
A Analysis of Algorithm 1

Overview of analysis Here, we give a high-level overview of the analysis of Algorithm 1. We
defer some technical lemmas to Appendix A.3. We refer to K

f

as the set of “feasible iterations”
where we step according to the objective; that is,

K
f

=

n

k 2 [T ] : ˆR
Sk(wk

)  4⌧/5
o

(8)

Fairness analysis We begin by showing that the hypothesis w̄ that Algorithm 1 returns satisfies
metric multifairness.
Lemma 6. Suppose for all S 2 C, the residual oracle ˆR

S

has tolerance ⌧/5. Then, w̄ is (C, d, ⌧)-
metric multifair.

Proof. We choose our final hypothesis w̄ to be the weighted average of the feasible iterates. Note
that the update rules for K

f

and W imply that w̄ is a convex combination of hypotheses where no
constraint appears significantly violated, w̄ =

1

|Kf | ·
P

k2Kf
w

k

. By convexity of R
S

we have the
following inequality for all S 2 C.
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Further, for all S 2 C and all k 2 [T ], by the assumed tolerance of R
S

, we know that
�

�

�

R
S

(w
k

)� ˆR
S

(w
k

)

�

�

�

 ⌧/5.

Given that for all k 2 K
f

, ˆR
Sk(wk

)  4⌧/5, then applying the triangle inequality, we conclude that
for each comparison S 2 C,

E
(x,x

0
)⇠S

⇥ |f
w̄

(x)� f
w̄

(x0
)|� d(x, x0

)

⇤

= R
S

(w̄)  ⌧.

Hence, w̄ is (C, d, ⌧)-metric multifair.

Utility and runtime analysis We analyze the utility of Algorithm 1 using a duality argument. For
notational convenience, denote L(w) = E

xi⇠D[L(fw(xi

), y
i

)]. In addition to the assumptions in the
main body, throughout, we assume the following bounds on the subgradients for all w 2 F .

8S 2 C : krR
S

(w)k1  m krL(w)k1  g (10)
Assuming an `1 bound implies a bound on the corresponding second moments of the stochastic
subgradients; specifically, we use the notation krR

S

(w)k2
2

M2

= m2n and krL(w)k2
2

 G2

=

g2n.

Consider the Lagrangian of the program L : F ⇥ R|C|
+

! R.

L(w,�) = L(w) +
X

S2C
�
S

R
S

(w) (11)

Let w⇤ 2 F be an optimal feasible hypothesis; that is, w⇤ is a (C, d, 0)-metric multifair hypothesis
such that L(w⇤)  L(w) for all other (C, d, 0)-metric multifair hypotheses w 2 F .7 By its optimality
and feasibility, we know that w⇤ achieves objective value L(w⇤) = inf

w2F

sup

�2R|C|
+

L(w,�).
Recall, the dual objective is given as D(�) = inf

w2F L(w,�). Weak duality tells us that the dual
objective value is upper bounded by the primal objective value.

sup

�2R|C|
+

D(�)  L(w⇤) (12)

As there is a feasible point and the convex constraints induce a polytope, Slater’s condition is satisfied
and strong duality holds. To analyze the utility of w̄, we choose a setting of dual multipliers ¯� 2 R|C|

+

such that the duality gap �(w,�) = L(w)�D(�) is bounded (with high probability over the random
choice of stochastic subgradients). Exhibiting such a setting of ¯� demonstrates the near optimality of
w̄.

7Such a w⇤ exists, as w = 0 2 Rn always trivially satisfies all the fairness constraints.
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Lemma 7. Let ⌧, � > 0 and F = [�B,B]

n. After running Algorithm 1 for T > 30

2
M

2
B

2
n log(n/�)

⌧

2

iterations, then with probability at least 1� 8� (over the stochastic subgradients)

L(w̄)  L(w⇤) +
3G

5M
⌧.

We give the full proof of Lemma 7 in Appendix A.3.

A.1 Answering residual queries

Next, we describe how to answer residual queries R
S

(w) efficiently, in terms of time and samples.
Lemma 8. For ⌧, � > 0, for a �-large collection of comparisons C ✓ 2

X⇥X , with probability
1� �, given access to n metric samples, every residual query R

S

(w) can be answered correctly with
tolerance ⌧ provided

n � ˜

⌦

✓

log(|C| /�)
� · ⌧2

◆

.

