
Supplementary Material for “Topkapi: Parallel and
Fast Sketches for Finding Top-K Frequent Elements”

Ankush Mandal
School of Computer Science

Georgia Institute of Technology
Atlanta, GA

ankush@gatech.edu

He Jiang
Department of Computer Science

Rice University
Houston, TX

cary.jiang@rice.edu

Anshumali Shrivastava
Department of Computer Science

Rice University
Houston, TX

anshumali@rice.edu

Vivek Sarkar
School of Computer Science

Georgia Institute of Technology
Atlanta, GA

vsarkar@gatech.edu

1 φ-Approximate Heavy Hitters

Given an approximation parameter ε, the approximate heavy hitters solution returns a set of words
(items) HH that satisfies the following two conditions with high probability (≥ 1 − δ) - a) All
words w having f > φ×N is present in the returned set HH and b) every word in the set HH is
guaranteed to have f > (φ− ε)N .

We collectively call the algorithms solving this approximation as “approximate algorithms”. Approxi-
mation breaks the linear complexity barrier and allows us to work with only logarithmic memory,
with an insignificant loss in accuracy.

2 Frequent Algorithm

In 1982, Misra and Gries [11] first proposed a generalization of Majority algorithm (finds the most
frequent element) to extend it for “top-K problem”. The same algorithm was rediscovered in 2002
by Demain et al. [8] and Karp et al. [10]. We refer to these algorithms by the general term “Frequent”
algorithm (FA). FA keeps (1/φ) number of counters for finding all words with f > φ×N . During
stream traversal, each new word is compared against the monitored set. If the element exists in the
monitored set, then its count is incremented. Else, if there is some non-allocated counter, i.e., counter
with count zero, then allocate the counter for the new item and set its count to 1. If all counters are
already allocated, decrement all counters. In this process, if the count of any counter becomes 0,
declare the counter as non-allocated and remove the associated word from the monitored set. As
observed by Bose et al. [5], setting the number of counter to (1/ε) for FA solves the approximate
frequency estimation problem. This algorithm is deterministic and achieves optimal theoretical
guarantees.

The algorithm requires maintaining a map from strings to integer of size (1/ε). We briefly highlight
three important aspects of this algorithm which will be used to contrast it with other algorithms

1. (1/ε) per Update The update cost of addition is (1/ε) in the worst case as we have to
decrement counters.

2. Reducible It was shown in [2] that maps used in FA is reducible, and hence can be easily
parallelized across multiple nodes.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

3. Map Overheads To identify the items exactly, we need a map of strings to counters.
Addition to maps creates additional overheads of resolving the hash collisions [12].

3 Count-Min Sketch

The Count-Min Sketch (CMS) algorithm proposed by Cormode and Muthukrishnan [7] is inspired by
widely popular data structure called Bloom Filter[4] which is used for estimating counts of items
over data stream while using high level of compression. The sketch is a two-dimensional array
M of l × b counters. Here we use l 2-universal hash functions h1, h2, ..., hl which map words to
{1, 2, ..., b}. These hash functions are pair-wise independent. For each occurrence of word w in data
stream, we increment the counter hi(w), in the ith row for ∀i : 1 ≤ i ≤ l. Any query of frequency
estimation f̂ of any word w returns min{hi(w)∀i : 1 ≤ i ≤ l}. [7] proved that the expected error in
frequency estimation is always an overestimate ≤

(
N
b

)
and using l hash functions reduces the error

exponentially with l. So, using l = O(log 1
δ) and b = O(1ε) ensures the error in frequency estimation

is ≤ εN with probability 1− δ.

Since the algorithm only needs lossy hash functions, it does not require a map and can work with
arrays. However, as the hash functions are not invertible, sketch-based methods do not preserve the
identity of words associated with specific counters. Thus, to identify heavy hitters, we need additional
data structures. There are two workarounds – 1) Dyadic interval trick [6] and 2) use of Heaps. The
dyadic interval trick requires a tree of individual count-sketches and the memory overhead of tree is
prohibitive in practice. The common workaround is to maintain a heap of top-K words along with
the sketch while reading the data stream. We will focus on this practical variant.

The sketch keeps track of the number of words processed so far (n). For each word w in the
data stream, we first update the sketch and then query the frequency estimation f̂ of that word. If
f̂ ≥ φ× n, we search the word in heap. If the word already exists in a heap, then we update its count.
Otherwise, we insert the word to the heap. If the heap is already full, we check if f̂ is greater than the
min count in a heap. If so, we do delete-min on the heap and insert the word.

Count-Min Sketch has the following key properties

1. max (log 1
δ , logK) per Update: The update cost only requires adding to log 1

δ counters.
If we need to update the heap, it requires additional logK operation. The total cost is
logarithmic and hence significantly smaller than (1/ε) in practice.

2. Not Reducible: Since only the identities of top-K items are stored in a heap, we cannot
merge top-K over two different streams to obtain the global top-K.

