
Appendices

A Proof of lemma 2

Proof. For deterministic schedule,

E [J(✓⇤)] = E
h
J(e✓t)

i
.

Thus we can write

RT =
TX

t=1

E [`(xt, at)� J(✓⇤)]

=
TX

t=1

E
h
`(xt, at)� J(e✓t)

i

=
TX

t=1

E
h
ht(xt)� E

h
ht(ext+1) | Ft, e✓t

ii

=
TX

t=1

E [ht(xt)� ht(ext+1)] .

Thus, we can bound the regret using
RT = E [h1(x1)� hT+1(xT+1)]

+
TX

t=1

E [ht+1(xt+1)� ht(ext+1)]

 H +
TX

t=1

E [ht+1(xt+1)� ht(ext+1)] ,

where the second inequality follows because h1(x1)  H and �hT+1(xT+1)  0. Let At denote
the event that the algorithm has changed its policy at time t. We can write

RT �H 
TX

t=1

E [ht+1(xt+1)� ht(ext+1)]

=
TX

t=1

E [ht+1(xt+1)� ht(xt+1)]

+
TX

t=1

E [ht(xt+1)� ht(ext+1)]

 H
TX

t=1

E [1 {At}]

+
TX

t=1

E [ht(xt+1)� ht(ext+1)] .

B Proof of lemma 3

Proof. By Cauchy-Schwarz inequality and Lipschitz dynamics assumption,

�t 
���P (.|xt, at, ✓⇤)� P (.|xt, at, e✓t)

���
1
khtk1

 CH
���✓⇤ � e✓t

��� .
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Recall that e✓t = e✓⌧t . Let Tj be the length of episode j. Because we have m episodes, we can write

TX

t=1

�t 

vuutT
TX

t=1

�2
t

= CH

vuutT
mX

j=1

TjX

s=1

���✓⇤ � e✓j
���
2

= CH

vuutT
mX

j=1

Mj

���✓⇤ � e✓j
���
2
,

where Mj is the number of steps in the jth episode. Thus

E
"

TX

t=1

�t

#
 CHE

2

4

vuutT
mX

j=1

Mj

���✓⇤ � e✓j
���
2

3

5

 CH

vuuutTE

2

4
mX

j=1

Mj

���✓⇤ � e✓j
���
2

3

5 .

C Proof of lemma 4

Proof. Let S = E
Pm

j=1 Mj

���✓⇤ � e✓j
���
2
�

. Let Nj be one plus the number of steps in the first j

episodes. So Nj = Nj�1 +Mj and N0 = 1. We write

S = E

2

4
mX

j=1

Nj�1

���✓⇤ � e✓j
���
2 Mj

Nj�1

3

5

(a)
 2E

2

4
mX

j=1

Nj�1

���✓⇤ � e✓j
���
2

3

5

(b)
 2 log T max

j
E

Nj�1

���✓⇤ � e✓j
���
2
�

(c)
 2C 0 log2 T ,

where (a) follows from the fact that Mj/Nj�1  2 for all j, (b) follows from

E

2

4
mX

j=1

Nj�1

���✓⇤ � e✓j
���
2

3

5  mmax
j

E

Nj�1

���✓⇤ � e✓j
���
2
�

and m  log T , and (c) follows from Assumption A2.
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D Proof of lemma 5

Proof. To simplify the expositions, we use p to denote P (s = a|X) in this proof. Notice that
z(✓) = 1�p

1�p1/✓ . Based on the definition of k · k1, we have

kP (·|X, a, ✓)� P (·|X, a, ✓0)k1

=
���p

1
✓ � p

1
✓0
���+

X

s 6=a

����
P (s|X)
z(✓)

� P (s|X)
z(✓0)

����

=
���p

1
✓ � p

1
✓0
���+

�����
1� p1/✓

1� p
� 1� p1/✓

0

1� p

�����
X

s 6=a

P (s|X)

=
���p

1
✓ � p

1
✓0
���+

�����
1� p1/✓

1� p
� 1� p1/✓

0

1� p

����� (1� p)

