Appendix

A Supplementary material

A.1 Zeroth-order (ZO) gradient estimators

With an abuse of notation, in this section let f be an arbitrary function under assumptions Al and A2.
Lemmal[Jl shows the second-order statistics of RandGradEst.

Lemma 1 Suppose that Assumption Al holds, and define a randomized smoothing function
fu = Euev, [f (x + pu)], where Uy, is a uniform distribution over the unit Euclidean ball. Then
RandGradEst yields:

1) f, is L-smooth, and
V /(%) = By {W(x)}, (15)

where u is drawn from the uniform distribution over the unit Euclidean sphere, and v f(x) is given
by RandGradEst.

2) For any x € R%,

1,00 — 0] < 1 16
V5,00 - VS0l < AL an
SIv el ~ EE < 9013 < 219G + L 19
3) For any x € RY,
B (19760 = V£, 001] < B [19760018] < 20i9 56013+ 5 o)

Proof: First, by using [16, Lemma4.1.a] (also see [37] and [13]), we immediately obtain that f,, is
L,, smooth with L,, < L, and

V50 = B | 40+ pau] 0)

Since Ey[(d/u) f (x)u] = 0, we obtain (T3)).
Next, we obtain (I6)-(I8) based on [16, Lemma4.1.b]. Moreover, we have
IV £ )13 =IIV fu(x) = VF(x) + V()13
<2|VF)II5 + 21V Fu(x) = V)3

2d2L2
<2 VFlE+ 55 @
where the first inequality holds due to Lemma[6] Similarly, we have
(1) w2d?L?
IV = [V fu(x) + V() = VX3 < 2VAEIE+ =—F— (22)
which yields
1 urL%d?
195,13 2 19763 - E 23)

In (T9), the first inequality holds due to (T3) and E[||a — E[a]||3] < E[||a||3] for a random variable a.
And the second inequality of (T9) holds due to [16, Lemma4.1.b]. The proof is now complete. [

In Lemmal[2] we show the properties of Avg-RandGradEst.
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Lemma 2 Following the conditions of Lemmall| then Avg-RandGradEst yields:
1) For any x € R?

Vi) =E [Vx)], 4
where V f (x) is given by Avg-RandGradEst.

2) For any x € R?

(1960 - 71,001E] < B 197000] <2 (14§ ) 100t + (147 ) 5
(25)

Proof: Since {u;}7_, are i.i.d. random vectors, we have
E[V(x)] =Eu [VFixu)] © vrx), 26)

where V£ (x; ;) = £ [f(x + ;) — f(x)]us.

In (23), the first inequality holds due to (24) and E[||a — E[a]||3] < E[||al|3] for a random variable a.
Next, we bound the second moment of V f(x)

3] ==

= V)l +E

2

S (Vi) = VA)) + VAl
i=1 2

q 2

Z (Vf X;u;) Vfu(x)>

2
194Gl + 28 [[¢ i) - V400 @7

where the expectation is taken with respect to i.i.d. random vectors {u;}, and we have used the fact

that E[[|V £ (x; ;) — V £,.(x)[|3] = E[||V £ (x;u1) — V f,.(x)||3] for any 4. Substituting (T8) and (T9)
into (27), we obtain (23] O

In Lemma[3] we demonstrate the properties of CoordGradEst.

Lemma 3 Let Assumption Al hold and define f,,,(x) = Ey v ju,.1,) f (x+uer), where Ul —pug, pue]
denotes the uniform distribution at the interval [—puy, 11¢]. We then have:

1) fu, is L-smooth, and

d
Vi) =) Uul®), (28)

x
= O

where V f(x) is defined by CoordGradEst, and O f |0z denotes the partial derivative with respect to
the Cth coordinate.

2) For £ € [d),
60— F0] < 222 9)
oo e

3) For ( € [d],
|V fx) —Vf(x)Hz < idiﬂ% (31)



Proof: For the (th coordinate, it is known from [7, Lemma 6] that f,,, is L-smooth and
Ofue (%) _ F(X A+ pee) — f(x — peer)

32
Oz 2114 G2
Based on (32) and the definition of CoordGradEst, we then obtain (28).
The inequalities (29) and (30) have been proved by [7, Lemma 6].
Based on (28) and (30), we have
J 2
= aft af(x)
\V4 _ H He
H e > (-0
0fu,(x)  Of(x) | _ L2
(9£L‘z axg Z He,
where the first inequallty holds due to Lemmal[6]in Sec.@} The proof is now complete. O

A.2 Control variates

The gradient blending in Step 6 of SVRG (Algorithm 1) can be interpreted using control variate
[28-30]. If we view gy := V fr(x) as the raw gradient estimate at x, and ¢ := V fz(X) as a
control variate satisfying E[c] = V f(X), then the gradient blending (2) becomes a gradient estimate
modified by a control variate, § = gy — (¢ — E[c]). Here g has the same expectation as g, i.e.,
E[g] = E[go] = V f(x), however, has a lower variance when c is positively correlated with g (see a
detailed analysis as below).

