
Appendix

A Supplementary material

A.1 Zeroth-order (ZO) gradient estimators

With an abuse of notation, in this section let f be an arbitrary function under assumptions A1 and A2.
Lemma 1 shows the second-order statistics of RandGradEst.

Lemma 1 Suppose that Assumption A1 holds, and define a randomized smoothing function
fµ = Eu∈Ub

[f(x + µu)], where Ub is a uniform distribution over the unit Euclidean ball. Then
RandGradEst yields:

1) fµ is L-smooth, and

∇fµ(x) = Eu

[
∇̂f(x)

]
, (15)

where u is drawn from the uniform distribution over the unit Euclidean sphere, and ∇̂f(x) is given
by RandGradEst.

2) For any x ∈ Rd,

|fµ(x)− f(x)| ≤ Lµ2

2
(16)

‖∇fµ(x)−∇f(x)‖22 ≤
µ2L2d2

4
, (17)

1

2
‖∇f(x)‖22 −

µ2L2d2

4
≤ ‖∇fµ(x)‖22 ≤ 2‖∇f(x)‖22 +

µ2L2d2

2
. (18)

3) For any x ∈ Rd,

Eu

[
‖∇̂f(x)−∇fµ(x)‖22

]
≤ Eu

[
‖∇̂f(x)‖22

]
≤ 2d‖∇f(x)‖22 +

µ2L2d2

2
. (19)

Proof: First, by using [16, Lemma 4.1.a] (also see [37] and [13]), we immediately obtain that fµ is
Lµ smooth with Lµ ≤ L, and

∇fµ(x) = Eu

[
d

µ
f(x + µu)u

]
. (20)

Since Eu[(d/µ)f(x)u] = 0, we obtain (15).

Next, we obtain (16)-(18) based on [16, Lemma 4.1.b]. Moreover, we have

‖∇fµ(x)‖22 =‖∇fµ(x)−∇f(x) +∇f(x)‖22
≤2‖∇f(x)‖22 + 2‖∇fµ(x)−∇f(x)‖22

(17)
≤ 2‖∇f(x)‖22 +

µ2d2L2

2
, (21)

where the first inequality holds due to Lemma 6. Similarly, we have

‖∇f(x)‖22 = ‖∇fµ(x) +∇f(x)−∇fµ(x)‖22
(17)
≤ 2‖∇fµ(x)‖22 +

µ2d2L2

2
, (22)

which yields

‖∇fµ(x)‖22 ≥
1

2
‖∇f(x)‖22 −

µ2L2d2

4
. (23)

In (19), the first inequality holds due to (15) and E[‖a− E[a]‖22] ≤ E[‖a‖22] for a random variable a.
And the second inequality of (19) holds due to [16, Lemma 4.1.b]. The proof is now complete. �

In Lemma 2, we show the properties of Avg-RandGradEst.
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Lemma 2 Following the conditions of Lemma 1, then Avg-RandGradEst yields:

1) For any x ∈ Rd

∇fµ(x) = E
[
∇̂f(x)

]
, (24)

where ∇̂f(x) is given by Avg-RandGradEst.

2) For any x ∈ Rd

E
[
‖∇̂f(x)−∇fµ(x)‖22

]
≤ E

[
‖∇̂f(x)‖22

]
≤ 2

(
1 +

d

q

)
‖∇f(x)‖22 +

(
1 +

1

q

)
µ2L2d2

2
.

(25)

Proof: Since {ui}qi=1 are i.i.d. random vectors, we have

E
[
∇̂f(x)

]
= Eui

[
∇̂f(x;ui)

]
(15)
= ∇fµ(x), (26)

where ∇̂f(x;ui) := d
µ [f(x + µui)− f(x)]ui.

In (25), the first inequality holds due to (24) and E[‖a− E[a]‖22] ≤ E[‖a‖22] for a random variable a.
Next, we bound the second moment of ∇̂f(x)

E
[∥∥∥∇̂f(x)

∥∥∥2

2

]
=E

∥∥∥∥∥1

q

q∑
i=1

(
∇̂f(x;ui)−∇fµ(x)

)
+∇fµ(x)

∥∥∥∥∥
2

2


= ‖∇fµ(x)‖22 + E

∥∥∥∥∥1

q

q∑
i=1

(
∇̂f(x;ui)−∇fµ(x)

)∥∥∥∥∥
2

2


= ‖∇fµ(x)‖22 +

1

q
E
[∥∥∥∇̂f(x;u1)−∇fµ(x)

∥∥∥2

2

]
, (27)

where the expectation is taken with respect to i.i.d. random vectors {ui}, and we have used the fact
that E[‖∇̂f(x;ui)−∇fµ(x)‖22] = E[‖∇̂f(x;u1)−∇fµ(x)‖22] for any i. Substituting (18) and (19)
into (27), we obtain (25). �

In Lemma 3, we demonstrate the properties of CoordGradEst.

Lemma 3 Let Assumption A1 hold and define fµ`(x) = Eu∼U [−µ`,µ`]f(x+ue`), where U [−µ`, µ`]
denotes the uniform distribution at the interval [−µ`, µ`]. We then have:

1) fµ` is L-smooth, and

∇̂f(x) =

d∑
`=1

∂fµ`(x)

∂x`
e`, (28)

where ∇̂f(x) is defined by CoordGradEst, and ∂f/∂x` denotes the partial derivative with respect to
the `th coordinate.

2) For ` ∈ [d],

|fµ`(x)− f(x)| ≤ Lµ2
`

2
, (29)∣∣∣∣∂fµ`(x)

∂x`
− ∂f(x)

∂x`

∣∣∣∣ ≤ Lµ`
2
. (30)

3) For ` ∈ [d], ∥∥∥∇̂f(x)−∇f(x)
∥∥∥2

2
≤ L2d

4

d∑
`=1

µ2
` . (31)

13



Proof: For the `th coordinate, it is known from [7, Lemma 6] that fµ` is L-smooth and

∂fµ`(x)

∂x`
=
f(x + µ`e`)− f(x− µ`e`)

2µ`
. (32)

Based on (32) and the definition of CoordGradEst, we then obtain (28).

The inequalities (29) and (30) have been proved by [7, Lemma 6].