= 2
���p

1
✓ � p

1
✓0
��� . (6)

We also define h(✓, p)
�
= p

1
✓ . Based on calculus, we have

@h
@✓

(✓, p) = p
1
✓ log

✓
1
p

◆
1
✓2

@2h
@✓@p

(✓, p) =
1
✓2

p
1
✓�1


1
✓
log

✓
1
p

◆
� 1

�
. (7)

The first equation implies that h is strictly increasing in ✓, and the second equation implies that for all
✓ > 0, @h

@✓ (✓, p) is maximized by setting p = exp(�✓). This implies that for all ✓ > 0, we have

0 <
@h

@✓
(✓, p)  @h

@✓
(✓, exp(�✓)) =

1

e✓
.

Hence, for all ✓ � 1, we have 0 < @h
@✓ (✓, p) 

1
e✓  1

e . Consequently, h(✓, p) as a function of ✓ is
globally

�
1
e

�
-Lipschitz continuous for ✓ � 1. So we have

kP (·|X, a, ✓)� P (·|X, a, ✓0)k1 = 2
���p

1
✓ � p

1
✓0
��� 

2
e
|✓ � ✓0|.

E Posterior Concentration for POI Recommendation

Recall that the parameter space ⇥ = {✓1, . . . , ✓K} is a finite set, and ✓⇤ is the true parameter. Notice
that if P (st = at|Xt) is close to 0 or 1, then the DS-PSRL will not learn much about ✓⇤ at time
t, since in such cases P (st|Xt, at, ✓)’s are roughly the same for all ✓ 2 ⇥. Hence, to derive the
concentration result, we make the following simplifying assumption:

�P  P (s|X)  1��P 8(X, s)
for some �P 2 (0, 0.5). Moreover, we assume that all the elements in ⇥ are distinct, and define

�✓
�
= min

✓2⇥,✓ 6=✓⇤
|✓ � ✓⇤|

as the minimum gap between ✓⇤ and another ✓ 6= ✓⇤. To simplify the exposition, we also define

B
�
=2max

⇢
max
✓2⇥

max
p2[�P ,1��P ]

����log
✓

p1/✓

p1/✓⇤

◆���� ,

max
✓2⇥

max
p2[�P ,1��P ]

����log
✓

1� p1/✓

1� p1/✓⇤

◆����

�

c0
�
=

min
n
ln
⇣

1
�P

⌘
�P , ln

⇣
1

1��P

⌘
(1��P )

o

(max✓2⇥ ✓)2


�
=

✓
max
✓2⇥

✓ �min
✓2⇥

✓

◆2

.

Then we have the following lemma about the concentrating posterior of this problem:
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Lemma 6 (Concentration) Assume that ✓t is sampled from Pt at time step t, then under the above

assumptions, for any t > 2, we have

E
⇥
(✓t � ✓⇤)

2
⇤
 3

ec20t

1� P0(✓⇤)

P0(✓⇤)
⇥

exp
n
�c20�

2
✓t+

p
2B2t ln (Kt2)

o
+

1

t2
,

where B, c0, and  are constants defined above. Note that they only depend on �P and ⇥

Notice that Lemma 6 implies that

tE
⇥
(✓t � ✓⇤)

2
⇤
O

⇣
exp

n
�c20�

2
✓t+

p
2B2t ln (Kt2)

o⌘
+

1

t
= O(1)

for any t > 2. This directly implies that maxj E

Nj�1

���✓⇤ � e✓j
���
2
�
= O(1). Q.E.D.

E.1 Proof of lemma 6

Proof. We use P0 to denote the prior over ✓, and use Pt to denote the posterior distribution over ✓ at
the end of time t. Note that by Bayes rule, we have

Pt(✓) / P0(✓)
tY

⌧=1

P (s⌧ |X⌧ , a⌧ , ✓) 8t and 8✓ 2 ⇥.