Consider the following gradient estimator,
g = 8o — n(c —E[c]), (33)

where g is a given (raw) gradient estimate, 7 is an unknown coefficient, and c is a control variate. It
is clear that g has the same expectation as gy. We then study the effect of ¢ on the variance of g,

tr(cov(g)) = tr(cov(gg)) + n? tr(cov(c)) — 2ntr(cov(go, c)), 34
where tr(-) denotes the trace operator, and cov(+) is the covariance operator. When 7 = %
the variance of g in (34) is then minimized, leading to

tr(cov(g)) = tr(cov(go)) (1 — p(&o,c)?), (33)
where p(go,c) = tr(cov(go.c)) In (33), p(&0, ¢) indicates the correlation strength between

Vtr(cov(go))y/tr(cov(e))’
go and c. Therefore, the gradient estimate g has a smaller variance than g, when the control variate
c is positively correlated with the latter. Moreover, if ¢ is chosen similar to g, then 7 would be close
to 1.

A.3 Proof of Proposition 1

In Algorithm 2, we recall that the mini-batch Z is chosen uniformly randomly. It is known from
Lemmal] and Lemmal[3l that

B, [V 5, (ct) = Vi (3)] = VI (k) = VI (x3)- (36)
We then rewrite v} as

‘Aflsc :ﬁfl—k (XZ) - ﬁflk (Xg) - E-Zk [ﬁflk (Xi) - @fl—k (X(S))] + ﬁf(xi) (37)

Taking the expectation of || v;||3 with repsect to all the random variables, we have
E[I¥313] <2E [V £z, (<) = V2, (x3) = Ex, [V f5, (x}) = V7 05)] 3] +2E [11V £oc3) 3]

<2 |V /2, (x}) = Vi, (x3) ~ Ex, [V 2, (x}) = V7, (3] 3]
+4dE [|[V f(xg)||3] + p2d?L?, (38)
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where the first inequality holds due to Lemmalf] and the second inequality holds due to (T9). Based
on (36), we note that the following holds

n

>~ {VAGR) - V) — Br[Viz, (x}) — Vi (x5)] |

i=1
=n(Vf(x}) = Vf(x5)) = n(Vf(x}) = Vf(x5)) = 0. (39)
Based on (39) and applying Lemmafd]and [5] the first term at the right hand side (RHS) of (38) yields

E|IV 2, (x}) = Vf5,(3) — E5, [V 5, (}) = V £z, (55)] 3]

<2 SR [I95:60) - 9Hix) - (95061) — 96 ]

b (1w . ) )
=E | <:L S IVEix) = VEEDIE - Vi) — Vf(XS)H%)]
i=1
On - )
<5 2B [I9A6xt) - 94 GIE] o)

where the first inequality holds due to Lemmaf] and [3] (taking the expectation with respect to
mini-batch 7), we define §,, as

5 = { 1 if 7 contains i.i.d. samples with replacement (Lemmad]) 1)

I(b <n) ifZ contains samples without replacement (Lemmal3)),

I(b < n)=1ifb < nand 0 otherwise, and the second equality in holds since + 37" | [|x; —
all3 = & 321 [Ixill3 — [l whena = 1 3%, x;.

Substituting (@0) into (38), we obtain

L] 25" S = s = s s
E[19118) <22 S B [I1A:0) — Vi0)13] + 44 [IVF)I) + L2 @2)
=1

Similar to LemmalI] we introduce a smoothing function f; ,, of f;, and continue to bound the first
term at the right hand side (RHS) of #2). This yields

E [V fi(x}) = Vi3I
(0 - .
< 3B [V Ai(x3) = Vi3] + 3E [V fiu(x5) = Vi (x5)113]
+3E [V fiu(x3) = V fiun(x3)13]
(1]
S6dE[||V fi(x3)[13] + 6dE[[|V fi(xp)[|5] + BL2d*p® + 3E ||V fi,u(x}) — Viu(x5)3] - (43)
Since both f; and f; , are L-smooth (Al and LemmaE[), we have

E IV fiu(xi) = Viiu(x3)I3] < LZE [lIx —x5l3] , (44)
E IV fi(xp)lI3] < 2E [[Vfi(x5) = VFi(xp)l3] + 2B [V fi(x3)]3]
<2L°E [|Ix5 — x;[13] + 2E [V £i(x)113) - (45)