Based on (28) and (30), we have∥∥∥∇̂f(x)−∇f(x)
∥∥∥2

2

(28)
=

∥∥∥∥∥
d∑
`=1

(
∂fµ`(x)

∂x`
− ∂f(x)

∂x`

)
e`

∥∥∥∥∥
2

2

≤d
d∑
`=1

∥∥∥∥∂fµ`(x)

∂x`
− ∂f(x)

∂x`

∥∥∥∥2

2

≤ L2d

4

d∑
`=1

µ2
` ,

where the first inequality holds due to Lemma 6 in Sec. A.9. The proof is now complete. �

A.2 Control variates

The gradient blending in Step 6 of SVRG (Algorithm 1) can be interpreted using control variate
[28–30]. If we view ĝ0 := ∇fI(x) as the raw gradient estimate at x, and c := ∇fI(x̂) as a
control variate satisfying E[c] = ∇f(x̂), then the gradient blending (2) becomes a gradient estimate
modified by a control variate, ĝ = ĝ0 − (c − E[c]). Here ĝ has the same expectation as ĝ0, i.e.,
E[ĝ] = E[ĝ0] = ∇f(x), however, has a lower variance when c is positively correlated with g0 (see a
detailed analysis as below).

Consider the following gradient estimator,

ĝ = ĝ0 − η(c− E[c]), (33)

where ĝ0 is a given (raw) gradient estimate, η is an unknown coefficient, and c is a control variate. It
is clear that ĝ has the same expectation as ĝ0. We then study the effect of c on the variance of ĝ,

tr(cov(ĝ)) = tr(cov(ĝ0)) + η2 tr(cov(c))− 2η tr(cov(ĝ0, c)), (34)

where tr(·) denotes the trace operator, and cov(·) is the covariance operator. When η = tr(cov(ĝ0,c))
tr(cov(c)) ,

the variance of ĝ in (34) is then minimized, leading to

tr(cov(ĝ)) = tr(cov(ĝ0))
(
1− ρ(ĝ0, c)2

)
, (35)

where ρ(ĝ0, c) = tr(cov(ĝ0,c))√
tr(cov(ĝ0))

√
tr(cov(c))

. In (35), ρ(ĝ0, c) indicates the correlation strength between

ĝ0 and c. Therefore, the gradient estimate ĝ has a smaller variance than ĝ0 when the control variate
c is positively correlated with the latter. Moreover, if c is chosen similar to ĝ, then η would be close
to 1.

A.3 Proof of Proposition 1

In Algorithm 2, we recall that the mini-batch I is chosen uniformly randomly. It is known from
Lemma 4 and Lemma 5 that

EIk [∇̂fIk(xsk)− ∇̂fIk(xs0)] = ∇̂f(xsk)− ∇̂f(xs0). (36)

We then rewrite v̂sk as

v̂sk =∇̂fIk(xsk)− ∇̂fIk(xs0)− EIk [∇̂fIk(xsk)− ∇̂fIk(xs0)] + ∇̂f(xsk). (37)

Taking the expectation of ‖vsk‖22 with repsect to all the random variables, we have

E
[
‖v̂sk‖22

]
≤2E

[
‖∇̂fIk(xsk)− ∇̂fIk(xs0)− EIk [∇̂fIk(xsk)− ∇̂fIk(xs0)]‖22

]
+ 2E

[
‖∇̂f(xsk)‖22

]
≤2E

[
‖∇̂fIk(xsk)− ∇̂fIk(xs0)− EIk [∇̂fIk(xsk)− ∇̂fIk(xs0)]‖22

]
+ 4dE

[
‖∇f(xsk)‖22

]
+ µ2d2L2, (38)
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where the first inequality holds due to Lemma 6, and the second inequality holds due to (19). Based
on (36), we note that the following holds

n∑
i=1

{
∇̂fi(xsk)− ∇̂fi(xsk)− EIk [∇̂fIk(xsk)− ∇̂fIk(xs0)]

}
=n(∇̂f(xsk)− ∇̂f(xs0))− n(∇̂f(xsk)− ∇̂f(xs0)) = 0. (39)

Based on (39) and applying Lemma 4 and 5, the first term at the right hand side (RHS) of (38) yields

E
[
‖∇̂fIk(xsk)− ∇̂fIk(xs0)− EIk [∇̂fIk(xsk)− ∇̂fIk(xs0)]‖22

]
≤ δn
bn

n∑
i=1

E
[
‖∇̂fi(xsk)− ∇̂fi(xs0)− (∇̂f(xsk)− ∇̂f(xs0))‖22

]
=E

[
δn
b

(
1

n

n∑
i=1

‖∇̂fi(xsk)− ∇̂fi(xs0)‖22 − ‖∇̂f(xsk)− ∇̂f(xs0)‖22

)]

≤ δn
bn

n∑
i=1

E
[
‖∇̂fi(xsk)− ∇̂fi(xs0)‖22

]
. (40)

where the first inequality holds due to Lemma 4 and 5 (taking the expectation with respect to
mini-batch I), we define δn as

δn =

{
1 if I contains i.i.d. samples with replacement (Lemma 4)
I(b < n) if I contains samples without replacement (Lemma 5), (41)

I(b < n) = 1 if b < n and 0 otherwise, and the second equality in (40) holds since 1
n

∑n
i=1 ‖xi −

a‖22 = 1
n

∑n
i=1 ‖xi‖22 − ‖a‖22 when a = 1

n

∑n
i=1 xi.

Substituting (40) into (38), we obtain

E
[
‖v̂sk‖22

]
≤2δn
bn

n∑
i=1

E
[
‖∇̂fi(xsk)− ∇̂fi(xs0)‖22

]
+ 4dE

[
‖∇f(xsk)‖22

]
+ µ2d2L2. (42)

Similar to Lemma 1, we introduce a smoothing function fi,µ of fi, and continue to bound the first
term at the right hand side (RHS) of (42). This yields

E
[
‖∇̂fi(xsk)− ∇̂fi(xs0)‖22

]
(130)
≤ 3E

[
‖∇̂fi(xsk)−∇fi,µ(xsk)‖22

]
+ 3E

[
‖∇̂fi,µ(xs0)−∇fi(xs0)‖22

]
+ 3E

[
‖∇fi,µ(xsk)−∇fi,µ(xs0)‖22

]
(19)
≤ 6dE[‖∇fi(xsk)‖22] + 6dE[‖∇fi(xs0)‖22] + 3L2d2µ2 + 3E

[
‖∇fi,µ(xsk)−∇fi,µ(xs0)‖22

]
. (43)