We also define the posterior log-likelihood of ✓ at time t as

⇤t(✓) = log

⇢
Pt(✓)
Pt(✓⇤)

�
= log

(
P0(✓)
P0(✓⇤)

tY

⌧=1


P (s⌧ |X⌧ , a⌧ , ✓)
P (s⌧ |X⌧ , a⌧ , ✓⇤)

�)

for all t and all ✓ 2 ⇥. Notice that Pt(✓)  exp [⇤t(✓)] always holds, and ⇤t(✓⇤) = 0 by definition.
We also define pt

�
= P (st = at|Xt) to simplify the exposition. Note that by definition, we have

P (st|Xt, at, ✓) =

(
p1/✓t if st = at
P (st|Xt)

1�pt
(1� p1/✓t ) otherwise

Define the indicator zt = 1 {st = at}, then we have

log

⇢
P (st|Xt, at, ✓)
P (st|Xt, at, ✓⇤)

�
= zt log

"
p1/✓t

p1/✓⇤t

#
+ (1� zt) log

"
1� p1/✓t

1� p1/✓⇤t

#

Since pt is Ft�1-adaptive, we have

E

log

⇢
P (st|Xt, at, ✓)
P (st|Xt, at, ✓⇤)

�����Ft�1, ✓⇤

�

= p1/✓⇤t log

"
p1/✓t

p1/✓⇤t

#
+ (1� p1/✓⇤t ) log

"
1� p1/✓t

1� p1/✓⇤t

#

= �DKL

⇣
p1/✓⇤t kp1/✓t

⌘
 �2

⇣
p1/✓⇤t � p1/✓t

⌘2
,

where the last inequality follows from Pinsker’s inequality. Notice that function h(x) = pxt is a
strictly convex function of x, and dh

dx (x) = pxt ln(pt), we have

p1/✓t � p1/✓⇤t � ln(pt)p
1/✓⇤
t (1/✓ � 1/✓⇤) = ln(1/pt)p

1/✓⇤
t

(✓ � ✓⇤)
✓✓⇤

Similarly, we have p1/✓⇤t � p1/✓t � ln(1/pt)p
1/✓
t

(✓⇤�✓)
✓✓⇤

. Consequently, we have
���p1/✓t � p1/✓⇤t

��� � ln(1/pt)min
n
p1/✓⇤t , p1/✓t

o |✓ � ✓⇤|
✓✓⇤

� ln(1/pt)pt
|✓ � ✓⇤|
✓✓⇤

,
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where the last inequality follows from the fact ✓, ✓⇤ 2 [1,1). Since function
ln(1/x)x is concave on [0, 1] and pt 2 [�P , 1 � �P ], we have ln(1/pt)pt �
min {ln(1/�P )�P , ln(1/(1��P ))(1��P )}. Define

c0
�
=

min {ln (1/�P )�P , ln (1/(1��P )) (1��P )}
(max✓2⇥ ✓)2

, (8)

then we have
���p1/✓t � p1/✓⇤t

��� � c0|✓ � ✓⇤|. Hence we have

�DKL

⇣
p1/✓⇤t kp1/✓t

⌘
 �2c20(✓ � ✓⇤)

2.

Furthermore, we define

⇠t(✓)
�
= log

⇢
P (st|Xt, at, ✓)
P (st|Xt, at, ✓⇤)

�

�E

log

⇢
P (st|Xt, at, ✓)
P (st|Xt, at, ✓⇤)

�����Ft�1, ✓⇤

�
. (9)

Obviously, by definition, E [⇠t(✓)|Ft�1, ✓⇤] = 0. We also define

B
�
=2max

⇢
max
✓2⇥

max
p2[�P ,1��P ]

����log
✓

p1/✓

p1/✓⇤

◆���� ,

max
✓2⇥

max
p2[�P ,1��P ]

����log
✓

1� p1/✓

1� p1/✓⇤

◆����

�
, (10)

then |⇠t(✓)|  B always holds. This allows us to use Azuma’s inequality. Specifically, for any
✓ 2 ⇥, any t, and any � 2 (0, 1), we have