Substituting (@4) and (@3) into (@3], we obtain
E[IV/i(xi) = Vil
<I8dE[|V fi(x})|13] + (12d + 3)L’E [||xg — x;[3] + 3L%d*p*
<36dE [||V f;(x}) — VF(xi)[13] + 36dE [|IV f(x}) 3]
+ (12d + 3)L°E [||x§ — x3[13] + 3L%d*1°. (46)
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Furthermore, we obtain

%ZE IV 1:x0) =V £ilx3) 3]

1 - S S S
<36dE - Z IV fi(x5) = V3| + 36dE [|IV f(x})]3]
=1
+ (12d + 3)L°E [||x§ — x;|13] + 3L%d* > (47)
<36do? + 36dE [[|V f(x})|13] + (12d + 3)L?E [||x§ — x;[|3] + 3L*d*1?, (48)

where the last inequality holds due to Assumption A2.
Substituting into (2)), we have

s 66, (4d + 1)L? . .
E [[¥il5] <—=———F [Ix; — xi|2]
72d6,, . 64y, 72do?5,
+ (4d+ ; ) E[IVf(x)II3] + (1 + b) d’L*u® + — 49
The proof is now complete. U

A.4 Proof of Theorem 1
Since f, is L-smooth (Lemma, from Lemma in Sec.we have

s s s L s
Fu(Khin) <L) + (Va0 Xign = x0) + 5 75 — %23

oy Lo
=Fu (%) = me(V (60, 93 + SV, (50)

where the last equality holds due to xj , ; = xj — 1 V}. Since xj, and x{ are independent of Z, and
random directions u used for ZO gradient estimates, from (T3) we obtain

Euz, 1] =Buz, |Viz () = Vfz, (x5) + V(x5)]
=V Iu(x3) + VIu(x5) = VIu(x5) = VIu(x3)- 1
Combining (50) and (51)), we have

E [fu(xis1)] <E[fu(xi)] = mE [V fu(x)3) + gniﬂ‘l AR (52)

where the expectation is taken with respect to all random variables.

At RHS of (52), the upper bound on E [||¥ ||3] is given by Proposition 1,

oo A(b+185,)d . 6(4d+ 1)L, - . .
i3 <0 g 1w pgi) + D g [ )

(65, + b)L2d*u?  72do?6,
+ + .
b b
In (33), we further bound I [||x ; — x§[|3] as

(53)

E [[Ix741 — x4/15] = E [IIx341 — x5 + x3 — x5/13]
=B (Vi3] + E [lIx; — x5113] — 20E [(V, x5} — x3)]
&1 R
=B (Vi3] + E [[Ix} — x5l5] — 2mBE [(V fu(x3), %7, — x5)]

~8 s s 1 s Bk
<niE [”Vk“%] +E [ka - Xo”g} + 2 E m”vfu(xk)\\% +

X =xglz| 64

where (3} is a positive coefficient, and the last inequality holds since (a, b) < w for

any a and b, and 5 > 0.
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Now with (33) and (54) at hand, we introduce a Lyapunov function [20] with respect to f,,,

k= B[ 0e) + eullxi = xll2] (55)
for some ¢;, > 0. Substituting (32) and (54 into R;_,, we obtain

Rty =E [ (k1) + cur ks - 513
S S L <7
<E | fulxh) ~ VA GDIE + SRV
FE [ann 9513 + cun g - x5

Ck nk s s
+E[ 9, x >||§+ck+15knk|xkxo|§}

—E[f,(x})] - (nk - ’“;”") E IV (<) 2]

S S L ~ S
+ (Crg1 + cr1Bemi) B [IIx5 — x§113] + (277/% + Ck+177;%) E[[vil3] . (56)

Moreover, substituting (53] into (36), we have

1 <Elfu(x)] - (nk—W)E[nvm(xmz]+<ck+1+ck+lﬁknk>Eﬂ|xz—x3||§]

L 6(4d + 1)L36,, .

+ (g b ) R (g -1
L Adb + 72d6,, .

+ (g +ann) 00 (v s

L 69, + b)L2d%u? + 72d025
+ ( 5 77k + Ck+177k> ( ) bﬂ (57)

2 2
Based on the definition of ¢ = cp 1 + Benrcrr1 + 6(4514'1)#%

definition of R§ in (33)), we can simplify the inequality (57) as

S S C 77 S
Ry, <Ri - (nk - gk> E [V £ (<t) 2]