Since both fi and fi,µ are L-smooth (A1 and Lemma 1), we have

E
[
‖∇fi,µ(xsk)−∇fi,µ(xs0)‖22

]
≤ L2E

[
‖xsk − xs0‖22

]
, (44)

E
[
‖∇fi(xs0)‖22

]
≤ 2E

[
‖∇fi(xs0)−∇fi(xsk)‖22

]
+ 2E

[
‖∇fi(xsk)‖22

]
≤ 2L2E

[
‖xs0 − xsk‖22

]
+ 2E

[
‖∇fi(xsk)‖22

]
. (45)

Substituting (44) and (45) into (43), we obtain

E
[
‖∇̂fi(xsk)− ∇̂fi(xs0)‖22

]
≤18dE[‖∇fi(xsk)‖22] + (12d+ 3)L2E

[
‖xs0 − xsk‖22

]
+ 3L2d2µ2

≤36dE
[
‖∇fi(xsk)−∇f(xsk)‖22

]
+ 36dE

[
‖∇f(xsk)‖22

]
+ (12d+ 3)L2E

[
‖xs0 − xsk‖22

]
+ 3L2d2µ2. (46)
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Furthermore, we obtain

1

n

n∑
i=1

E
[
‖∇̂fi(xsk)− ∇̂fi(xs0)‖22

]
≤36dE

[
1

n

n∑
i=1

‖∇fi(xsk)−∇f(xsk)‖22

]
+ 36dE

[
‖∇f(xsk)‖22

]
+ (12d+ 3)L2E

[
‖xs0 − xsk‖22

]
+ 3L2d2µ2 (47)

≤36dσ2 + 36dE
[
‖∇f(xsk)‖22

]
+ (12d+ 3)L2E

[
‖xs0 − xsk‖22

]
+ 3L2d2µ2, (48)

where the last inequality holds due to Assumption A2.

Substituting (47) into (42), we have

E
[
‖v̂sk‖22

]
≤6δn(4d+ 1)L2

b
E
[
‖xs0 − xsk‖22

]
+

(
4d+

72dδn
b

)
E
[
‖∇f(xsk)‖22

]
+

(
1 +

6δn
b

)
d2L2µ2 +

72dσ2δn
b

. (49)

The proof is now complete. �

A.4 Proof of Theorem 1

Since fµ is L-smooth (Lemma 1), from Lemma 7 in Sec. A.9 we have

fµ(xsk+1) ≤fµ(xsk) + 〈∇fµ(xsk),xsk+1 − xsk〉+
L

2
‖xsk+1 − xsk‖22

=fµ(xsk)− ηk〈∇fµ(xsk), v̂sk〉+
L

2
η2
k‖v̂sk‖22, (50)

where the last equality holds due to xsk+1 = xsk − ηkv̂sk. Since xsk and xs0 are independent of Ik and
random directions u used for ZO gradient estimates, from (15) we obtain

Eu,Ik [v̂sk] =Eu,Ik

[
∇̂fIk(xsk)− ∇̂fIk(xs0) + ∇̂f(xs0)

]
=∇fµ(xsk) +∇fµ(xs0)−∇fµ(xs0) = ∇fµ(xsk). (51)

Combining (50) and (51), we have

E
[
fµ(xsk+1)

]
≤E [fµ(xsk)]− ηkE

[
‖∇fµ(xsk)‖22

]
+
L

2
η2
kE
[
‖v̂sk‖22

]
, (52)

where the expectation is taken with respect to all random variables.

At RHS of (52), the upper bound on E
[
‖v̂sk‖22

]
is given by Proposition 1,

E[‖v̂sk‖22]≤4(b+ 18δn)d

b
E
[
‖∇f(xsk)‖22

]
+

6(4d+ 1)L2δn
b

E
[
‖xsk − xs0‖22

]
+

(6δn + b)L2d2µ2

b
+

72dσ2δn
b

. (53)

In (53), we further bound E
[
‖xsk+1 − xs0‖22

]
as

E
[
‖xsk+1 − xs0‖22

]
= E

[
‖xsk+1 − xsk + xsk − xs0‖22

]
=η2

kE
[
‖v̂sk‖22

]
+ E

[
‖xsk − xs0‖22

]
− 2ηkE [〈v̂sk,xsk − xs0〉]

(51)
= η2

kE
[
‖v̂sk‖22

]
+ E

[
‖xsk − xs0‖22

]
− 2ηkE [〈∇fµ(xsk),xsk − xs0〉]

≤η2
kE
[
‖v̂sk‖22

]
+ E

[
‖xsk − xs0‖22

]
+ 2ηkE

[
1

2βk
‖∇fµ(xsk)‖22 +

βk
2
‖xsk − xs0‖22

]
, (54)

where βk is a positive coefficient, and the last inequality holds since 〈a,b〉 ≤ β‖a‖22+(1/β)‖b‖22
2 for

any a and b, and β > 0.
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Now with (53) and (54) at hand, we introduce a Lyapunov function [20] with respect to fµ,

Rsk = E
[
fµ(xsk) + ck‖xsk − xs0‖22

]
, (55)

for some ck > 0. Substituting (52) and (54) into Rsk+1, we obtain

Rsk+1 =E
[
fµ(xsk+1) + ck+1‖xsk+1 − xs0‖22

]
≤E

[
fµ(xsk)− ηk‖∇fµ(xsk)‖22 +

L

2
η2
k‖v̂sk‖22

]
+ E

[
ck+1η

2
k‖v̂sk‖22 + ck+1‖xsk − xs0‖s2

]
+ E

[
ck+1ηk
βk

‖∇fµ(xsk)‖22 + ck+1βkηk‖xsk − xs0‖22
]

=E [fµ(xsk)]−
(
ηk −

ck+1ηk
βk

)
E
[
‖∇fµ(xsk)‖22

]
+ (ck+1 + ck+1βkηk)E

[
‖xsk − xs0‖22

]
+

(
L

2
η2
k + ck+1η

2
k

)
E
[
‖v̂sk‖22

]
. (56)

Moreover, substituting (53) into (56), we have

Rsk+1 ≤E [fµ(xsk)]−
(
ηk −

ck+1ηk
βk

)
E
[
‖∇fµ(xsk)‖22

]
+ (ck+1 + ck+1βkηk)E

[
‖xsk − xs0‖22

]
+

(
L

2
η2
k + ck+1η

2
k

)
6(4d+ 1)L2δn

b
E
[
‖xsk − xs0‖22

]
+

(
L

2
η2
k + ck+1η

2
k

)
4db+ 72dδn

b
E
[
‖∇f(xsk)‖22

]
+

(
L

2
η2
k + ck+1η

2
k

)
(6δn + b)L2d2µ2 + 72dσ2δn

b
. (57)

