
Online Supplement for
Sketching Method for Large Scale Combinatorial Inference

In this appendix, we review the quantile estimation for graphical models, introduce a few important
lemmas in property testing literatures, then provide detailed proofs of our main theorems in our fast
tests of connectivity, bipartitieness, K-colorability, and max-cliqueness, and finally discuss additional
simulation studies.

A Quantile Estimation for Graphical Models

It is worthy mentioning that our large-scale combinatorial inference does not reply on that Θ̂ is the
node-wise regression estimator. Let Σ̂ be the sample covariance matrix. In general, we only require
the estimator satisfies the following generic conditions:

‖Θ̂−Θ‖max ≤ C
√

log d/n, ‖Θ̂−Θ‖1 ≤ Cs
√

log d/n, ‖Σ̂Θ̂− Id‖max ≤ C
√

log d/n. (A.1)

These generic conditions are satisfied by a wide list of estimators, including the aforementioned
node-wise regression estimator [21], the CLIME estimator [5], the graphical lasso estimator [11],
and the Gaussian copula graphical model [15]. Based on this generic estimator Θ̂, we follow [24] to
construct the (1− α) quantile estimator c(α,E) of the statistic TE := max(j,k)∈E

√
n(Θ̂d

jk −Θjk).
We use the Gaussian multiplier bootstrap procedure to construct

TB := sup
(j,k)∈E

1√
n

n∑
i=1

Θ̂>j (XiX
>
i Θ̂k − ek)ψi

where ψi, i = 1, . . . , n are i.i.d. standard normal random variables. Finally, we estimate the
conditional quantile of TE by

c(α,E) = inf
{
t ∈ R|P

(
|TB | > t|{Xi}ni=1

)
≤ α

}
(A.2)

B Auxiliary lemmas

The following lemma quantifies the number of connected components, i.e., the maximal connected
subgraphs, of a graph when its whole graph is not connected. This lemma will be used in the type-I
error analysis of our fast connectivity test.

Lemma B.1. [Corollary 3.3, [13]] If a graph G is ε-far from the set of d-vertex connected graphs of
bounded degree s ≥ 2, then G has at least εds8 connected components each containing less than 8

εs
vertices.

Before stating lemmas for property tests of K-colorability and max-clique, we introduce a new
distance function for them [12], which is parallel to (2.3) for the connectivity test.

dist(G1, G2) :=
|(E(G1)\E(G2)) ∪ (E(G2)\E(G1))|

d× d
. (B.1)

The distance definitions of (2.3) and (B.1) are suitable for different property tests. For instance,
(2.3) was used in [13] for the connectivity test, and on the other hand, (B.1) was employed in [12]
for the K-colorable test and max clique test. We follow this convention in this paper. The next
lemma shows that the K-colorability testing algorithm proposed in [12] is a property testing algorithm
with well-controlled errors. Their K-colorability testing algorithm first uniformly chooses a set of
O(K2 log(K/δ)/ε3) vertices, then tests if the reduced graph is K-colorable or not.

Lemma B.2. [Theorem 6.2.2, [12]] If a graph G is K-colorable, then it is accepted by above K-
colorability testing algorithm with probability 1. Moreover, every graph G which is ε-far from the
class of K-colorable graphs is rejected by the K-colorability testing algorithm with probability at
least 1− δ.

The next lemma shows the property of sampling vertices in the max-clique test.
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Lemma B.3. [Corollary 7.2, [12]] If a graph G has cliques of density at least ρ, then with probability
at least 1− δ, the reduced graph from an uniformly chosen set of poly(ε−1 log(1/δ)) vertices has a
clique of density at least ρ − ε/2. Moreover, if a graph G is ε-far from the class of graphs having
cliques of density at least ρ, then with probability at most δ, the reduced graph from an uniformly
chosen set of poly(ε−1 log(1/δ)) vertices has a clique of density at least ρ− ε/2.