3(4d+1) L35, n?
b

1+ 2Tk and the

L 4db + 72d9,, B
+ (gt + o) R (9SGt ]
L (66, + b)L2d*pu? + 72do?6,,
+ ( =m¢ + cesamy
2 b
© 1 Ch 17k 2 chyriy | prd*L?
<RS- = — -
DRt g (= S B[V + (e - S )
4db + 72d6,, R
+ ( i+ i ) S (|96 ]
(65, + b)L2d?u? + 72do?6,,
+ k + ck+177 b
=R - WE [IVFGIE] + X (58)
where v and yj are coefficients given by
1 Clht1 L 4db + 72dd,, o
=-(1- -z e 5
T =5 ( By >Tik <2 +Ck+1> b Mies (59)
L 66, + b)L2d?p? + 72do?6,, ¢ 2d%L?
Xk = |5t Cht1 ( ) a m+(1- 2 s M- (60)
2 b Bk 4
In the second inequality of (58), we have used the fact that 1 — C’g—“ > 0. This holds for some
parameter 7, under the condition that y; > 0. Evenif 1 — % < 0 (relaxing the condition y; > 0), a
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similar inequality can be obtained using the upper bound of ||V f,,(x{)||3 in (T8). Therefore, without
loss of generality, we consider 1 — CZ% > 0.
Taking a telescopic sum for (58), we obtain

m—1

Ry, <R§ = > wE [V A)I15] + xom, 61)
k=0

where X, = S 1" X&- It is known from (53) that

Ry =E[fu(xq)], Ry, =E[fu(x;,)], (62)
where the last equality used the fact that ¢, = 0. Since X;_; = x{ and X; = x;,, we obtain
R(SJ - an =E [f,u(is—l) - flt(is)] . (63)
Substituting (63) into (61)) and telescoping the sum for s = 1,2, ..., S, we obtain
S m-—1
SO REVAEDIE] < Elfu(Ro) = fu(%s)] + SXm- (64)
s=1 k=0

Denoting f;; = miny f,,(x), from (I3) we have f,,(%o) — f(%o) < ”ZL and f* — f; < “%L, where
f* = miny f(x). This yields

Fu(%0) = fu(%s) < fu(Xo) = fi < (F(%0) = f*) + 1*L. (65)
Substituting (63) into (64), we have
S m—1
> MENVx)I3] < ELf (o) = ]+ L + Sxom. (66)
s=1 k=0

Let 7 = miny, 4 and we choose X uniformly random from {{x} }7"-,'}5_,, then ZO-SVRG satisfies

s=1>
- E[f(f(o) - f*] L,uz SXm

E N Lo T : 67

IV F)I3) < =20 + e+ 5 (©7)

The proof is now complete. O

A.5 Proof of Corollary 1
We start by rewriting ¢ in (8) as
3(1 +4d)L36,n?
e = (14 O)cyy 4+ S ADL 0w (68)

b i

where 6 = On + 8 . The recursive formula (68)) implies that ¢, < ¢, for any k, and

1+4d)L>5,,n>
b
3(1+4d)L36,n* (1+6)™ — 1
Co = b 9 .

Based on the choice of n = ﬁ and § = L, we have

(69)

p  6p%8, 24p%5, _3lp
0== < —
d + bd? + bd — d’

where we have used the fact that 6,, < 1. Substituting (70) into (69), we have

3(1 + 4d) L35, n? m 3(1 + 4d)Lpé,, m
Ck§0027)*[(1+9) _1]:dlg+24pzl+6p[(1+9) —1]

b 0
< 15dLpd, 30Lp6,
b )

< =22

(70)

< 15Lpb,

+om - 1) < =

(e—1) < (71)
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where the third inequality holds since (1 + 6)™ < (1 + 22)™ m = (smw (14 1/a)*

lim, o0 (1 + %)a = e for a > 0 [20, Appendix E], and for east of representation, the last 1nequa11ty
loosely uses the notion ‘<’ since e < 3.

We recall from (5) and (6) that

S —  mi M Cky1Me o (L 72d0oy,
T 0<k<m 1 { 2 2% Tk <2 * Ck“) (4d * b ' 72)
Since nx, =1, B = B, and ¢ < ¢, we have
.M ¢ 9 36d 72d0o,,
> 20, 2p(eg+ 28 - .
725" (d+b) 770< 2 (73)
From and the definition of 3, we have
Co 15p
— < — 4
267 b 74
e (24 50) <o (24 F) )
72d6, \ @ p 30Lp 72d 120p%  2160p2
< —— (4d+ < . 76
7’60( b)Ldb( b) b (76)
Substituting (74)-(76) into (73), we obtain
) 1 15 240p° 1
>n=— =28 4y >n(=—
7_77<2 A b > _77(2 259p), 7

where we have used the fact that p?> < p. Moreover, if we set p < =g, then ¥ > 0. In other
words, the current parameter setting is valid for Theorem 1. Upon defining a universal constant
ap = (3 —259p), we have

Y 2nag. (78)

Next, we find the upper bound on Y., in (7) given the current parameter setting and ¢ < ¢,

22L2 L 2 2 L222
wid +mn2(2+co)7da(5n+(6(gn+b) du.

