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Abstract

As application demands for zeroth-order (gradient-free) optimization accelerate,
the need for variance reduced and faster converging approaches is also intensifying.
This paper addresses these challenges by presenting: a) a comprehensive theoretical
analysis of variance reduced zeroth-order (ZO) optimization, b) a novel variance
reduced ZO algorithm, called ZO-SVRG, and c) an experimental evaluation of
our approach in the context of two compelling applications, black-box chemical
material classification and generation of adversarial examples from black-box deep
neural network models. Our theoretical analysis uncovers an essential difficulty
in the analysis of ZO-SVRG: the unbiased assumption on gradient estimates no
longer holds. We prove that compared to its first-order counterpart, ZO-SVRG with
a two-point random gradient estimator could suffer an additional error of order
O(1/b), where b is the mini-batch size. To mitigate this error, we propose two
accelerated versions of ZO-SVRG utilizing variance reduced gradient estimators,
which achieve the best rate known for ZO stochastic optimization (in terms of
iterations). Our extensive experimental results show that our approaches outperform
other state-of-the-art ZO algorithms, and strike a balance between the convergence
rate and the function query complexity.

1 Introduction

Zeroth-order (gradient-free) optimization is increasingly embraced for solving machine learning
problems where explicit expressions of the gradients are difficult or infeasible to obtain. Recent
examples have shown zeroth-order (ZO) based generation of prediction-evasive, black-box adversarial
attacks on deep neural networks (DNNs) as effective as state-of-the-art white-box attacks, despite
leveraging only the inputs and outputs of the targeted DNN [1H3]. Additional classes of applications
include network control and management with time-varying constraints and limited computation
capacity [4}15], and parameter inference of black-box systems [6}[7]. ZO algorithms achieve gradient-
free optimization by approximating the full gradient via gradient estimators based on only the function
values [18, 9].

Although many ZO algorithms have recently been developed and analyzed [55, [10-18]], they often
suffer from the high variances of ZO gradient estimates, and in turn, hampered convergence rates. In
addition, these algorithms are mainly designed for convex settings, which limits their applicability in
a wide range of (non-convex) machine learning problems.

In this paper, we study the problem of design and analysis of variance reduced and faster converging
nonconvex ZO optimization methods. To reduce the variance of ZO gradient estimates, one can draw
motivations from similar ideas in the first-order regime. The stochastic variance reduced gradient
(SVRG) is a commonly-used, effective first-order approach to reduce the variance [19-23]]. Due to
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the variance reduction, it improves the convergence rate of stochastic gradient descent (SGD) from
o(1/ \/T) to O(1/T), where T is the total number of iterations.

Although SVRG has shown a great promise, applying similar ideas to ZO optimization is not a trivial
task. The main challenge arises due to the fact that SVRG relies upon the assumption that a stochastic
gradient is an unbiased estimate of the true batch/full gradient, which unfortunately does not hold in
the ZO case. Therefore, it is an open question whether the ZO stochastic variance reduced gradient
could enable faster convergence of ZO algorithms. In this paper, we attempt to fill the gap between
Z0 optimization and SVRG.

Contributions We propose and evaluate a novel ZO algorithm for nonconvex stochastic optimization,
ZO-SVRG, which integrates SVRG with ZO gradient estimators. We show that compared to SVRG,
ZO-SVRG achieves a similar convergence rate that decays linearly with O(1/T") but up to an
additional error correction term of order 1/b, where b is the mini-batch size. We show that this
correction term will be eliminated as the full batch of data is used, corresponding to b = n where
n is the number of data samples. In this scenario, ZO-SVRG would reduce to ZO gradient descent
(ZO-GD) [13]. However, without a careful treatment, this correction term (e.g., when b is small)
could be a critical factor affecting the optimization performance. To mitigate this error term, we
propose two accelerated ZO-SVRG variants, utilizing reduced variance gradient estimators. These
yield a faster convergence rate towards O(d/T'), the best known iteration complexity bound for ZO
stochastic optimization.

Our work offers a comprehensive study on how ZO gradient estimators affect SVRG on both iteration
complexity (i.e., convergence rate) and function query complexity. Compared to the existing ZO
algorithms, our methods can strike a balance between iteration complexity and function query
complexity. To demonstrate the flexibility of our approach in managing this trade-off, we conduct an
empirical evaluation of our proposed algorithms and other state-of-the-art algorithms on two diverse
applications: black-box chemical material classification and generation of universal adversarial
perturbations from black-box deep neural network models. Extensive experimental results and
theoretical analysis validate the effectiveness of our approaches.