Each residual query R
S

(w) can be answered after ˜O
⇣

log(T ·|C|/�)
�·⌧2

⌘

evaluations of the current
hypothesis.

Proof. Recall the definition of R
S

(w).

R
S

(w) = E
(x,x

0
)⇠S

⇥ |f
w

(x)� f
w

(x0
)| ⇤� E

(x,x

0
)⇠S

⇥

d(x, x0
)

⇤

Proposition 9 shows that E
S

[d(x, x0
)] can be estimated for all S 2 C from a small number of metric

samples. The proof follows a standard Chernoff plus union bound argument. For completeness, we
give a full proof next. Thus, Lemma 8 follows by showing that at each iteration E

S

[|f
w

(x)� f
w

(x0
)|]

can be estimated from a small number of evaluations of the current hypothesis f
w

.

We can estimate the expected value of the deviation on f over S 2 C with a small set of unlabeled
samples from X ⇥X ; we will evaluate the hypothesis f for each of these samples. Using an identical
argument as in the case of the expected metric value, we can prove the following bound on how many
comparisons we need to make, which shows the lemma.

Proposition 9. Suppose C is �-large. Then with probability at least 1��, for all S 2 C, the empirical
estimate for E

S

[|f(x)� f(x0
)|] of n samples (x, x0

) ⇠M deviates from the true expected value by
at most ⌧ provided

n � ˜

⌦

✓

B2

log(|C| /�)
� · ⌧2

◆

.

Here, we show that a small number of samples from the metric suffices to estimate the expected
metric distance over all S 2 C. Suppose C is �-large. Then with probability at least 1 � �, for all
S 2 C, the empirical estimates for E

S

[d(x
i

, x
j

)] of n metric samples deviate from their true expected
value by at most ⌧ provided

n � ˜

⌦

✓

log(|C| /�)
� · ⌧2

◆

.

Proof. Let (x
i

, x
j

,�
ij

) represent a random metric sample. Suppose for each S 2 C, we obtain m
such samples where (x

i

, x
j

) ⇠ S, and let d(S) =
P

ij2XS
�

ij

be the empirical average over the
sample. Then, by Hoeffding’s inequality, we know

Pr



�

�

�

�

d(S)� E
(xi,xj)⇠S

[d(x
i

, x
j

)]

�

�

�

�

> ⌧

�

 2e�2s⌧

2

.

If m � ⌦

⇣

log(|C|/�)
⌧

2

⌘

, then the probability that the estimate d(S) is not within ⌧ of its true value is

less than �

|C| . Union bounding over C, the probability that every estimate has tolerance ⌧ will be at
least 1� �.
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Because C is �-large, for every S 2 C, the probability a random metric sample (x
i

, x
j

) ⇠M is in S

is at least �. If we take log(m)

�

samples, then with probability at least 1� 1/m, one of the samples
will be in S. Thus, to guarantee d(S) has tolerance ⌧ for all S 2 C with probability 1� �,

s =
m log(m)

�
=

˜

⌦

✓

log(|C| /�)
� · ⌧2

◆

samples suffice.

A.2 Answering subgradient queries

Next, we argue that the subgradient oracles can be implemented efficiently without accessing any
metric samples. First, suppose we want to take a step according to R

S

(w); while R
S

(w) is not
differentiable, we can compute a legal subgradient defined by partial subderivatives given as follows.

@R
S

(w)

@w
l

= E
(x,x

0
)⇠S

[sgn(hw, x� x0i) · (x
l

� x0
l

)] (13)

The subgradient does not depend on d, so no samples from the metric are necessary. Further,
Algorithm 1 only assumes access to stochastic subgradient oracle with bounded entries. If we
sample a single (x

i

, x
j

) ⇠M, then sgn(hw, x
i

� x
j

i) · (x
il

� x
jl

) will be an unbiased estimate of a
subgradient of R

S

(w); we claim, the entries will also be bounded. In particular, assuming kx
i

k
1

 1

implies each partial is bounded by 2, so that we can take M2

= 4n.

A.3 Utility analysis of Algorithm 1

In this appendix, we give a full proof of Lemma 7. We defer the proof of certain technical lemmas to
Appendix A.4 for the sake of presentation.