3. Heap Overheads: Although, the sketch only consists of arrays, and 2-universal hash
functions are cheap, to identify top-K items we have to use the heap data.

4 Topkapi: Theoretical Analysis

Before we argue about Topkapi, we review one useful known theoretical fact about CMS which we
will use in the proofs.

Theorem 4.1 For every w with frequency f and its estimate f̂ using CMS of size l = log[1δ] and
b = 1

ε , we have the following with probability 1− δ

f ≤ f̂CMS ≤ f + εN (1)

Note, we need l = log[1δ] to ensure the above for all N after union bound.

Using the theorem above, we can show the following for Topkapi.

Theorem 4.2 Topkapi with size l = log[2δ] and b = 1
ε solves the φ-approximate heavy hitter problem

provided (ε < φ) (Definition in section 1)

Proof: Follows from two lemmas below combined with the definition of approximate heavy hitters
instance.

2

Lemma 4.3 Topkapi with l = log[2δ] and b = 1
ε (ε < φ) misses to report w with f ≥ φ ×N with

probability at most δ2

Proof: w is missed if it is not in hi(w).LHH ∀i. For any i, hi(w).LHH 6= w implies that the
CMS counter for hi(w) given by Mi,hi(w).CMScounter ≥ 2f , otherwise local FA summary will
not miss w. Thus, w is not reported by any of the i rows implies hi(w).CMScounter ≥ 2f ∀i.
Since the CMS estimate is the minimum of all i rows, it means the estimate of CMS is at least 2f or
f̂CMS > f + f > f + εN which happens with probability at most δ2 from Theorem 4.1.

Lemma 4.4 Topkapi with l = log[2δ] and b = 1
ε reports w with f ≤ (φ− ε)×N with probability at

most δ2 .

Proof: We report w only when its estimate f̂CMS ≥ φN . Thus, if we report w and f ≤ (φ− ε)×N ,
it implies that f̂CMS ≥ φN ≥ f + εN . Thus, the error of CMS estimate exceeds εN which happens
with probability at most δ2 from Theorem 4.1.

The following is immediately clear from the description of the algorithm

Theorem 4.5 Topkapi data structure has update cost of log 2
δ .

Finally, we can easily show that Topkapi is reducible

Theorem 4.6 Topkapi data structure is reducible.

Proof: The counters in CMS is reducible, and furthermore, FA is reducible. The proof follows from
the fact that every cell of Topkapi (CMS counter and FA of size 1) is reducible.

5 Experimental Setup and Datasets

The implementations of our algorithm and competing algorithms are in C++ under a common
framework to ensure as much of an apples-to-apples comparison as possible when presenting relative
performance results. We would like to mention that we have used a heap size of 4K for CMS to allow
better accuracy since the heap containing top-K frequent words lacks the reducibility property. We
used MurmurHash3 [3] for hash functions in all of the implementations to maintain comparability
across different algorithms.
We compiled all codes using GCC 6.2.0 with the following flags: a) GNU C++11 extension, b) “O3”
optimization flag, and c) OpenMP flag because we used OpenMP for multi-threading inside a node.
We also used Boost 1.64.0 and OpenMPI 1.10.3 libraries for our code. To evaluate performance
scalability for multi-node distributed computing with multi-threaded execution on each node, we
ran many of our experiments on cluster of Intel R©Westmere nodes with 12 processor cores per
node running at 2.83 GHz. All of these nodes are connected via QDR InfiniBand (40 Gb/s) to
each other. We used 8 threads per node for all of these experiments. Further, to show performance
scalability in executions with large numbers of threads, we ran our experiments on a cluster of IBM
POWER7 R©(P750) processors with 32 cores per node running at 3.8 GHz. IBM POWER7 R©processor
supports 4-way SMT (simultaneous multi-threading) which let us launch up to 128 hardware threads
per node.

5.1 Performance Metrics

Here, we define the performance metrics used in our work and also in past work:
Precision - This metric “Precision” here represents the ratio of number of correct top-K frequent
words reported to the total number of words reported.
Recall - “Recall” is ratio of correct top-K frequent words reported to the value of K, K, regardless
of the total number of words reported in the denominator of the Precision ratio. (Note that both the
Precision and Recall ratios have the same numerator.)
Speedup - When we say performance “Speedup”, we refer to the following ratio:

execution time of referred algorithm

execution time of Topkapi

3

Number of Nodes
1 2 4 8 16

S
p
ee
d
u
p
(t
im

es
)

1x

5x

10x

15x

20x

Speedup over Spark
wordcount()+parallel sort()

16GB Data
128GB Data

(a) Performance comparison with Exact Method -
Spark wordcount() + parallel_sort() for
16GB and 128GB data. Number of threads per
node is 8. Used a cluster of Intel R©Westmere pro-
cessors with each node having 12 cores.