2 Related work

In ZO algorithms, a full gradient is typically approximated using either a one-point or a two-point
gradient estimator, where the former acquires a gradient estimate v f(x) by querying f(-) at a single
random location close to x [10, [11], and the latter computes a finite difference using two random
function queries [12}[13]]. In this paper, we focus on the two-point gradient estimator since it has a
lower variance and thus improves the complexity bounds of ZO algorithms.

Despite the meteoric rise of two-point based ZO algorithms, most of the work is restricted to convex
problems [5} [14H18]. For example, a ZO mirror descent algorithm proposed by [14] has an exact rate
O(Vd//T), where d is the number of optimization variables. The same rate is obtained by bandit
convex optimization [15] and ZO online alternating direction method of multipliers [S)]. Current
studies suggested that ZO algorithms typically agree with the iteration complexity of first-order
algorithms up to a small-degree polynomial of the problem size d.

In contrast to the convex setting, non-convex ZO algorithms are comparatively under-studied except
a few recent attempts [[7, [13} 24-26]. Different from convex optimization, the stationary condition
is used to measure the convergence of nonconvex methods. In [[13], the ZO gradient descent (ZO-
GD) algorithm was proposed for deterministic nonconvex programming, which yields O(d/T)
convergence rate. A stochastic version of ZO-GD (namely, ZO-SGD) studied in [24]] achieves the
rate of O(v/d/+/T). In [25]], a ZO distributed algorithm was developed for multi-agent optimization,
leading to O(1/T + d/q) convergence rate. Here ¢ is the number of random directions used to
construct a gradient estimate. In [7]], an asynchronous ZO stochastic coordinate descent (ZO-SCD)
was derived for parallel optimization and achieved the rate of O(v/d/v/T). In [26], a variant of
Z0O-SCD, known as ZO stochastic variance reduced coordinate (ZO-SVRC) descent, improved the
convergence rate from O(v/d/v/T) to O(d/T) under the same parameter setting for the gradient
estimation. Although the authors in [26] considered the stochastic variance reduced technique, only a

'In the big O notation, the constant numbers are ignored, and the dominant factors are kept.



coordinate descent algorithm using a coordinate-wise (deterministic) gradient estimator was studied.
This motivates our study on a more general framework ZO-SVRG under different gradient estimators.

3 Preliminaries

Consider a nonconvex finite-sum problem of the form

minimize f(x) 1= %Zﬁ(x), (N
i=1

xER4

where {f;(x)}" , are n individual nonconvex cost functions. The generic form (T) encompasses
many machine learning problems, ranging from generalized linear models to neural networks. We
next elaborate on assumptions of problem (T)), and provide a background on ZO gradient estimators.

3.1 Assumptions

Al: Functions { f;} have L-Lipschitz continuous gradients (L-smooth), i.e., |V f;(x) — V fi(y)]l2 <
L|jx — y||2 forany x and y, i € [n], and some L < co. Here || - |2 denotes the Euclidean norm, and
for ease of notation [n] represents the integer set {1,2,...,n}.

A2: The variance of stochastic gradients is bounded as £ > | [V fi(x) — V f(x)|3 < o2. Here
V fi(x) can be viewed as a stochastic gradient of V f(x) by randomly picking an index i € [n].

Both A1 and A2 are the standard assumptions used in nonconvex optimization literature [7, [13} 23l
26l]. Note that A2 is milder than the assumption of bounded gradients [} 25]]. For example, if
IV fi(x)]|2 < &, then A2 is satisfied with o = 25.

3.2 ZO gradient estimation

Given an individual cost function f; (or an arbitrary function under A1 and A2), a two-point random
gradient estimator V f;(x) is defined by [[13} [16]

Vi i(x) = (d/p) [fi(x + pw;) — f;(x)] i, fori € [n], (RandGradEst)

where recall that d is the number of optimization variables, ;. > 0 is a smoothing parametelﬂ and
{u,} are i.i.d. random directions drawn from a uniform distribution over a unit sphere [10} 15} [T6].
In general, is a biased approximation to the true gradient V f;(x), and its bias reduces
as i approaches zero. However, in a practical system, if g is too small, then the function difference
could be dominated by the system noise and fails to represent the function differential [7]. For
> 0, although the ZO gradient estimate introduces bias to the true gradient, it remains unbiased
to the gradient of a so-called randomized smoothing function with parameter u; see Lemma 1 of
Appendix A.1.

Remark 1 Instead of using a single sample u; in the average of q i.i.d. samples
{u;; };1:1 can also be used for gradient estimation [15, |14, 125]],

ﬁfi(x) = (d/(1nq)) ?:1 [fi(x + pu,,j) — fi(x)]wsy, fori € [n], (Avg-RandGradEst)

which we call an average random gradient estimator.