Xm < mn (79)

Since % +co < % +30Lpb~1 < % +2L = % (suppose b > 18 without loss of generality), based
on (78) we have

Xm d?L? 12 5L 72do25, p 5L (6L*d*>u%s, 99 2\ P
<m —_— — | ————+ L“d —. 80
5 " oy M2ag b Ld ™20 p B ) g G0
Since T'= Sm, and p = \/%, the above inequality yields
SXm _ dL? 18002p8, 5L? (6 P d O,
< 11==0(=+— 81
T’_)/ _4aoT + bOéO * %00 2050 b + T T + b ’ ( )

where in the big O notation, we only keep the dominant terms and ignore the constant numbers that
are independent of d, b, and 7T'.

Substituting and (BT) into (5), we have
S ok 2
LR L Ay

E[|Vf(®)|3] < i’
UV FG) <= ==+ g, + 7=

The proof is now complete. O
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A.6 Proof of Proposition 2
For RandGradEst, based on (I7) and (T9), we have

E[IV/(x) = VA&)3] < E [IV(x) = Vulx) + V) = V)3

<R [|97(x) — V£ () 3] + 20V £ () - V5 ()3
3L _

<4d| V1)1 + 2

O (d|Vf(x)|3 + p*L*d?). (83)

Similarly, for Avg-RandGradEst, based on (I7) and (23), we have
R 9 9 2L2d2
E (19160 - v701E] <t (14 ) 195Gl + (3+2) 15

—0 (“dw( )2 +u2L2d2) , (34)

where we have used the fact that % < 3.

Finally, using (3), the proof is then complete. O

A.7 Proof of Theorem 2
Motivated by Proposition 1, we first bound ||V ||3. Following (36)-(@2), we have
E[Iv;13] ZE IV 1:0) = V£ 1] + 2B [V £ (<) 3]
@b 26 . , d s 1
ZE [1956ct) = FAGDIE] + 4 (142 ) 1901+ (14 1) w22
(85)
Moreover, following (@3)-@7) together with (23)), we can obtain that

E IV £i(xi) = Vi(x)11]
d 2 d s\ (12 d 2 s 5112
<36 (1+ ) +36(1+ p E[IVf(x)II3] + 125 +15 ) L?||Ix§ — %53
1
+3 (1 + ) L2p2d>. (86)
q
Substituting (86) into (83)), we have
9 A(b + 186,,) d 4d .
e (193] <200 (1 DY mw i + 52 (4 5) 2t - w3l

L 00t (AN g T200 1+5l o2, 87)
b q b q

Following (54)-(36) and substituting (87)) into (56), we have
RS <E s\ _ _ Ck+17k E [V s\112 E 5 _ 52
Fr1 SE[fu(xp)] Tk B IV fux)I3] + (crr + err Beme) E [lIx — x5 3]
L 4d + 5¢)L%6,,
+ (g ) DD (g

+ (g ann) DO D (1)

L 69, + b)(q + 1) L2d?>u? + 72(q + d)o24,,
+<2k+0k+1nk>( )(q+1) bqu (4 +d)o"d, (88)
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Based on the definitions of ¢;, = {1 + Brnk + %ﬁ%nz} Cr+1+ 3(4%2)]‘35"7),% and Rj given

by (33)), we can simplify (88) to
s O, 1 Ch+1Mk s Ch1mk \ pld?L?
R SR 5 (- 2 ) 5 (197601 + (e
2 Bk Bk 4

L 728, + 4b)(q + d .
+ (g ) D D (1)

L 68, +b)(q+ 1)L2d%u? + 72(q + d)o36,
+ <2771% +Ck+177]%> ( )(q ) bq,u (q )

=Ry —wE [IVFx)3] + xx, (89)
where 7;, and x, are defined coefficients in Theorem 2.

Based on (89) and following the same argument in (61)-(67), we then achieve

- E[f(%0) = f*] | Li® | Sxm
E[IVF)3] < T e (90)

The rest of the proofs essentially follow along the lines of Corollary 1 with the added complexity of
the mini-batch parameter g in ¢y, v and y.

3,2
Let 0 = Brme + 6(4'”27;1%26”77,%, then ¢, = cp1(1+6) + %W. This leads to

o 3(4d+5q) L35, (1+0)™ — 1
0 — .

1
bq 0 o1
Based on the choice of 1 and 3, we have
p  24p%5,  30p%6, _ 55p
0== < —. 2
i Tbdg T b® — 4 ¢2)
Substituting (92)) into (O1)), we have
3(5+4d/q)L° n? 3(5+4d/q)Lp
<co= - m_ 1] = mo_
ey <cg=96, > 7 [(1+6) 1] =4, db+ 20pd/q + 30p[(l +0) 1]
3(5+4d/q)Lp 27Lp
<9,———|(1 m_11<4,———(1 m_1
< 0p 7 [(1+0) ]_5nbmin{d,q}[( +6) ]
27Lpd., 54Lpd.,
—(e- 1)< ——F—— 93
~ bmin{d, ¢} (e-1)< bmin{d, ¢}’ ©3)

where the third inequality holds since 5 + 4d/q < 9d/q if d > ¢, and 5 + 4d/q < 9 otherwise, and

the forth inequality holds similar to (7I)) under m = (%}.