Proof of Lemma 7 Let ⌧, � > 0 and F = {w 2 Rn

: kwk1  B}. After running Algorithm 1 for
T > 30

2
M

2
B

2
n log(n/�)

⌧

2 iterations, then

L(w̄)  L(w⇤) +
3G

5M
⌧

with probability at least 1� 8� over the randomness of the algorithm.

Proof. As before, we refer to K
f

✓ [T ] as the set of feasible iterations, where we step according to
the objective, and [T ] \K

f

as the set of infeasible iterations, where we step according to the violated
constraints. Recall, we denote the set of subgradients of a function L (or R) at w by @L(w) and
denote by rL(w) a stochastic subgradient, where E[rL(w)��w] 2 @L(w).

When we do not step according to the objective, we step according to the subgradient of some
violated comparison constraint. In fact, we show that stepping according to any convex combination
of such subgradients suffices to guarantee progress in the duality gap. In the case wher t 62 K

f

,
we assume that we can find some convex combination

P

S2C ↵k,S

ˆR
S

(w
k

) > 4⌧/5 where for all
S 2 C, ↵

k,S

2 �|C|�1

. We show that if we step according to the corresponding combination of the
subgradients of R

S

(w
k

), we can bound the duality gap. Specifically, for k 62 K
f

, let the algorithm’s
step be given by

X

S2C
↵
k,S

rR
S

(w
k

)

where for each S 2 C, we have E
⇥rR

S

(w
k

)

�

�w
k

⇤ 2 @R
S

(w
k

). Let ⌘
L

=

⌧

GM

and ⌘
R

=

⌧

M

2 denote
the step size for the objective and residual steps, respectively. Then, consider the following choice of
dual multipliers for each S 2 C.

¯�
S

=

⌘
R

⌘
L

|K
f

|
X

k 62Kf

↵
k,S

(14)
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Expanding the definition of w̄ and applying convexity, we can bound the duality gap as follows

�(w̄, ¯�) = L(w̄)�D(

¯�) (15)

 1
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|
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)
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(
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X

S2C
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S
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(w)

)

(16)

= sup
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1

|K
f

|
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@

X
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L(w
k

)

1

A� L(w)�
X

S2C

¯�
S

R
S

(w)

9

=

;

(17)

= sup

w2F

8

<

:

1

⌘
L

|K
f

|

0

@⌘
L

X

k2Kf

(L(w
k

)� L(w))� ⌘
R

X

k 62Kf

X

S2C
↵
k,S

R
S

(w)

1

A

9

=

;

(18)

where (16) follows from expanding w̄ then applying convexity of L and the definition of d(¯�) and
(18) follows by our choice of ¯�

S

for each S 2 C.

With the duality gap expanded into one sum over the feasible iterates and one sum over the infeasible
iterates, we can analyze these iterates separately. The following lemmas show how to track the
contribution of each term to the duality gap in terms of a potential function u

k

defined as

u
k

(w) =
1

2

kw � w
k

k2 .

For notational convenience, for each k 2 K
f

, let e(w
k

) = E[rL(w
k

)

�

�w
k

]�rL(w
k

) be the noise
in the subgradient computation.

Lemma 10. For all w 2 F and for all k 2 K
f

,

⌘
L

· (L(w
k

)� L(w))  u
k

(w)� u
k+1

(w) +
⌧2

2M2

+ ⌘
L

he(w
k

), w
k

� wi.

Again, for notational convenience, for each k 2 [T ] \ K
f

, let e(w
k

) =

P

S2C ↵k,S

�

E[rR
S

(w
k

)

�

�w
k

]�rR
S

(w
k

)

�

be the noise in the subgradient computation.

Lemma 11. For all w 2 F and for all k 2 [T ] \K
f

,

�⌘
R

X

S2C
↵
k,S

R
S

(w)  u
k

(w)� u
k+1

(w)� ⌧2

10M2

+ ⌘
R

he(w
k

), w
k

� wi.

