr(X, =i)Pr(Xy, =i|X;, =)
t<n t1<ta<n
1 . .
=n'm +0(1) + 2f ;< (m + (’)(712)) Pr(X:, =i X, =1)
L1 Lo <

=n'm+O01)+2m Y Pr(Xy, =ilX;, =)
t1<to<n

=n'm+O0()+2m Y Y Pr(Xy, =i|Xy 1 =j)Pr(Xe, 41 = j| Xy, =)

t1<ta<n je[k]

=n'mi+O00)+2m > > Pr(Xe, =i|X;, 41 = )M

jE[k] t1<t2<n
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For EN ?J, we have

2
ENZ =E <Z ]lxt_i]lxt+1—j>

t<n
(Z Tx,= L]IX,+1 ) + 2E< Z ]lth:’iﬂXt1+1=j1Xt2:i]1Xt2+1=j>

t<n t1<ta<n

=M;; Y Pr(X;=i)+2 > Pr(Xy, =i)M;Pr(Xy, =i Xy, 11 = j)M;;
t<n t1<ta<n
1 . .
= i,jn/ﬂ-i + O(l) + 2 Z <7T7; + O(le)> PI‘(Xt2 = ’L|Xt1+1 = j)MZQJ
t1<t2<n

= M n'm + O(1) + 2m M7 > Pr(Xy, =il X4, 41 = ).

t1<ta<n

Thus, the desired quantity evaluates to

~EN? + Z IEN2 =y (n’m +O(1) +2mMy; Y Pr(Xy, =i Xy, 1 :j)>

JEK] JE[k] t1<ta<n

n'mi+O() +2m Y > Pr(Xy, = i[Xe, 11 = j)My;

jE[k] t1<ta<n

(k — 1)n'm; + O(k).

IN

The above inequality yields

_ ")
- 2(71’7Ti + kﬁ)Q

- (k=170
~ 2nm;

This completes our proof for ordinary f-divergences.

4.4 [L-divergence upper bound

Finally, we consider the Lo-divergence. Again, we assume that the sample sequence X™ ~ (M) and
1 satisfies

1
DL1 (7'('7 /,L) < ﬁ .
Instead of using an add-constant estimator, we use the following add-/N; /k estimator:

- k. . N;; ++N;/k . .
M;W/k<z,j) = Zif—k\/ﬁ»/’ Vi, j € [k] x [k].

Now, consider the expected loss for a particular state ¢ € [k].

e, (- Y - (g

B M;;N; — Ny 2 VN;(M;; — 1/k) ?

‘]§]E< ) *( )

(M N; — Nij) (v/Ni(M; l/k))
(N+\ﬁ)

+ 2IE
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We first show that the last term is negligible. Noting that

E Z (MijN; — Nij) (VN (M;; — 1/k)) _E Z (M;;N; — N;j)M;;

(Vi + V) J€lk] VN (VN +1)°
we can apply Taylor expansion to the function
1
@)= Zva+n

at point z = E[V;] and set z = N;:
f(x) = fB[N]) + f'(N;)(Ni = B[N;]),
where N/ € [E[N;], N;]. Hence,
3 ( )

oy (Ne+ V) (VN + 1)
=E Y (fE[N]) + f(N))(N;: — E[Ni])) (Mi;N; — Nij) M

JeE(k]

(M;;N; — N”)MU —3/N/ -1

=B + ; ———(N; — E[N;])(M;; N; — Nij) M5

%;] E[N:](VE[N] + 2(/N] + 1)3(N})3/?

1 —3\/JV— 1 5

SEJ%;]O< 7 ) A ) M;j\/E(N; — E[N,]2E(M;;N; — Nyj)

where the last step follows from Lemma|[T8] It remains to consider

(MZJN,L — N’L]>2 _ E(M”Nl — Nij)Q 0(1)

N; ++/N; (nm; + /nm;)? n

According to the previous derivations, for M, fj ENZ, we have

MZEN? = M7y Pr(X, =i)+2M] Y Pr(Xy, =i)Pr(Xy, = i X, =1).
t<n t1<ta<n
For ]EN%, we have

ENJ = M;; Y Pr(Xy=i)+2M} > Pr(Xy, =i)Pr(Xe, =i| Xy, 11 = j).

t<n t1<ta<n

For 2M;;IEN;; N;, we have

2M;;EN;; N; = 2M ;I <Z ]1Xt_¢]1xt+1_j> (Z ]le,—z)
t<n t<n
— 2Mij]E<Z Tx,—ilx,, - ) + 2MijE< > nxtl_iﬂxtﬁl_j]lxtz_i)

t<n t1<ta<n
+ 2MijE< Z ]lth—i]lXt1+1_j]lXt2_i>
to<ti<n
=2M2 Y Pr(Xp=i)+2M7 > Pr(Xy, =i[Xi, 41 = 5) Pr(Xy, =1)
t<n t1<ta<n
+2My > Pr(Xy, =ilXy, = i) Pr(Xy, =i).
ta<ti<n
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Therefore,

1
n

Finally,
EZ \/Ni(Mij—l/k') 2_ @4— _%E[Nl]—i_E[N’L] Zje[k] M’L2j
jelk] Ni +V/N; on (nm; + /nm;)? '

We have

2
EZ M_L VNi/k - 1_l i—i-@
T Y N+ VN k)nm = n

This completes our proof for the Ly-divergence.
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