According to the definition of ¥ = miny, 7y, we have

360, +2b d 720, + 4b d
2 28 by bq
From (93)) and the definition of 3 = L, we have
27
€0 P (95)

28 = bmin{d, ¢}’
Since n = p/(Ld), we have

nL(366n+26)(q+d)< 2p (36 )

— 42
bq ~ min{d, ¢} \ b +

where we used the fact that 5 + 1 < —2-—_ Moreover, we have
q min{d,q}

(7200, +4b)(g+d) _p  54Lp CAYE! +}
bq ~ L bmin{q, d} b

(96)

nco P p

1082 72
<— (4 + — 97
bmm{d,q}a( * b) oD

21



Substituting (93)-(7) into (94), and following the arguments in (78)), we obtain
¥ Zaon, (98)
where o > 0 is a universal constant that is independent of 7', d and b.

Based on yj, = (1 _ @) p3d L277 n (é +Ck+1) (665, +b)(q+1)L2{u2+72(q+d)a 5n 12, the upper

B q
bound on x,, = Y, Xk is given by
24212 L 66, + b)(q + 1) L2d*p* + 72(q + d)a?4,
p + o <2+CO) ( Ng+1) bqu +72(q+d)o .

Xm S1m (99)

Using (93) and assuming b > 18 (without loss of generality), then £ 5 +co < 5 L 54Lpb 1 < 7L.
This yields

Xﬂ<md2L2 1 L m TL (65, +b)(q+ DL*d* 1 p  m7L720* (1 1 5
5~ “ap 4 dT 2 by ATLd "o 2 b \d P
md moy,
<o(= 4 1
e
Since T' = Sm, we have
EASL el T — 101
Ty —O(T+bmm{d,q}) (on

Substituting (98) and (I0T)) into (5), we have

BVl <LEP LI, P S o (a2 ) am
O
A.8 Proof of Theorem 3
Since f is L-smooth, we have
Flxian) <H0) — VS 060). V3) + S 9313 (103)
Since x;, and x;j are independent of Z;, used in V fz, (x;) and @ fz,,(x3), we obtain
Bz, [Vi] = Vf(x}) + V(x3) = Vf(x5) = Vf(x}), (104)
where we recall that a deterministic gradient estimator is used. Combining (T03)) and (T04), we have
E [£(xi0)] <E[FG)] —mE [(VF6h), V)] + ZmE (N33 (109)
In (T03), we bound —2E [<v F(x3), f(xk)>] as,
—~2E [(V(x}), VI(x0)] <E [IVF(h) = Vi) I3] - [BIV £ (x3)I3]
QU B (1950l (106)

where the first inequality holds since —2(a, b) < ||a — b||3 — ||a||3, and we have used the fact that
e = 1 in the second inequality.

Substituting (T06) into (T03)), we have
, , L N L2d?p?
E [f(xi0)] SELFG] - ZE [IV£Geu)l3] + 502E [9)3] + ==,

3 (107)
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In (T07), we next bound E [||¥} ||3]. Following (36)-(@2), we have

A5 25“ - - s = s = s
E[Ivil3] <2 DB [IVAG) - VAGDIE] + 2B [IVFeIE] . aos)
=1
The first term at RHS of (T08) yields
L (0fine 0fin \|
v L o e
E[IV£i(xi) = V£i(x3)]3 } B2 ( oot e> 2
@ d of; of; d
<dY E||5- —“ < LY R (|2}, — 23,l3] = L2dE [||)x; — x5/13], (109)
— 81‘]6’[ 83:(“ ) —

where f; 1, (%) = Ey [0 fi (X + ueg) denotes the smooth function of f; with respect to its /th
O

coordinate (Lemma, xy, , denotes the /th coordinate of x3, is the /th partial derivative of

fi.ue at x;,, and the second inequality holds since f; ,, (x) is L- smooth (Lemma' 3) with respect to
the ¢th coordinate. From (31, the second term at RHS of (T08) yields

R 9 9 R @ L2d2 2
IVI)lz <2V )2 + 2V F(x) - 2|V f()3 + : (110)
where we have used the fact that py = p.
Substituting (T09) and (TT0) into (I08), we have
o5 (2 2Ldo, s 5012 2 272 2
E [[Wil13] < == —E [lIxi = x5 ]3] +4E [V ()lI3] + Ld*, (111)

Similar to (54), we have

s s s 1 - s s s
E[lIxtss — x312] < n2E [[9212] +E [Ixg — x312] + mE [ﬁknwana + Bl xon%}

0] 2 s s s L2:u’2d277k
= 2B [19218] + B [1xt - x513] + mB | 215G + Bullct — x| + 55
(112)
Define the following Lyapunov function [20],
= E[FO) + exlxi = x5l3] (113)

where ¢, > 0.