We defer the proofs of Lemmas 10 and 11 to Appendix A.4. Assuming Lemmas 10 and 11, we bound
the duality gap as follows.
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⌘
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⇤

+ ⌘
L

X

k2Kf

he(w
k

), w
k

� wi

+ ⌘
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2M2
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=

;
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⌘
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u
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L

X

k2Kf
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R
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=

;
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(⇤)

+
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2M
+
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10M
| {z }
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by rearranging. Noting that (⇤⇤) can be bounded by 3G

5M

⌧ , it remains to bound (⇤). We show that for
a sufficiently large T , then (⇤) cannot be positive.

Consider the terms in the supremum over w 2 F . Note that we can upper bound sup {u
0

(w)} 
2B2n. Additionally, we upper bound the error incurred due to the objective subgradient noise with
the following lemma, which we prove in Appendix A.4.

Lemma 12. With probability at least 1� 4�, the contribution of the noisy subgradient computation
to the duality gap can be bounded as follows.

sup

w2F

8

<

:

⌘
L

X

k2Kf

he(w
k

), w
k

� wi+ ⌘
R

X

k 62Kf

he(w
k

), w
k

� wi
9

=

;

 ⌧B

M

p

8Tn log(n/�) (21)

Thus, we can bound (⇤) as follows.

(⇤)  2B2n+

⌧B

M

p

8Tn log(n/�)� ⌧2

10M2

T

Assuming the lemma and that T > 30

2
M

2
B

2
n log(n/�)

⌧

2 , then, we can bound (⇤) by splitting the
negative term involving T to balance both positive terms.

(⇤) 
✓

2B2n� ⌧2

10M2

· 20T
30

2

◆

+

✓

⌧B

M

p

8n log(n/�) ·
p
T � ⌧2

10M2

· (30
2 � 20)T

30

2

◆

(22)


✓

2B2n� ⌧2

10M2

20M2B2n log(n/�)

⌧2

◆

+

 

⌧B

M

p

8n log(n/�) · 30MB
p

n log(n/�)

⌧
� ⌧2

10M2

· (30
2 � 20)M2B2n log(n/�)

⌧2

!

(23)

 �2B2n� 2B2n log(n/�)
�

+

�

85B2n log(n/�)� 88B2n log(n/�)
�

(24)

Thus, the sum of (⇤) and (⇤⇤) is at most 3G

5M

⌧ .

A.4 Deferred proofs from analysis of Algorithm 1

Technical lemma First, we show a technical lemma that will be useful in analyzing the iterates’
contributions to the duality gap. Recall our potential function u

k

: F ! R.

u
k

(w) =
1

2

kw
k

� wk2
2

(25)

We show that the update rule w
k+1

 ⇡F (wk

� ⌘
k

g
k

) implies the following inequality in terms of
⌘
k

, g
k

, u
k

(w), and u
k+1

(w).
Lemma 13. Suppose w

k+1

= ⇡F (wk

� ⌘
k

g
k

). Then, for all w 2 F ,

⌘
k

hg
k

, w
k

� wi  u
k

(w)� u
k+1

(w) +
⌘2
k

2

kg
k

k2
2

. (26)

Proof. Consider the differentiable, convex function B
k

: F ! R.

B
k

(w) = ⌘
k

hg
k

, w � w
k

i+ 1

2

kw � w
k

k2
2

(27)

hrB
k

(w
k+1

), w � w
k+1

i = h⌘
k

g
k

+ w
k+1

� w
k

, w � w
k+1

i (28)
= h⇡F (wk

� ⌘
k

g
k

)� (w
k

� ⌘
k

g
k

), w � ⇡F (wk

� ⌘
k

g
k

)i (29)
� 0 (30)
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where (29) follows by substituting the definition of w
k+1

twice; and (30) follows from the fact that
for any closed convex set F and w

0

62 F ,

h⇡F (w0

)� w
0

, w � ⇡F (w0

)i � 0.

Rearranging (28) implies the following inequality holds for all w 2 F .

h⌘
k

g
k

+ w
k+1

� w
k

, w � w
k+1

i � 0 (31)
() ⌘

k

hg
k

, w
k+1

� wi  hw
k+1

� w
k

, w � w
k+1

i (32)

We will use the following technical identity to prove the lemma.

Proposition 14. For all w 2 F ,

hw
k+1

� w
k

, w � w
k+1

i = u
k

(w)� u
k+1

(w)� 1

2

kw
k+1

� w
k

k2 .