Based on the definition of ck = ck+1 + βkηkck+1 +
6(4d+1)L2δnη

2
k

b ck+1 +
3(4d+1)L3δnη

2
k

b and the
definition of Rsk in (55), we can simplify the inequality (57) as

Rsk+1 ≤Rsk −
(
ηk −

ck+1ηk
βk

)
E
[
‖∇fµ(xsk)‖22

]
+

(
L

2
η2
k + ck+1η

2
k

)
4db+ 72dδn

b
E
[
‖∇f(xsk)‖22

]
+

(
L

2
η2
k + ck+1η

2
k

)
(6δn + b)L2d2µ2 + 72dσ2δn

b

(18)
≤Rsk −

1

2

(
ηk −

ck+1ηk
βk

)
E
[
‖∇f(xsk)‖22

]
+

(
ηk −

ck+1ηk
βk

)
µ2d2L2

4

+

(
L

2
η2
k + ck+1η

2
k

)
4db+ 72dδn

b
E
[
‖∇f(xsk)‖22

]
+

(
L

2
η2
k + ck+1η

2
k

)
(6δn + b)L2d2µ2 + 72dσ2δn

b

=Rsk − γkE
[
‖∇f(xsk)‖22

]
+ χk, (58)

where γk and χk are coefficients given by

γk =
1

2

(
1− ck+1

βk

)
ηk −

(
L

2
+ ck+1

)
4db+ 72dδn

b
η2
k, (59)

χk =

(
L

2
+ ck+1

)
(6δn + b)L2d2µ2 + 72dσ2δn

b
η2
k +

(
1− ck+1

βk

)
µ2d2L2

4
ηk. (60)

In the second inequality of (58), we have used the fact that 1 − ck+1

βk
> 0. This holds for some

parameter ηk under the condition that γk > 0. Even if 1− ck+1

βk
< 0 (relaxing the condition γk > 0), a
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similar inequality can be obtained using the upper bound of ‖∇fµ(xsk)‖22 in (18). Therefore, without
loss of generality, we consider 1− ck+1

βk
> 0.

Taking a telescopic sum for (58), we obtain

Rsm ≤Rs0 −
m−1∑
k=0

γkE
[
‖∇f(xsk)‖22

]
+ χm, (61)

where χm =
∑m−1
k=0 χk. It is known from (55) that

Rs0 = E [fµ(xs0)] , Rsm = E [fµ(xsm)] , (62)

where the last equality used the fact that cm = 0. Since x̃s−1 = xs0 and x̃s = xsm, we obtain

Rs0 −Rsm =E [fµ(x̃s−1)− fµ(x̃s)] . (63)

Substituting (63) into (61) and telescoping the sum for s = 1, 2, . . . , S, we obtain

S∑
s=1

m−1∑
k=0

γkE[‖∇f(xsk)‖22] ≤ E[fµ(x̃0)− fµ(x̃S)] + Sχm. (64)

Denoting f∗µ = minx fµ(x), from (15) we have fµ(x̃0)− f(x̃0) ≤ µ2L
2 and f∗ − f∗µ ≤

µ2L
2 , where

f∗ = minx f(x). This yields

fµ(x̃0)− fµ(x̃S) ≤ fµ(x̃0)− f∗µ ≤ (f(x̃0)− f∗) + µ2L. (65)

Substituting (65) into (64), we have

S∑
s=1

m−1∑
k=0

γkE[‖∇f(xsk)‖22] ≤ E[f(x̃0)− f∗] + Lµ2 + Sχm. (66)

Let γ̄ = mink γk and we choose x̄ uniformly random from {{xsk}
m−1
k=0 }Ss=1, then ZO-SVRG satisfies

E[‖∇f(x̄)‖22] ≤ E[f(x̃0)− f∗]
T γ̄

+
Lµ2

T γ̄
+
Sχm
T γ̄

. (67)

The proof is now complete. �

A.5 Proof of Corollary 1

We start by rewriting ck in (8) as

ck = (1 + θ)ck+1 +
3(1 + 4d)L3δnη

2

b
, (68)

where θ = βη + 6(1+4d)L2δnη
2

b . The recursive formula (68) implies that ck ≤ c0 for any k, and

c0 =
3(1 + 4d)L3δnη

2

b

(1 + θ)m − 1

θ
. (69)

Based on the choice of η = ρ
Ld and β = L, we have

θ =
ρ

d
+

6ρ2δn
bd2

+
24ρ2δn
bd

≤ 31ρ

d
, (70)

where we have used the fact that δn ≤ 1. Substituting (70) into (69), we have

ck ≤ c0 =
3(1 + 4d)L3δn

b

η2

θ
[(1 + θ)m − 1] =

3(1 + 4d)Lρδn
db+ 24ρd+ 6ρ

[(1 + θ)m − 1]

≤ 15dLρδn
db

[(1 + θ)m − 1] ≤ 15Lρδn
b

(e− 1) ≤ 30Lρδn
b

, (71)
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where the third inequality holds since (1 + θ)m ≤ (1 + 31ρ
d )m, m = d d

31ρe, (1 + 1/a)a ≤
lima→∞(1 + 1

a )a = e for a > 0 [20, Appendix E], and for east of representation, the last inequality
loosely uses the notion ‘≤’ since e < 3.