Based on (T07) and (T12)), we obtain

RZH =E [f(Xerl) + Ck+1HX2+1 - X(S)H%}

<Elf(ct)] - (7 - S5 ) B [IVS0DIE) + (e + cuna B [ — w318

d2L2N277k N d2L2M20k+1nk
8 28k

L S
+ <2ni + ck+mi> E [[[vill3] + (114)

Substituting (TTT)) into (T14), we have
s s Nk Ck+17k s s s
o <ELD] - (7 - S5 ) B IIODIE] + (e + s B [ — <318

2 28

L 212ds,, . L .
+ (g + ) 252 (i - xilg] + (5 + owent) 48 197 GxR) 1B
L d2L2 2 d2L2 2
+ 77’% +Ck+1771% P2L3d2 + L H Ck+177k.
2 8 20k

(115)
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Based on the definition of ¢, i.e.,
2dL2n,§5n) dL?’n,%dn
— | Ckt1 T —— —

Ck=(1+5knk+ 5 ,

we can simplify (TT3) to

{m3) .
Riy < Ri—nE[V I3+ X, (116)
where we recall that

1 Ck+1 L
T =3 (1— B )nk—4<2+0k+1 i

1 ¢ L
Xk == <4 + kzl) L2d? %y, + ( + ck+1) p2L2d%n?.

2

Based on (T16) and following the similar argument in (61)-(64), we have
S m-—1
DO wENVAE)I3] < ELf (%0) = ]+ Sxom-
s=1 k=0
Consider ¥ = miny, 7y and the distribution of choosing X, we obtain
. E[f(x0) = f*] | Sxm
B[V f()]3] <

T~ + Ty

(117)

The rest of the proofs essentially follow along the lines of Corollary 1 under a different parameter
setting.
Since ¢, = cp41(1+60) + %, we have ¢, < ¢ for any k, and 6 = Sn + %. This yields

AL, 1+ 0)™ -1

118
Co b 0 (118)
When n = p/(Ld) and 8 = L we have
P 2p%6, _3p
0== < —. 119
" d S d (1%
Substituting (TT9) into (I18)), we have
dL? n? pL Lp 2Lp
<cp=0p— 1+ -1 =4, 146" -1 <d,—(e—1) <dp,—,
¢k < Co b 9[(+) J b+2p[(+) ] < b(e ) b
(120)
. . . d
where the second equality holds similar to (7I)) under m = [51
Based on (120) and the definition of 7, similar to (74)-(78) we can obtain
3 >na, (121)
where oy > 0 is independent of T, d and b.
Since xm = Y, Xk, it can be bounded as
2 (L 27242 d*L?p? d*L? 1P co
Xm <mn* | = +co | p°L7°d” +mn +mn—————. (122)
2 8 25
From (120), we have % +cp < % +2Lpb~ 16, < % Moreover, basedon T' = Sm and p = ﬁ,
we have
Sxm _5L%p  dL®  dpL? 1 d d
< =0(=+=+— 123
T’7 _20é0T + SQQT + aobT T + T + T ’ ( )

where in the big O notation, we ignore the constant numbers that are independent of L, d, b, and 7.
Substituting (I21)) and (T23)) into (13), we have

oy G = FVLd S _ ) (d
BlIv sy < [EP= LI, Sxn o (1)),

T (124)

O
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A.9 Auxiliary Lemmas

Lemma 4 Let {z;}}_, be a sequence of n vectors. Let T be a mini-batch of size b, which contains
i.i.d. samples selected uniformly randomly (with replacement) from [n). Then

I | 1
Er gZzi :EZZJ" (125)
i€ j=1
When ", z; = 0, then
1 1 1
_ e
Ez gzzi _%ZHZZH? (126)
i€l 2 i=1
Proof: Based on the definition of Z, we immediately obtain E7 [+ >, 7 z;| = E;[z;] = 1 Z;.Lzl z;.

Since E; ;(z;z;] = E;[z;]E;[z;] = 0 for ¢ # j, we have

2
1
gzzi =32 Z]E [lzill3] = - E:lllz:3] lezzllz (127)

€T 2 i€

The proof is now complete. O

Lemma 5 Let {z;}!" ;| be a sequence of n vectors. Let T be a uniform random mini-batch of [n] with
size b (no replacement in samples). Then

224 = %sz. (128)
j=1

ieT
When 2?21 z; = 0, then

ZZZ

LEI

I(b<n) ¢
< HOE S g, (129)

where I is an indicator function, which is equal tolifb<nand0ifb=n.
Proof: See [23, LemmaA.1]. O

Lemma 6 For variables {z;}},, we have

n

2
D=
2

i=1

<0 a3 (130)
i=1

Proof: Since ¢(x) = ||x||3 is convex, the Jensen’s inequality yields ||+ >, z;[|3 < L 3. ||z;[|3. O
Lemma 7 if f is L-smooth, then for any x,y € R?