C Proof of Theorem 3.1

We compute the Type I and Type II errors of the proposed algorithm. We show that as n→∞,

Type-I Error: P(Algorithm outputs REJECT|H0) ≤ α,
Type-II Error: P(Algorithm outputs ACCEPT|H1) = 0.

Based on Lemma B.1, if G is ε-far from the class of connected graphs, then the probability that a
uniformly selected vertex belongs to a connected component which contains less than 8/(εs) vertices,
is at least εds/8d = εs

8 . Therefore, if we uniformly select m vertices, the probability that no selected
vertex belongs to a component of size less than εs

8 is bounded above by(
1− εs

8

)m
< exp(−εsm

8
).

Therefore, given a required value β for this upper bound, we can compute the needed size for random
sampling, that is,

m ≥ 8 log(β)

εs
.

Type-I Error: In order to ensure that Type-I error is bounded by a pre-specified constant α, we need
to control

P(Algorithm outputs ACCEPT|H0) ≥ 1− α.
According to Lemma B.1, we only need to ensure

1−
[
1− 2iεs

16 log(8/(εs))

]mi

≥ 1− α.

According to the inequality (1− a)x < exp(−ax) for any 0 < a < 1 and x ∈ R, it is sufficiently to
require

mi ≥
16 ln(1/α) log(8/(εs))

2iεs
,

Note that the mi used in the algorithm corresponds to the case with α = 1/3. In practice, it can be
adjusted accordingly for a pre-specified α.

Type-II Error: The Type-II error of the proposed algorithm is always 0. This holds because the
variable selection consistency supp(Θ̂j) = supp(Θ∗j ) for each j = 1, . . . , d holds almost surely
under the minimal signal assumption. This completes the proof of Theorem 3.1.

D Proof of Theorem 3.2

We compute the Type I error and Power of the proposed algorithm separately. We show that, as
n→∞,

Type-I Error: P(Algorithm outputs REJECT|H0) ≤ α,
Power: P(Algorithm outputs REJECT|H1) ≥ (1− α1)(1− δ).

Type-I Error: Denote the set of graphs under H0 as H0 := {G : G is K-colorable}. In order to
ensure that Type-I error is bounded by α1, we need to control

sup
G∗∈H0

P(Algorithm outputs REJECT) ≤ α1.

By the construction of the algorithm, it is sufficient to prove that

sup
G∗∈H0

P(GS is not bipartite/K-colorable) ≤ α1.
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where GS = (S, ẼS) as defined in the algorithm.

Denote the true edge set induced by the vertex S as E∗S and the corresponding true graph as
G∗S := (S, E∗S). We next show that

lim
n→∞

P
(
ẼS ⊂ E∗S

)
≥ 1− α1. (D.1)

For the edge set ES defined based on sampled vertices in Step 4 of the algorithm, if we let E = ES
in Lemma 2.1, we have, uniformly over Θ ∈M(s),

lim
n→∞

P
(

max
(i,j)∈ES

√
n(Θ̂d

i,j −Θi,j) > c(α1, ES)

)
≤ α1.

Denote the true null set as En. Therefore, the reduced edge set ẼS :={
(j, k) ∈ ES |

√
n|Θ̂d

j,k| > c(α,ES)
}

defined in Step 4 of the algorithm satisfies, if (i, j) ∈ ES∪En,

then Θi,j = 0, and max(i,j)∈ES
√
n|Θ̂d

i,j | ≤ c(α,ES), and hence (i, j) /∈ ẼS . That is, as n→∞,
for any edge (i, j) ∈ ES , if (i, j) /∈ E∗S , then (i, j) /∈ ẼS with probability at least 1− α1, uniformly
over Θ ∈M(s). This validates (D.1).