Proof.

u
k

(w)� u
k+1

(w) = kw
k

� wk2 � kw
k+1

� wk2

= kw
k

k2 + kwk2 � kw
k+1

k2 � kwk2 + 2hw
k+1

� w
k

, wi
= kw

k

k2 � kw
k+1

k2 + 2hw
k+1

� w
k

, wi
= kw

k

k2 � kw
k+1

k2 � 2hw
k

� w
k+1

, w
k+1

i+ 2hw
k+1

� w
k

, w � w
k+1

i
= kw

k+1

� w
k

k2 + 2hw
k+1

� w
k

, w � w
k+1

i

Finally, we can show the inequality stated in the lemma.

⌘
k

hg
k

, w
k

� wi = ⌘
k

hg
k

, (w
k+1

+ ⌘g
k

)� wi (33)

 hw
k+1

� w
k

, w � w
k+1

i+ ⌘2
k

kg
k

k2
2

(34)

 u
k

(w)� u
k+1

(w)� 1

2

kw
k+1

� w
k

k2
2

+ ⌘2
k

kg
k

k2
2

(35)

= u
k

(w)� u
k+1

(w) +
⌘2
k

2

kg
k

k2
2

(36)

where (34) follows from (32); (35) follows by using Proposition 14 to write the expression in terms
of u

k

’s; and (36) follows by the gradient step w
k+1

� w
k

= ⌘
k

g
k

.

Proof of Lemma 10 Here, we bound the contribution to the duality gap of each of the feasible
iterations k 2 K

f

as follows.

⌘
L

· (L(w
k

)� L(w))  u
k

(w)� u
k+1

(w) +
⌧2

2M2

+ ⌘
L

he
L

(w
k

), w
k

� wi (37)

Proof. Let e
L

(w
k

) = g
L

(w
k

)�rL(w
k

) where g
L

(w
k

) = E[rL(w
k

)] 2 @L(w
k

).

⌘
L

· (L(w
k

)� L(w))  ⌘hg
L

(w
k

), w
k

� wi (38)
 ⌘hrL(w

k

) + e
L

(w
k

), w
k

� wi (39)

 u
k

(w)� u
k+1

(w) +
⌘2
L

2

krL(w
k

)k2
2

+ ⌘
L

he
L

(w
k

), w
k

� wi (40)

 u
k

(w)� u
k+1

(w) +
⌧2

2M2

+ ⌘
L

he
L

(w
k

), w
k

� wi (41)

where (39) follows by substituting g
L

; (40) follows by expanding the inner product and applying
Lemma 13 to the first term; (41) follows by our choice of ⌘

L

= ⌧/GM .
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Proof of Lemma 11 Here, we bound the contribution to the duality gap of each of the infeasible
iterates k 2 [T ] \K

f

. We assume ˆR
Sk(wk

) has tolerance ⌧/5. Then we show

�⌘
R

X

S2C
↵
k,S

R
S

(w)  u
k

(w)� u
k+1

(w)� ⌧2

10M2

+ ⌘
R

he
R

(w
k

), w
k

� wi. (42)

Proof. Recall, we let e(w
k

) =

P

S2C ↵k,S

�

E[rR
S

(w
k

)

�

�w
k

]�rR
S

(w
k

)

�

. For each S 2 C, for
any g

S

(w
k

) 2 @R
S

(w
k

), we can rewrite �R
S

(w) as follows.

�R
S

(w) = R
S

(w
k

)�R
S

(w)�R
S

(w
k

)

 hg
S

(w
k

), w
k

� wi �R
S

(w
k

)

Multiplying by ⌘
R

and taking the convex combination of S 2 C according to ↵
k

, we apply Lemma 13
to obtain the following inequality.
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R
S
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k

)

(43)
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R
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k
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where (43) follows by substituting rR
S

(w
k

) for each g
S

(w
k

) and the definition of e
R

(w
k

); (44)
follows by expanding the inner product and applying Lemma 13; (45) follows by our choice of
⌘
k

= ⌧2/M2; (46) follows by the fact that when we update according to a constraint, we know
P

S2C ↵k,S

ˆR
S

(w
k

) � 4⌧/5 with tolerance ⌧/5, so
P

S2C ↵k,S

R
S

(w
k

) � 3⌧/5.