769~ F) — (Vi) x -yl < 5 - I (131)
Proof: This is a direct consequence of A2 [23]. O

A.10 Application: black-box classification

Real dataset Our dataset consists of N = 1000 crystalline materials/compounds, each of which
corresponds to a numerical valued feature vector a;. The feature vector encodes chemical information
regarding constituent elements. There exist d = 145 attributes, such as, stoichiometric properties,
elemental statistics, electronic structure properties attributes, and ionic compound attributes [38]. The
label information y; € {0, 1} (conductor against insulator) is determined using DFT calculations
[34]. We equally divided the data into a training and test set.
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Parameter setting In our ZO algorithms, unless specified otherwise, the length of each epoch is
set by m = 50, the mini-batch size is b = 10, the number of random direction samples is ¢ = 10, the
initial value is given by %o = 0, and the smoothing parameter follows x = 1/v/dT. For ZO-SGD,
Z0O-SVRC and ZO-SVRG, we choose 1 = % suggested by Corollary 1 and [24, Corollary 3.3]. Also
Z0O-SVRC updates J = 1 coordinates per iteration within an epoch.

A.11 Application: generating universal adversarial perturbations from black-box DNNs

Problem formulation In image classification, adversarial examples refer to carefully crafted
perturbations such that, when added to the natural images, are visually imperceptible but will lead
the target model to misclassify. When testing the robustness of a deployed black-box DNN (e.g.,
an online image classification service), the model parameters are hidden and acquiring its gradient
is inadmissible. But one has access to the input-output correspondence of the target model F(-),
rendering generating adversarial examples a ZO optimization problem.

We consider the task of generating a universal perturbation to a batch of n = 10 images via iteratively
querying the target DNN. These images are selected from the class of digit “1” and are all originally
correctly classified by the DNN. In problem (1), let f;(x) = ¢ - max{Fy, (0.5 - tanh(tanh*1 2a; +
x)) — max,,, F;(0.5 - tanh(tanh ™' 2a; + x)),0} + ||0.5 - tanh(tanh ™" 2a; + x) — a;||3 be the
designed attack loss function of the ith image [3, 35]. Here (a;, y;) denotes the pair of the ith natural
image a; € [—0.5,0.5] and its original class label y;. The function F(z) = [Fy(z),..., Fk(z)]
outputs the model prediction scores (e.g., log-probabilities) of the input z in all K image classes. The
tanh operation ensures the generated adversarial example 0.5 - tanh(tanh_1 2a; + x) still lies in
the valid image space [—0.5,0.5]%. The regularization parameter c trades off adversarial success and
the /- distortion of adversarial examples. In our experiment, we set ¢ = 1 and use the log-probability
as the model output. The reported ¢ distortion is the least averaged distortion over the n successful
adversarial images relative to the original images among the .S iterations. And in our algorithms, we

setu:ﬁandn:%.
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——Z0-SGD
5f Z0-SVRG-Ave (g=10)
—— Z0-SVRG-Ave (g=20)
|~ Z20-SVRG-Ave (g=30)

Black-box attack loss

10° 10? 10* 10° 108
guery counts

Figure A1: Black-box attack loss versus number of queries.

Generated adversarial images Table[A1|displays the original images and their adversarial exam-
ples generated by ZO-SGD and ZO-SVRG. Their statistics are given in Fig. 3. Table[A2] shows
another visual comparison chart of digit class “4”.
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Table A1: Comparison of generated adversarial examples from a black-box DNN on MNIST: digit class “1”.

Image ID 29
Classified as
ZO-SVRG . - 3 :
Classified as 3 3 3 3 3 3 3 3 3 3
ZO-SVRG | - '} -
q=20 ; ! i {
Classified as 7 7 3 3 3 3 3 3 3 7
Z0-SVRG B B ' 4
Classified as 7 7 3 3 3 3 3 3 3 7

Table A2: Comparison of generated adversarial examples from a black-box DNN on MNIST: digit class “4”.

Image ID

Original

171 &2 1 3 21 T A T A

Z0-SGD

Classified as

E1 5 Kl B B E AL E

Z0O-SVRG
=10

Classified as

1 &4 E1 83 E1 22 B2 E1 K1 E]

Z0O-SVRG
q=20

Classified as

£l 54 £ B E1 B 1 E1 61 B

ZO-SVRG
q=30

Classified as

ElEE BB E1R B
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