Data Size (GB)
16 32 64 128

S
p
ee
d
u
p
(t
im

es
)

0x

5x

10x

15x

20x

25x

Speedup over Spark
wordcount()+parallel sort() on 8 Nodes

(b) Performance comparison with Exact Method -
Spark wordcount() + parallel_sort() for
varying data size on 8 nodes. Number of threads
per node is 8. Used a cluster of Intel R©Westmere
processors with each node having 12 cores.

Figure 1: Performance results for comparison with Spark wordcount() + parallel_sort()

5.2 Datasets

We give a thorough performance evaluation on standard large-scale word counting benchmarks
evaluating all possible aspects of the algorithms. We used two sources to compose our data of
different sizes:
Gutenberg - This is text data from the Project Gutenberg [1] corpus. The data consists of text from
eBooks in the English language. The data used in our experiments of size up to 16GB are from this
source.
PUMA Dataset - We also used “Dataset2” of size 150GB under description “Wikipedia” from
PUMA Datasets [9]. We created data of size 32GB, 64GB, and 128GB from this data set to use in
our experiments.
The task is to identify the top-100 most frequent words in the data, i.e. we use K=100 for all the
experiments unless otherwise stated explicitly.

6 Performance Comparison with Exact Method

Here, we compare the performance of Topkapi against “exact methods” which give completely
accurate results at a cost of linear memory space and communication. Representative from this class
of algorithms, we select the popular Spark wordcount() + parallel_sort() method.

6.0.1 Scalability over Number of Nodes

We present strong scaling (fixed data size) performance results over varying number of nodes for two
different data sizes: a) 16GB (Gutenberg dataset) and b) 128GB (Puma dataset). Figure 1a gives the
overview of speedup variation of Topkapi over Spark wordcount() + parallel_sort() method for 1
to 16 nodes with each node running 8 threads. As expected, we see significant speedups across the
board. Topkapi gives 8x-20x speedup over Spark wordcount() + parallel_sort() method for both
the data sizes. In this case, the costly sorting step associated with the exact method incurs a huge
performance penalty.

6.0.2 Scalability over Data Size

To see the effects of data size on performance, we fix the number of nodes to 8 and vary the data size
from 16GB to 128GB. The resulting plot with speedup over Spark wordcount() + parallel_sort() is
given in Figure 1b which represent 10x-15x speedup over Spark wordcount() + parallel_sort().

References
[1] Project Gutenberg. https://www.gutenberg.org/, 2017.

4

[2] Pankaj K. Agarwal, Graham Cormode, Zengfeng Huang, Jeff Phillips, Zhewei Wei, and Ke Yi.
Mergeable summaries. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, PODS ’12, pages 23–34, New York, NY, USA, 2012. ACM.
ISBN 978-1-4503-1248-6. doi: 10.1145/2213556.2213562. URL http://doi.acm.org/10.
1145/2213556.2213562.

[3] Austin Appleby. MurmurHash3. https://github.com/aappleby/smhasher, 2016.

[4] Burton H Bloom. Space/time trade-offs in hash coding with allowable errors. Communications
of the ACM, 13(7):422–426, 1970.

[5] Prosenjit Bose, Evangelos Kranakis, Pat Morin, and Yihui Tang. Bounds for frequency estima-
tion of packet streams. In SIROCCO, pages 33–42, 2003.

[6] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams.
Automata, languages and programming, pages 784–784, 2002.

[7] Graham Cormode and Shan Muthukrishnan. An improved data stream summary: the count-min
sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.

[8] Erik D Demaine, Alejandro López-Ortiz, and J Ian Munro. Frequency estimation of internet
packet streams with limited space. In European Symposium on Algorithms, pages 348–360.
Springer, 2002.

[9] Faraz Ahmad. Puma Dataset. https://engineering.purdue.edu/ puma/datasets.htm.

[10] Richard M. Karp, Scott Shenker, and Christos H. Papadimitriou. A simple algorithm for finding
frequent elements in streams and bags. ACM Trans. Database Syst., 28(1):51–55, mar 2003.
ISSN 0362-5915. doi: 10.1145/762471.762473. URL http://doi.acm.org/10.1145/
762471.762473.

[11] Jayadev Misra and David Gries. Finding repeated elements. Science of computer programming,
2(2):143–152, 1982.

[12] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of Algorithms, 51(2):
122–144, 2004.

5

http://doi.acm.org/10.1145/2213556.2213562
http://doi.acm.org/10.1145/2213556.2213562
http://doi.acm.org/10.1145/762471.762473
http://doi.acm.org/10.1145/762471.762473

	-Approximate Heavy Hitters
	Frequent Algorithm
	Count-Min Sketch
	Topkapi: Theoretical Analysis
	Experimental Setup and Datasets
	Performance Metrics
	Datasets

	Performance Comparison with Exact Method
	Scalability over Number of Nodes
	Scalability over Data Size