Pt
⌧=1 ⇠⌧ (✓) 

p
2B2t ln (K/�) with probability at least

1� �/K. Taking a union bound over ✓ 2 ⇥, we have
tX

⌧=1

⇠⌧ (✓) 
p

2B2t ln (K/�) 8✓ 2 ⇥ (11)

with probability at least 1� �. Consequently, we have

⇤t(✓) = log

⇢
P0(✓)
P0(✓⇤)

�

+
tX

⌧=1

(
z⌧ log

"
p1/✓⌧

p1/✓⇤⌧

#
+ (1� z⌧ ) log

"
1� p1/✓⌧

1� p1/✓⇤⌧

#)

= log

⇢
P0(✓)
P0(✓⇤)

�
�

tX

⌧=1

DKL

⇣
p1/✓⇤⌧ kp1/✓⌧

⌘
+

tX

⌧=1

⇠⌧ (✓)

 log

⇢
P0(✓)
P0(✓⇤)

�
� 2c20(✓ � ✓⇤)

2t+
tX

⌧=1

⇠⌧ (✓) (12)

Combining the above inequality with equation 11, we have

⇤t(✓)  log

⇢
P0(✓)
P0(✓⇤)

�
� 2c20(✓ � ✓⇤)

2t+
p

2B2t ln (K/�) 8✓ 2 ⇥

with probability at least 1� �. Hence, we have
Pt(✓)  exp [⇤t(✓)] (13)

 P0(✓)
P0(✓⇤)

exp
n
�2c20(✓ � ✓⇤)

2t+
p

2B2t ln (K/�)
o

for all ✓ 2 ⇥ with probability at least 1� �. Thus, for any Ft�1 s.t. the above inequality holds, we
have

E
⇥
(✓t � ✓⇤)

2
��Ft�1, ✓⇤

⇤
=

X

✓ 6=✓⇤

Pt(✓)(✓ � ✓⇤)
2


X

✓ 6=✓⇤

P0(✓)
P0(✓⇤)

exp
�
�2c20(✓ � ✓⇤)

2(t� 1)

+
p

2B2(t� 1) ln (K/�)
o
(✓ � ✓⇤)

2 (14)
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For t > 2, we have

exp
�
�c20(✓ � ✓⇤)

2(t� 2)
 
(✓ � ✓⇤)

2  1
ec20(t� 2)

 3
ec20t

,

where the last inequality follows from the fact that t� 2 � t
3 . Hence we have

E
⇥
(✓t � ✓⇤)

2
��Ft�1, ✓⇤

⇤

 3
ec20t

X

✓ 6=✓⇤

P0(✓)
P0(✓⇤)

exp
n
�c20(✓ � ✓⇤)

2t+
p

2B2t ln (K/�)
o

 3
ec20t

X

✓ 6=✓⇤

P0(✓)
P0(✓⇤)

exp
n
�c20�

2
✓t+

p
2B2t ln (K/�)

o

=
3

ec20t
1� P0(✓⇤)
P0(✓⇤)

exp
n
�c20�

2
✓t+

p
2B2t ln (K/�)

o
,

where the second inequality follows from (✓ � ✓⇤)2 � �2
✓. For Ft�1 s.t. inequality 13 does not hold,

we use the naive bound

(✓t � ✓⇤)
2  

�
=

✓
max
✓2⇥

✓ �min
✓2⇥

✓

◆2

.

Since inequality 13 holds with probability at least 1� �, we have

E
⇥
(✓t � ✓⇤)

2
��✓⇤

⇤
(15)

 3
ec20t

1� P0(✓⇤)
P0(✓⇤)

exp
n
�c20�

2
✓t+

p
2B2t ln (K/�)

o
+ �.

Finally, by choosing � = 1
t2 and taking an expectation over ✓⇤, we have

E
⇥
(✓t � ✓⇤)

2⇤ (16)

 3
ec20t

1� P0(✓⇤)
P0(✓⇤)

exp
n
�c20�

2
✓t+

p
2B2t ln (Kt2)

o
+

1
t2
.
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