Proof of Lemma 12 Here, we show that with probability at least 1 � 4�, the contribution of the
noisy subgradient computation to the duality gap can be bounded as follows.

sup

w2F

8

<

:

⌘
L

X

k2Kf

he(w
k

), w
k

� wi+ ⌘
R

X

k 62Kf

he(w
k

), w
k

� wi
9

=

;

 ⌧B

M

p

8Tn log(n/�) (47)

Proof. Let " = ⌘
L

· g = ⌘
R

·m =

⌧

M

p
n

. Further, let ⌘
k

= ⌘
L

for k 2 K
f

and ⌘
R

for k 62 K
f

. Then,
we can rewrite the expression to bound using ⌘

k

and expand as follows.
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� wi = sup

w2F

X

k2[T ]

n

X

l=1

⌘
k

e(w
k

)

l

· (w
k

� w)
l

=

n

X

l=1

(w
k

)

l

X

k2[T ]

⌘
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:

(w)
l

·
X

k2[T ]

⌘
k

e(w
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)

l

9

=

;

Consider the second summation, and consider the summation inside the supremum. Note that this
summation is a sum of mean-zero random variables, so it is also mean-zero. Recall, we assume the
estimate of the kth subgradient is independent of the prior subgradients, given w

k

. Further, by the
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assumed `1 bound on the subgradients, each of these random variables is bounded in magnitude by
". Using the bounded difference property, we apply Azuma’s inequality separately for each l 2 [n].

Pr
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4

�

�

�

�

�

�

X

k2[T ]

⌘
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e(w
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)

l

�

�

�

�

�

�

> Z

3

5  2 · exp
✓

� Z2

2T"2

◆

Taking this probability to be at most 2�/n, we can upper bound Z by "
p

2T log(n/�) =

⌧

M

p

2Tn log(n/�). Then, noting that |(w)
l

| < B for any w 2 F , we can take a union bound
to conclude with probability at least 1� 2� the following inequalities hold.

n
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(w)l
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(w)
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·
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⌘
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e(w
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)

l

9

=

;

 Bn · Z

=

⌧B

M

p

2Tn log(n/�)

Further, we note that the first summation concentrates at least as quickly as the second, so by union
bounding again,

sup

w2F

X

k2[T ]

⌘
k

he(w
k

), w
k

� wi  ⌧B

M

p

8Tn log(n/�)

with probability at least 1� 4�.

B Hardness for metric multifair predictions

The lower bounds follow the same general construction. Suppose we have some boolean concept
class C ✓ {�1, 1}X for some universe X . We will construct a new universe X

01

= X
0

[ X
1

where
X

0

✓ X and define a collection of “bipartite” comparisons over subsets of X
0

⇥ X
1

. We will assume
access to random samples (x

0

, y(x
0

)) for some function y : X ! {�1, 1}; we define corresponding
metric values where d(x

0

, x
1

) is some function of y(x
0

) for all x
1

2 X
1

. Finally, we need to label
X

01

such that such that to obtain good loss, the post-processing algorithm must learn something
non-trivial about y (which will differ across the two lower bounds we prove).

Consider X
01

= X
0

[X
1

with ideal labels given as (x
0

, 0) for x
0

2 X
0

and (x
1

, 1) for x
1

2 X
1

, and
let L be the hinge loss. We encode the original boolean concept in the distance metric, where for
x
0

2 X
0

,
d(x

0

, x
1

) = 1� y(x
0

)

for all x
1

2 X
1

.

Then, consider the collection of comparisons given by H = {S
c

: c 2 C} where we take S
c

=

{(x
0

, x
1

) 2 X
0

⇥ X
1

: c(x
0

) = 1}. We take |X
1

| = 2 |X
0

|, large enough that the average prediction
for x

1

2 X
1

is at least 1�⌧ in the optimal utility set of multifair predictions. In particular, any average
deviation by more than ⌧ in X

1

would result in larger loss than setting all of f(x
0

) = f(x
1

) = 1� ⌧
for x

1

2 X
1

and all x
0

2 X
0

where y(x
0

) = 1.

Outline of sample complexity lower bound. Here, we outline the proof of Theorem 4
Theorem (Restatement of Theorem 4). Let �, ⌧ > 0 be constants and suppose A is an algorithm
that has random sample access to d and outputs a (C, d, ⌧)-metric multifair set of predictions for
�-large C. Then, A takes ⌦(log |C|) random samples from d or outputs a set of predictions with loss
that approaches the loss achievable with no metric queries.