We recall from (5) and (6) that

γ̄ = min
0≤k≤m−1

{
ηk
2
− ck+1ηk

2βk
− η2

k

(
L

2
+ ck+1

)(
4d+

72dδn
b

)}
. (72)

Since ηk = η, βk = β, and ck ≤ c0, we have

γ̄ ≥ η

2
− c0

2β
η − η2L

(
2d+

36d

b

)
− η2c0

(
4d+

72dδn
b

)
. (73)

From (71) and the definition of β, we have

c0
2β
≤ 15ρ

b
(74)

ηL

(
2d+

36d

b

)
= ρ

(
2 +

36

b

)
(75)

ηc0

(
4d+

72dδn
b

)
(71)
≤ ρ

Ld

30Lρ

b

(
4d+

72d

b

)
≤ 120ρ2

b
+

2160ρ2

b2
. (76)

Substituting (74)-(76) into (73), we obtain

γ̄ ≥η
(

1

2
− 15ρ

b
− 4ρ− 240ρ2

b

)
≥ η

(
1

2
− 259ρ

)
, (77)

where we have used the fact that ρ2 ≤ ρ. Moreover, if we set ρ ≤ 1
518 , then γ̄ > 0. In other

words, the current parameter setting is valid for Theorem 1. Upon defining a universal constant
α0 =

(
1
2 − 259ρ

)
, we have

γ̄ ≥ηα0. (78)

Next, we find the upper bound on χm in (7) given the current parameter setting and ck ≤ c0,

χm ≤ mη
µ2d2L2

4
+mη2

(
L

2
+ c0

)
72dσ2δn + (6δn + b)L2d2µ2

b
. (79)

Since L
2 + c0 ≤ L

2 + 30Lρb−1 ≤ L
2 + 2L = 5L

2 (suppose b ≥ 18 without loss of generality), based
on (78) we have

χm
γ̄
≤md2L2µ2

4α0
+m

5L

2α0

72dσ2δn
b

ρ

Ld
+m

5L

2α0

(
6L2d2µ2δn

b
+ L2d2µ2

)
ρ

Ld
. (80)

Since T = Sm, and µ = 1√
dT

, the above inequality yields

Sχm
T γ̄

≤ dL2

4α0T
+

180σ2ρδn
bα0

+
5L2

2α0

(
6

b
+ 1

)
ρ

T
= O

(
d

T
+
δn
b

)
, (81)

where in the big O notation, we only keep the dominant terms and ignore the constant numbers that
are independent of d, b, and T .

Substituting (78) and (81) into (5), we have

E[‖∇f(x̄)‖22] ≤ [f(x̃0)− f∗]
Tα0

Ld

ρ
+

L2

T 2α0ρ
+
Sχm
T γ̄

= O

(
d

T
+
δn
b

)
. (82)

The proof is now complete. �
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A.6 Proof of Proposition 2

For RandGradEst, based on (17) and (19), we have

E
[
‖∇̂f(x)−∇f(x)‖22

]
≤ E

[
‖∇̂f(x)−∇fµ(x) +∇fµ(x)−∇f(x)‖22

]
≤2E

[
‖∇̂f(x)−∇fµ(x)‖22

]
+ 2‖∇fµ(x)−∇f(x)‖22

≤4d‖∇f(x)‖22 +
3µ2L2d2

2
= O

(
d‖∇f(x)‖22 + µ2L2d2

)
. (83)

Similarly, for Avg-RandGradEst, based on (17) and (25), we have

E
[
‖∇̂f(x)−∇f(x)‖22

]
≤4

(
1 +

d

q

)
‖∇f(x)‖22 +

(
3 +

2

q

)
µ2L2d2

2

=O

(
q + d

q
‖∇f(x)‖22 + µ2L2d2

)
, (84)

where we have used the fact that 2
q ≤ 3.

Finally, using (31), the proof is then complete. �

A.7 Proof of Theorem 2

Motivated by Proposition 1, we first bound ‖v̂sk‖22. Following (36)-(42), we have

E
[
‖v̂sk‖22

]
≤2δn
bn

n∑
i=1

E
[
‖∇̂fi(xsk)− ∇̂fi(xs0)‖22

]
+ 2E

[
‖∇̂f(xsk)‖22

]
(25)
≤ 2δn

bn

n∑
i=1

E
[
‖∇̂fi(xsk)− ∇̂fi(xs0)‖22

]
+ 4

(
1 +

d

q

)
‖∇f(xsk)‖22 +

(
1 +

1

q

)
µ2L2d2.

(85)

Moreover, following (43)-(47) together with (25), we can obtain that

E
[
‖∇̂fi(xsk)− ∇̂fi(xs0)‖22

]
≤36

(
1 +

d

q

)
σ2 + 36

(
1 +

d

q

)
E
[
‖∇f(xsk)‖22

]
+

(
12
d

q
+ 15

)
L2‖xsk − xs0‖22

+ 3

(
1 +

1

q

)
L2µ2d2. (86)

Substituting (86) into (85), we have

E
[
‖v̂sk‖22

]
≤4(b+ 18δn)

b

(
1 +

d

q

)
E[‖∇f(xsk)‖22] +

6δn
b

(
4d

q
+ 5

)
L2‖xsk − xs0‖22

+
6δn + b

b

(
1 +

1

q

)
L2µ2d2 +

72δn
b

(
1 +

d

q

)
σ2. (87)

Following (54)-(56) and substituting (87) into (56), we have

Rsk+1 ≤E [fµ(xsk)]−
(
ηk −

ck+1ηk
βk

)
E
[
‖∇fµ(xsk)‖22

]
+ (ck+1 + ck+1βkηk)E

[
‖xsk − xs0‖22

]
+

(
L

2
η2
k + ck+1η

2
k

)
6(4d+ 5q)L2δn

bq
E
[
‖xsk − xs0‖22

]
+

(
L

2
η2
k + ck+1η

2
k

)
(72δn + 4b)(q + d)

bq
E
[
‖∇f(xsk)‖22

]
+

(
L

2
η2
k + ck+1η

2
k

)
(6δn + b)(q + 1)L2d2µ2 + 72(q + d)σ2δn

bq
. (88)
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Based on the definitions of ck =
[
1 + βkηk + 6(4d+5q)L2δn

bq η2
k

]
ck+1+ 3(4d+5q)L3δn

bq η2
k andRsk given

by (55), we can simplify (88) to

Rsk+1

(18)
≤Rsk −

1

2

(
ηk −

ck+1ηk
βk

)
E
[
‖∇f(xsk)‖22

]
+

(
ηk −

ck+1ηk
βk

)
µ2d2L2

4

+

(
L

2
η2
k + ck+1η

2
k

)
(72δn + 4b)(q + d)

bq
E
[
‖∇f(xsk)‖22

]
+

(
L

2
η2
k + ck+1η

2
k

)
(6δn + b)(q + 1)L2d2µ2 + 72(q + d)σ2δn

bq

=Rsk − γkE
[
‖∇f(xsk)‖22

]
+ χk, (89)

where γk and χk are defined coefficients in Theorem 2.

Based on (89) and following the same argument in (61)-(67), we then achieve

E[‖∇f(x̄)‖22] ≤ E[f(x̃0)− f∗]
T γ̄

+
Lµ2

T γ̄
+
Sχm
T γ̄

. (90)

The rest of the proofs essentially follow along the lines of Corollary 1 with the added complexity of
the mini-batch parameter q in ck, γk and χk.