In addition, by the monotonic property of the bipartiteness and K-colorability, we have if a graph
G∗ = (V,E∗) is bipartite/K-colorable, then its subgraph G∗S = (S, E∗S) must be a bipartite/K-
colorable graph. Therefore,

sup
G∗∈H0

P(G∗S is not bipartite/K-colorable) = 0. (D.2)

Combining (D.1) and (D.2) will lead to the desirable results. In particular, we have, as n→∞,

sup
G∗∈H0

P(GS is not bipartite/K-colorable)

= sup
G∗∈H0

{
P(GS is not bipartite/K-colorable|ẼS ⊂ E∗S) ∗ P(ẼS ⊂ E∗S)

+P(GS is not bipartite/K-colorable|ẼS 6⊂ E∗S) ∗ P(ẼS 6⊂ E∗S)
}

≤ sup
G∗∈H0

P(GS is not bipartite/K-colorable|ẼS ⊂ E∗S) + sup
G∗∈H0

P(ẼS 6⊂ E∗S)

≤ 0 + α1 ≤ α1,

where the second inequality is due to the two arguments shown in (D.1) and (D.2). This upper
bound α1 indicates that the Type-I error is only due to the estimation error from Lemma 2.1 and there
will be no loss in the Type-I error due to the sampling procedure.

Power: In order to derive the lower bound of Power, it is equivalent to show

P(GS is not bipartite/K-colorable|H1) ≥ (1− δ)(1− α1).

Denote the true edge set induced by the vertex S as E∗S and the corresponding true graph as
G∗S := (S, E∗S). According to Lemma 2.1 and the minimal signal condition on βmin, we have

lim
n→∞

P
(
ẼS = E∗S

)
≥ 1− α1. (D.3)

Moreover, Lemma B.2 implies that if algorithm accepts G∗S with probability at least δ, then the true
original graph G∗ must be ε-far from to the set of K-colorable graph GK , that is,

P(Algorithm rejects G∗S |H1) ≥ 1− δ. (D.4)

Therefore, as n→∞, we have

P(GS is not bipartite/K-colorable|H1) =

= P(GS is not bipartite/K-colorable|H1, GS = G∗S)P(GS = G∗S)

+P(GS is not bipartite/K-colorable|H1, GS 6= G∗S)P(GS 6= G∗S)

≥ P(GS is not bipartite/K-colorable|H1, GS = G∗S)P(GS = G∗S)

≥ P(Algorithm rejects G∗S |H1)P(GS = G∗S)

≥ (1− δ)(1− α1),
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where the second inequality is due to the arguments shown in (D.3) and (D.4). This lower bound of
Power indicates the power loss is due to two resources: the estimation procedure and the sampling
procedure. The partial power loss due to sampling procedure indicates a tradeoff in the computational
cost and the inferential efficiency. This finishes the proof of Theorem 3.2.

E Proof of Theorem 3.3

We compute the Type I error and Power of the proposed algorithm separately. We show that, as
n→∞,

Type-I Error: P(Algorithm outputs REJECT|H0) ≤ α,
Power: P(Algorithm outputs REJECT|H1) ≥ (1− α1)(1− δ).

Type-I Error: Denote the set of graphs under H0 as H0 := {G : dist(G,Gρ) ≥ ε}. In order to
ensure that Type-I error is upper bounded by a pre-specified constant α1, by the construction of the
algorithm, it is equivalent to show that

sup
G∗∈H0

P(GS has density ≥ ρ− ε/2) ≤ α1.

For the edge set ES defined based on sampled vertices in Step 4 of the algorithm, if we let E = ES
in Lemma 2.1, we have, uniformly over Θ ∈M(s),

lim
n→∞

P
(

max
(i,j)∈ES

√
n(Θ̂d

i,j −Θi,j) > c(α1, ES)

)
≤ α1.