Proof. The theorem follows from our construction. In particular, if we take the concept class C on
X

0

to be set of linear functions over F
2

, and take y = c to be a uniformly random c 2 C, then we get
a hard distribution over metrics. Specifically, if the we take the concepts to be n-dimensional, then
without n linearly-independent queries to the metric, we will not be able to learn the concept with
non-trivial accuracy. In particular, any algorithm that guarantees metric multifairness must assume
that E

S

[d(x
0

, x
1

)] ⇡ 0 more than one S 2 H, which results in suboptimality. Thus, the assumption
that the metric multifair learner achieved near-optimal utility must be false.
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Further note, if we only take n� k queries, the incurred loss approaches the trivial loss exponentially
in k. Appealing to lower bounds on the number of random queries needed to span a basis, the theorem
follows.

Outline of hardness from pseudorandom functions We use the construction to demonstrate that
under weak complexity assumptions, there are algorithmic barriers to generally efficient algorithms
for metric multifairness. In particular, we will assume that C defines a pseudorandom function family.
The existence of one-way functions implies the existence of pseudorandom functions [11], so the
proposition follows.
Proposition (Formal statement of Proposition 5). Assuming one-way functions exist, any algorithm
for computing (H, ⌧)-optimal (H, d, ⌧)-metric multifair predictions for any H, d, and ⌧ > 0 requires
time (log |H|)!(1).

Proof. Suppose we can post-process predictions to achieve (C, ⌧)-optimal (C, d, ⌧)-metric multifair
predictions for any C and d and some small constant ⌧ > 0. Let C define a pseudorandom function
family. We will show that we can distinguish between a function y = c 

R

C drawn uniformly at
random from the function family and a truly random function y : X ! {�1, 1}.

We’re given some samples of the form (x, y(x)) ⇠ D ⇥ {�1, 1}. Returning to the proposed
construction, in the case y is a truly random function, then with high probability, E

S

[d(x
0

, x
1

)] �
1� o(1) for all S 2 H. Thus, any ⌧ -optimal set of predictions will achieve loss O(⌧).

In the case, where y = c for some c 2 C, note that labeling x
0

2 X
0

according to c(x
0

) and all
x
1

2 X
1

as 1 is a feasible point that obtains loss

E
x⇠X0

[L(f(x), 0)]/3 + 2 · E
x⇠X1

[L(f(x), 1)]/3 = Pr

x0⇠X0

[c(x
0

) = 1]/3

This feasible quantity upper bounds the optimal loss. Then, we can express the expectation of
difference in the predictions across the set defined by c as follows.

E
(x0,x1)⇠Sc

⇥ |f(x
0

)� f(x
1

)|� (1� c(x
0

))

⇤

= E
(x0,x1)⇠Sc

⇥ |f(x
0

)� f(x
1

)| ⇤� E
(x0,x1)⇠Sc

⇥

(1� c(x
0

))

⇤

� E
x0:c(x0)=1

[|f(x
0

)� f(x
1

)|] + 0.

We assume the set of predictions f is (H, d, ⌧)-metric multifair. Thus, because S
c

2 H, we can
upper bound this term by ⌧ . In total then, E

x0:c(x0)=1

[|f(x
0

)� f(x
1

)|]  ⌧ , and by the fact that
E
x1⇠X1 [f(x1

)] � 1� ⌧ , then E
x0:c(x0)=1

[f(x
0

)] � 1� 2⌧ . Further, consider the following lower
bound on the loss on f .

3· E
(x,y)⇠X⇥[�1,1]

[ max {0, |f(x)� y|} ]

� E
x0⇠D

[f(x
0

)]

� Pr

x0⇠D
[c(x

0

) = 1] · (1� 2⌧)

� Pr

x0⇠X0

[c(x
0

) = 1]� 2⌧

If C is a pseudorandom function family the Pr

x0⇠X0 [c(x0

) = 1] ⇡ 1/2 must be bounded away from
0. Thus, in the case where y 2 C, we have a non-trivial lower bound on the achievable loss under
(C, d, ⌧)-metric multifairness. Thus, we can distinguish when y 2 C and when y is truly random.
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