Let θ = βkηk + 6(4d+5q)L2δn
bq η2

k, then ck = ck+1(1 + θ) +
3(4d+5q)L3η2kδn

bq . This leads to

c0 =
3(4d+ 5q)L3η2δn

bq

(1 + θ)m − 1

θ
. (91)

Based on the choice of η and β, we have

θ =
ρ

d
+

24ρ2δn
bdq

+
30ρ2δn
bd2

≤ 55ρ

d
. (92)

Substituting (92) into (91), we have

ck ≤ c0 = δn
3(5 + 4d/q)L3

b

η2

θ
[(1 + θ)m − 1] = δn

3(5 + 4d/q)Lρ

db+ 24ρd/q + 30ρ
[(1 + θ)m − 1]

≤ δn
3(5 + 4d/q)Lρ

db
[(1 + θ)m − 1] ≤ δn

27Lρ

bmin{d, q}
[(1 + θ)m − 1]

≤ 27Lρδn
bmin{d, q}

(e− 1) ≤ 54Lρδn
bmin{d, q}

, (93)

where the third inequality holds since 5 + 4d/q ≤ 9d/q if d ≥ q, and 5 + 4d/q ≤ 9 otherwise, and
the forth inequality holds similar to (71) under m = d d

55ρe.

According to the definition of γ̄ = mink γk, we have

γ̄ ≥η
2
− c0

2β
η − η2L

(36δn + 2b)(q + d)

bq
− η2c0

(72δn + 4b)(q + d)

bq
. (94)

From (93) and the definition of β = L, we have
c0
2β
≤ 27ρ

bmin{d, q}
. (95)

Since η = ρ/(Ld), we have

ηL
(36δn + 2b)(q + d)

bq
≤ 2ρ

min{d, q}

(
36

b
+ 2

)
, (96)

where we used the fact that 1
d + 1

q ≤
2

min{d,q} . Moreover, we have

ηc0
(72δn + 4b)(q + d)

bq
≤ ρ
L

54Lρ

bmin{q, d}

(
4 +

72

b

)(
1

d
+

1

q

)
≤ 108ρ2

bmin{d, q}2

(
4 +

72

b

)
(97)
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Substituting (95)-(97) into (94), and following the arguments in (78), we obtain

γ̄ ≥α0η, (98)

where α0 > 0 is a universal constant that is independent of T , d and b.

Based on χk =
(

1− ck+1

βk

)
µ2d2L2

4 ηk +
(
L
2 + ck+1

) (6δn+b)(q+1)L2d2µ2+72(q+d)σ2δn
bq η2

k, the upper
bound on χm =

∑
k χk is given by

χm ≤ηm
µ2d2L2

4
+ ηm

(
L

2
+ c0

)
(6δn + b)(q + 1)L2d2µ2 + 72(q + d)σ2δn

bq
η. (99)

Using (93) and assuming b ≥ 18 (without loss of generality), then L
2 + c0 ≤ L

2 + 54Lρb−1 ≤ 7L
2 .

This yields

χm
γ̄
≤m
α0

d2L2

4

1

dT
+
m

α0

7L

2

(6δn + b)(q + 1)L2d2

bq

1

dT

ρ

Ld
+
m

α0

7L

2

72σ2

b

(
1

d
+

1

q

)
ρδn

≤O
(
md

T
+

mδn
bmin{d, q}

)
(100)

Since T = Sm, we have

Sχm
T γ̄

≤ O
(
d

T
+

δn
bmin{d, q}

)
. (101)

Substituting (98) and (101) into (5), we have

E[‖∇f(x̄)‖22] ≤ [f(x̃0)− f∗]
Tα0

Ld

ρ
+

L2

T 2α0ρ
+
Sχm
T γ̄

= O

(
d

T
+

δn
bmin{d, q}

)
. (102)

�

A.8 Proof of Theorem 3

Since f is L-smooth, we have

f(xsk+1) ≤f(xsk)− ηk〈∇f(xsk), v̂sk〉+
L

2
η2
k‖v̂sk‖22. (103)

Since xsk and xs0 are independent of Ik used in ∇̂fIk(xsk) and ∇̂fIk(xs0), we obtain

EIk [vsk] = ∇̂f(xsk) + ∇̂f(xs0)− ∇̂f(xs0) = ∇̂f(xsk), (104)

where we recall that a deterministic gradient estimator is used. Combining (103) and (104), we have

E
[
f(xsk+1)

]
≤E [f(xsk)]− ηkE

[
〈∇f(xsk), ∇̂f(xsk)〉

]
+
L

2
η2
kE
[
‖v̂sk‖22

]
. (105)

In (105), we bound −2E
[
〈∇f(xsk), ∇̂f(xsk)〉

]
as,

−2E
[
〈∇f(xsk), ∇̂f(xsk)〉

]
≤E

[
‖∇f(xsk)− ∇̂f(xsk)‖22

]
−
[
E‖∇f(xsk)‖22

]
(31)
≤ L2d2µ2

4
− E

[
‖∇f(xk)‖22

]
, (106)

where the first inequality holds since −2〈a,b〉 ≤ ‖a− b‖22 − ‖a‖22, and we have used the fact that
µ` = µ in the second inequality.

Substituting (106) into (105), we have

E
[
f(xsk+1)

]
≤E [f(xsk)]− ηk

2
E
[
‖∇f(xk)‖22

]
+
L

2
η2
kE
[
‖v̂sk‖22

]
+
L2d2µ2ηk

8
. (107)
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In (107), we next bound E
[
‖v̂sk‖22

]
. Following (36)-(42), we have

E
[
‖v̂sk‖22

]
≤2δn
bn

n∑
i=1

E
[
‖∇̂fi(xsk)− ∇̂fi(xs0)‖22

]
+ 2E

[
‖∇̂f(xsk)‖22

]
. (108)