By a similar argument as in (D.1) for the K-colorable case, we have, as n → ∞, for any edge
(i, j) ∈ ES , if (i, j) /∈ E∗S , then (i, j) /∈ ẼS with probability at least 1 − α1, uniformly over
Θ ∈M(s). Therefore, we also have,

lim
n→∞

P
(
ẼS ⊂ E∗S

)
≥ 1− α1. (E.1)

Moreover, by the monotonic property of the max clique, for any ρ > 0, if a graph GS = (S, ẼS)
is has a max clique density ρ, then we must have its superset G∗S = (S, E∗S) also has a max clique
density at lest ρ. Therefore,

P(G∗S has density ≥ ρ− ε/2) ≥ P(GS has density ≥ ρ− ε/2). (E.2)

Moreover, Lemma B.3 implies that, if dist(G,Gρ) ≥ ε, then

P(G∗S has density ≥ ρ− ε/2) < δ. (E.3)

Therefore, we have, as n→∞,

sup
G∗∈H0

P(GS has density ≥ ρ− ε/2)

≤ sup
G∗∈H0

P(GS has density ≥ ρ− ε/2|ẼS ⊂ E∗S)P(ẼS ⊂ E∗S) + sup
G∗∈H0

P(ẼS 6⊂ E∗S)

≤ sup
G∗∈H0

P(G∗S has density ≥ ρ− ε/2) + sup
G∗∈H0

P(ẼS 6⊂ E∗S)

≤ δ + α1,

where the second inequality is due to (E.2) and the last inequality is due to the arguments in (E.3)
and (E.1). This indicates that the Type-I error is due to the addition of two resources: the estimation
procedure (α1) and the sampling procedure (δ).

Power: In order to find the lower bound of Power, we need to control

P(Algorithm outputs REJECT|H1).

According to Lemma 2.1 and the minimal signal condition on βmin, we have

lim
n→∞

P
(
ẼS = E∗S

)
≥ 1− α1. (E.4)
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Moreover, Lemma B.3 implies that, if G∗ ∈ Gρ, then its population-version subgraph G∗S correspond-
ing to the sample-version GS in the algorithm, satisfies,

P(G∗S has density ≥ ρ− ε/2) < α1. (E.5)

Note that, as n→∞, we have

P(GS has density ≥ ρ− ε/2|H1) = P(GS has density ≥ ρ− ε/2|H1, GS = G∗S)P(GS = G∗S)

+P(GS has density ≥ ρ− ε/2|H1, GS 6= G∗S)P(GS 6= G∗S)

≥ P(G∗S has density ≥ ρ− ε/2|H1)P(GS = G∗S)

≥ (1− δ)(1− α1),

where the second inequality is due to (E.4) and (E.5). This completes the proof of Theorem 3.3.

F Additional Simulations

In this subsection, we consider the simulations for the K-colorability test.
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Figure 3: Left: A 4-colorable Grotzsch graph. Right: a graph with 3 blocks of Grotzsch graph.

Settings: We investigate the type-I and type-II errors of our test via a famous 4-colorable graph
called “Grotzsch graph". According to Grotzsch’s theorem, every triangle-free planar graph can be
colored with only three colors. The Grotzsch graph is constructed to show that the requirement of
planarity is necessary in Grotzsch’s theorem. The Groetzsch graph is a triangle-free graph with 11
vertices and 20 edges and is 4-colorable but not 3-colorable. The left plot of Figure 3 shows the
Groetzsch graph as well as one coloring choice of 4 colors.

Denote the adjacency matrix of the Groetzsch graph as B ∈ R11×11 with its (i, j)-th entry 1 if node
i and node j are connected in the graph, and 0 otherwise. We construct the block diagonal matrix
Ad ∈ Rd×d as the block diagonal matrix with each block as B. For example,

A33 =

(
B 0 0
0 B 0
0 0 B

)
,

and the graph of A33 is shown in the right plot of Figure 3. For each of 100 repetitions, we use
the precision matrix Θ∗(ρ) = 1d +ρAd and generate i.i.d. samples xi ∼ N(0, (Θ∗(ρ))−1) for
i = 1, . . . , n. We consider various settings with

n ∈ {400, 800}, d = 33, ρ ∈ {0.25, 0.3, 0.35}.