The first term at RHS of (108) yields

E
[
‖∇̂fi(xsk)− ∇̂fi(xs0)‖22

]
(28)
= E

∥∥∥∥∥
d∑
`=1

(
∂fi,µ`
∂xsk,`

e` −
∂fi,µ`
∂xs0,`

e`

)∥∥∥∥∥
2

2


(130)
≤ d

d∑
`=1

E

∥∥∥∥∥∂fi,µ`∂xsk,`
− ∂fi,µ`
∂xs0,`

∥∥∥∥∥
2

2

 ≤ L2d

d∑
`=1

E
[
‖xs`,k − xs`,0‖22

]
= L2dE

[
‖xsk − xs0‖22

]
, (109)

where fi,µ`(x) = Eu∼U [−µ`,µ`]fi(x + ue`) denotes the smooth function of fi with respect to its `th

coordinate (Lemma 3), xsk,` denotes the `th coordinate of xsk, ∂fi,µ`∂xsk,`
is the `th partial derivative of

fi,µ` at xsk, and the second inequality holds since fi,µ`(x) is L-smooth (Lemma 3) with respect to
the `th coordinate. From (31), the second term at RHS of (108) yields

‖∇̂f(x)‖22 ≤ 2‖∇f(x)‖22 + 2‖∇̂f(x)−∇f(x)‖22
(31)
≤ 2‖∇f(x)‖22 +

L2d2µ2

2
, (110)

where we have used the fact that µ` = µ.

Substituting (109) and (110) into (108), we have

E
[
‖v̂sk‖22

]
≤ 2L2dδn

b
E
[
‖xsk − xs0‖22

]
+ 4E

[
‖∇f(x)‖22

]
+ L2d2µ2. (111)

Similar to (54), we have

E
[
‖xsk+1 − xs0‖22

]
≤ η2

kE
[
‖v̂sk‖22

]
+ E

[
‖xsk − xs0‖22

]
+ ηkE

[
1

βk
‖∇̂f(xsk)‖22 + βk‖xsk − xs0‖22

]
(110)
≤ η2

kE
[
‖v̂sk‖22

]
+ E

[
‖xsk − xs0‖22

]
+ ηkE

[
2

βk
‖∇f(xsk)‖22 + βk‖xsk − xs0‖22

]
+
L2µ2d2ηk
βk2

.

(112)

Define the following Lyapunov function [20],

Rsk = E
[
f(xsk) + ck‖xsk − xs0‖22

]
, (113)

where ck > 0.

Based on (107) and (112), we obtain

Rsk+1 =E
[
f(xsk+1) + ck+1‖xsk+1 − xs0‖22

]
≤E[f(xsk)]−

(
ηk
2
− ck+1ηk

2βk

)
E
[
‖∇f(xsk)‖22

]
+ (ck+1 + ck+1βkηk)E

[
‖xsk − xs0‖22

]
+

(
L

2
η2
k + ck+1η

2
k

)
E
[
‖v̂sk‖22

]
+
d2L2µ2ηk

8
+
d2L2µ2ck+1ηk

2βk
. (114)

Substituting (111) into (114), we have

Rsk+1 ≤E [f(xsk)]−
(
ηk
2
− ck+1ηk

2βk

)
E
[
‖∇f(xsk)‖22

]
+ (ck+1 + ck+1βkηk)E

[
‖xsk − xs0‖22

]
+

(
L

2
η2
k + ck+1η

2
k

)
2L2dδn

b
E
[
‖xsk − xs0‖22

]
+

(
L

2
η2
k + ck+1η

2
k

)
4E
[
‖∇f(xsk)‖22

]
+

(
L

2
η2
k + ck+1η

2
k

)
µ2L2d2 +

d2L2µ2ηk
8

+
d2L2µ2ck+1ηk

2βk
. (115)
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Based on the definition of ck, i.e.,

ck =

(
1 + βkηk +

2dL2η2
kδn

b

)
ck+1 +

dL3η2
kδn
b

,

we can simplify (115) to

Rsk+1

(113)
≤ Rsk − γkE[‖∇f(xsk)‖22] + χk, (116)

where we recall that

γk =
1

2

(
1− ck+1

βk

)
ηk − 4

(
L

2
+ ck+1

)
η2
k,

χk =
1

2

(
1

4
+
ck+1

βk

)
L2d2µ2ηk +

(
L

2
+ ck+1

)
µ2L2d2η2

k.

Based on (116) and following the similar argument in (61)-(64), we have
S∑
s=1

m−1∑
k=0

γkE[‖∇f(xsk)‖22] ≤ E[f(x̃0)− f∗] + Sχm.

Consider γ̄ = mink γk and the distribution of choosing x̄, we obtain

E[‖∇f(x̄)‖22] ≤ E[f(x̃0)− f∗]
T γ̄

+
Sχm
T γ̄

. (117)

The rest of the proofs essentially follow along the lines of Corollary 1 under a different parameter
setting.

Since ck = ck+1(1 + θ) + dL3η2δn
b , we have ck ≤ c0 for any k, and θ = βη+ 2dL2η2δn

b . This yields

c0 =
dL3η2δn

b

(1 + θ)m − 1

θ
. (118)

When η = ρ/(Ld) and β = L we have

θ =
ρ

d
+

2ρ2δn
bd

≤ 3ρ

d
. (119)

Substituting (119) into (118), we have

ck ≤ c0 = δn
dL3

b

η2

θ
[(1 + θ)m − 1] = δn

ρL

b+ 2ρ
[(1 + θ)m − 1] ≤ δn

Lρ

b
(e− 1) ≤ δn

2Lρ

b
,

(120)

where the second equality holds similar to (71) under m = d d3ρe.

Based on (120) and the definition of γ̄, similar to (74)-(78) we can obtain
γ̄ ≥ηα0, (121)

where α0 > 0 is independent of T , d and b.

Since χm =
∑
k χk, it can be bounded as

χm ≤mη2

(
L

2
+ c0

)
µ2L2d2 +mη

d2L2µ2

8
+mη

d2L2µ2c0
2β

. (122)

From (120), we have L
2 + c0 ≤ L

2 + 2Lρb−1δn ≤ 5L
2 . Moreover, based on T = Sm and µ = 1√

d
√
T

,
we have

Sχm
T γ̄

≤ 5L2ρ

2α0T
+

dL2

8α0T
+
dρL2

α0bT
= O

(
1

T
+
d

T
+

d

bT

)
, (123)

where in the big O notation, we ignore the constant numbers that are independent of L, d, b, and T .