Methods: We compare our algorithm, denoted as Ours, with the Direct_node method which esti-
mates the whole precision matrix via nodewise regression first and then test the connectivity on the
estimated graphs. As far as we know, no other algorithms are available to handle such problem.

Result 1 (Computational Costs): Table 2 summarizes the computational time of our proposed
method as well as the Direct_node method. We report both the average time and the maximal time
over 100 replicates. Clearly, our method takes much less time than the Direct_node method across
all scenarios. In the worse case scenario (maximal time), the Direct_node method takes about 3398
seconds to compute one replicate while our method only takes 5 seconds when ρ = 0.3 and n = 400.
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This indicates the superior computational improvements in this exponential-time example. It is
worthy noting that the Direct_node method is not able to output the results within reasonable time
when d = 55 and hence examples with larger d is not included in this K-colorable testing. In one
replicate of d = 55, it takes 37854.2 seconds (10.5 hours) for the Direct_node to compute its power.
On the other hand, our method takes on average 89 seconds to compute one replicate.

Table 2: Averaged computational time (in seconds) and maximal computational time (in seconds)
among 100 replications of two methods for computing the Type-I error in the K-colorable test.

n Criterion Methods ρ = 0.25 ρ = 0.3 ρ = 0.35
Ours 3.05 2.93 2.69

400 Average time Direct_node 11.95 51.52 40.38
Ours 4.82 5.05 4.83

Maximal time Direct_node 151.02 3398.24 1855.14
Ours 7.89 6.54 8.87

800 Average time Direct_node 20.28 29.31 114.18
Ours 16.07 10.82 21.01

Maximal time Direct_node 324.84 663.07 2731.28

Result 2 (Type-I Error and Power): Table 3 report the Type-I error as well as the Power analysis
of all methods in various scenarios of the K-colorable test.

First, our type-I error is always 0 while that of the Direct_node method is very large (at least 0.7).
As we discussed in the connectivity testing example, the Direct_node method is very conservative
in variable selection and hence it tends to include many noisy edges. Therefore, it always tends to
reject the null K-colorable hypothesis. Hence, the Direct_node method will have a large power. Our
power is low when the signal strength is small. However, our power increases to 1 when ρ increases
to 0.35 or sample size increases to 800. Our power loss is expected and is due to both estimation
procedure and the sampling procedure as we show in the theorem. The partial power loss due to
sampling procedure indicates a tradeoff in the computational cost and the inferential efficiency.

Second, we illustrate the power of our method in the example of n = 400 with varying ratio of adding
edges. The Groetzsch graph B is known to be 4-colorable but not 3-colorable. In order to investigate
the behavior of our method when distance ε in the alternative hypothesis changes, we randomly add
some percentages (denoted as η) of edges to B to make it even far away from a 3-colorable graph.
Table 4 shows an interesting interaction of the signal level ρ and η. For a fixed η, our power increases
as ρ increases, and for a fixed ρ, our power also increases as η increases.

Table 3: Power and Size of two methods in the K-colorable test.

n Criterion Methods ρ = 0.25 ρ = 0.3 ρ = 0.35
Ours 0 0 0

400 Type-I Error Direct_node 0.93 0.85 0.73
Ours 0 0.42 1

400 Power Direct_node 1 1 1
Ours 0 0 0

800 Type-I Error Direct_node 0.9 0.82 0.7
Ours 0.98 1 1

800 Power Direct_node 1 1 1

Table 4: Power of our method in the K-colorable test with n = 400 and varying ratios of adding
edges. We randomly add some percentages (denoted as η) of edges to the Groetzsch graph B to make
it even far away from a 3-colorable graph.

Criterion ρ η = 2% η = 3% η = 4%
0.25 0.03 0.16 0.28

Power 0.3 0.68 0.75 0.91
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