Substituting (121) and (123) into (13), we have

E[‖∇f(x̄)‖22] ≤ [f(x̃0)− f∗]
Tα0

Ld

ρ
+
Sχm
T γ̄

= O

(
d

T

)
. (124)

�
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A.9 Auxiliary Lemmas

Lemma 4 Let {zi}ni=1 be a sequence of n vectors. Let I be a mini-batch of size b, which contains
i.i.d. samples selected uniformly randomly (with replacement) from [n]. Then

EI

[
1

b

∑
i∈I

zi

]
=

1

n

n∑
j=1

zj . (125)

When
∑n
i=1 zi = 0, then

EI

∥∥∥∥∥1

b

∑
i∈I

zi

∥∥∥∥∥
2

2

 =
1

bn

n∑
i=1

‖zi‖22. (126)

Proof: Based on the definition of I , we immediately obtain EI
[

1
b

∑
i∈I zi

]
= Ei[zi] = 1

n

∑n
j=1 zj .

Since Ei,j [zizj ] = Ei[zi]Ej [zj ] = 0 for i 6= j, we have

E

∥∥∥∥∥1

b

∑
i∈I

zi

∥∥∥∥∥
2

2

 =
1

b2

∑
i∈I

E[‖zi‖22] =
1

b
Ei[‖zi‖22] =

1

bn

n∑
i=1

‖zi‖22. (127)

The proof is now complete. �

Lemma 5 Let {zi}ni=1 be a sequence of n vectors. Let I be a uniform random mini-batch of [n] with
size b (no replacement in samples). Then

EI

[
1

b

∑
i∈I

zi

]
=

1

n

n∑
j=1

zj . (128)

When
∑n
j=1 zj = 0, then

EI

∥∥∥∥∥1

b

∑
i∈I

zi

∥∥∥∥∥
2

2

 ≤ I(b < n)

bn

n∑
i=1

‖zi‖22, (129)

where I is an indicator function, which is equal to 1 if b < n and 0 if b = n.

Proof: See [23, Lemma A.1]. �

Lemma 6 For variables {zi}ni=1, we have∥∥∥∥∥
n∑
i=1

zi

∥∥∥∥∥
2

2

≤ n
n∑
i=1

‖zi‖22. (130)

Proof: Since φ(x) = ‖x‖22 is convex, the Jensen’s inequality yields ‖ 1
n

∑
i zi‖22 ≤

1
n

∑
i ‖zi‖22. �

Lemma 7 if f is L-smooth, then for any x,y ∈ Rd

|f(x)− f(y)− 〈∇fi(y),x− y〉| ≤ L

2
‖x− y‖22. (131)

Proof: This is a direct consequence of A2 [23]. �

A.10 Application: black-box classification

Real dataset Our dataset consists of N = 1000 crystalline materials/compounds, each of which
corresponds to a numerical valued feature vector ai. The feature vector encodes chemical information
regarding constituent elements. There exist d = 145 attributes, such as, stoichiometric properties,
elemental statistics, electronic structure properties attributes, and ionic compound attributes [38]. The
label information yi ∈ {0, 1} (conductor against insulator) is determined using DFT calculations
[34]. We equally divided the data into a training and test set.
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Parameter setting In our ZO algorithms, unless specified otherwise, the length of each epoch is
set by m = 50, the mini-batch size is b = 10, the number of random direction samples is q = 10, the
initial value is given by x̃0 = 0, and the smoothing parameter follows µ = 1/

√
dT . For ZO-SGD,

ZO-SVRC and ZO-SVRG, we choose η = 5
d suggested by Corollary 1 and [24, Corollary 3.3]. Also

ZO-SVRC updates J = 1 coordinates per iteration within an epoch.

A.11 Application: generating universal adversarial perturbations from black-box DNNs

Problem formulation In image classification, adversarial examples refer to carefully crafted
perturbations such that, when added to the natural images, are visually imperceptible but will lead
the target model to misclassify. When testing the robustness of a deployed black-box DNN (e.g.,
an online image classification service), the model parameters are hidden and acquiring its gradient
is inadmissible. But one has access to the input-output correspondence of the target model F (·),
rendering generating adversarial examples a ZO optimization problem.

We consider the task of generating a universal perturbation to a batch of n = 10 images via iteratively
querying the target DNN. These images are selected from the class of digit “1” and are all originally
correctly classified by the DNN. In problem (1), let fi(x) = c ·max{Fyi(0.5 · tanh(tanh−1 2ai +

x))−maxj 6=yi Fj(0.5 · tanh(tanh−1 2ai + x)), 0}+ ‖0.5 · tanh(tanh−1 2ai + x)− ai‖22 be the
designed attack loss function of the ith image [3, 35]. Here (ai, yi) denotes the pair of the ith natural
image ai ∈ [−0.5, 0.5]d and its original class label yi. The function F (z) = [F1(z), . . . , FK(z)]
outputs the model prediction scores (e.g., log-probabilities) of the input z in all K image classes. The
tanh operation ensures the generated adversarial example 0.5 · tanh(tanh−1 2ai + x) still lies in
the valid image space [−0.5, 0.5]d. The regularization parameter c trades off adversarial success and
the `2 distortion of adversarial examples. In our experiment, we set c = 1 and use the log-probability
as the model output. The reported `2 distortion is the least averaged distortion over the n successful
adversarial images relative to the original images among the S iterations. And in our algorithms, we
set µ = 1√

dT
and η = 30

d .

Figure A1: Black-box attack loss versus number of queries.

Generated adversarial images Table A1 displays the original images and their adversarial exam-
ples generated by ZO-SGD and ZO-SVRG. Their statistics are given in Fig. 3. Table A2 shows
another visual comparison chart of digit class “4”.
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Table A1: Comparison of generated adversarial examples from a black-box DNN on MNIST: digit class “1”.

Image ID 2 5 14 29 31 37 39 40 46 57

Original

ZO-SGD

Classified as 7 7 3 3 3 3 3 3 3 7

ZO-SVRG
q = 10

Classified as 3 3 3 3 3 3 3 3 3 3

ZO-SVRG
q = 20

Classified as 7 7 3 3 3 3 3 3 3 7

ZO-SVRG
q = 30

Classified as 7 7 3 3 3 3 3 3 3 7

Table A2: Comparison of generated adversarial examples from a black-box DNN on MNIST: digit class “4”.

Image ID 4 6 19 24 27 33 42 48 49 56

Original

ZO-SGD

Classified as 9 9 9 9 9 2 9 9 9 9

ZO-SVRG
q = 10

Classified as 9 9 7 9 9 5 9 9 9 9

ZO-SVRG
q = 20

Classified as 9 9 9 9 9 5 9 9 9 9

ZO-SVRG
q = 30

Classified as 9 9 7 9 9 0 9 9 9 9
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