In addition to[RandGradEst and [Avg-RandGradEst, the work [[7, 26} 27]] considered a coordinate-wise
gradient estimator. Here every partial derivative is estimated via the two-point querying scheme under
fixed direction vectors,

Vfi(x) = Z?Zl (1/(2pe)) [fi(x + peee) — fi(x — peer)] e, fori € [n], (CoordGradEst)

where 11, > 0 is a coordinate-wise smoothing parameter, and e, € R? is a standard basis vector with
1 at its ¢th coordinate, and Os elsewhere. Compared to|[RandGradEst, [CoordGradEst|is deterministic
and requires d times more function queries. However, as will be evident later, it yields an improved
iteration complexity (i.e., convergence rate). More details on ZO gradient estimation can be found in
Appendix A.1.

’The parameter y can be generalized to p; for i € [n]. Here we assume u; = u for ease of representation.



Algorithm 1: SVRG(T', m, {nx}, b, %o) Algorithm 2: ZO-SVRG(T', m, {ni}, b, %o, 11)

1: Input: total number of iterations 7', epoch  1: Input: In addition to parameters in SVRG, set
length m, number of epochs S = [T/m], smoothing parameter y > 0.
step sizes {7y }1"",, mini-batch b, and %o. 2: fors=1,2,...,5do

2: fors=1,2,...,5do 3 compute ZO estimate g; = @f(f(s,l),

3: setgs = Vf(Xs—1), X§ = Xs—1, 4 set xj = X1,

4: fork=0,1,...,m—1do 5 fork=0,1,...,m—1do

5: choose mini-batch Z;, of size b, 6 choose mini-batch Zy, of size b,

6: compute gradient blending via Z): 7 compute ZO gradient blending @)-

Vi = Viz.(x}) — V7, (x5) + & i = Vifz(x}) — Viz, (x5) + &,

7: update X3 | = X3 — Nk Vy, 8: update X3, | = Xj — NkVi,

8: end for 9: end for

9: setXs = X, 10: set Xs = X5,

10: end for 11: end for

11: return X chosen uniformly random from [2: return X chosen uniformly random from
{{XZ}Z:(} S {{XZ}ZZOI REE

4 ZO0 stochastic variance reduced gradient (ZO-SVRG)

4.1 SVRG: from first-order to zeroth-order

It has been shown in [[19] 20] that the first-order SVRG achieves the convergence rate O(1/T),
yielding O(\/T) less iterations than the ordinary SGD for solving finite sum problems. The key step
of SVRCﬂ (Algorithm 1) is to generate an auxiliary sequence X at which the full gradient is used as a
reference in building a modified stochastic gradient estimate

g=V/i(x) = (Vfz(X) = VI(%)), Vfz(x) = (1/b) 3 ez Vfi(x) @
where g denotes the gradient estimate at x, Z C [n] is a mini-batch of size b (chosen uniformly
randomlyﬂ), and Vf(x) = V fn)(x). The key property of (2)) is that g is an unbiased gradient
estimate of V f(x). The gradient blending (2) is also motivated by a variance reduced technique

known as control variate [28430]. The link between SVRG and control variate is discussed in
Appendix A.2.

In the ZO setting, the gradient blending (2) is approximated using only function values,

g=V/r(x) — (Vfz(%) = Vf(%)), Vz(x) = (1/b) Xz VFi(x), 3)

where V f (x) = Vfin (x), and Vi is a ZO gradient estimate specified by RandGradEstl Avg

andGradEs ormrla]GerEs_tl Replacing (2) with (3) in SVRG (Algorithm 1) Teads to a new
algorithm, which we call ZO-SVRG (Algorithm 2). We highlight that although ZO-SVRG is similar
to SVRG except the use of ZO gradient estimators to estimate batch, mini-batch, as well as blended
gradients, this seemingly minor difference yields an essential difficulty in the analysis of ZO-SVRG.
That is, the unbiased assumption on gradient estimates used in SVRG no longer holds. Thus, a careful
analysis of ZO-SVRG is much needed to ensure its optimization performance.

4.2 Convergence analysis

In what follows, we focus on the analysis of ZO-SVRG using Later, we will study
Z0-SVRG with[Avg-RandGradEs{ and [CoordGradEstl We start by investigating the second-order
moment of the blended ZO gradient estimate v; in the form of (3)); see Proposition

Proposition 1 Suppose A2 holds and|RandGradEst|is used in Algorithm 2. The blended ZO gradient

estimate Vi, in Step 7 of Algorithm 2 satisfies

4(b + 186,,)d 6(4d 4 1)L?6,,
b E [ b

(66, + b)L2d?u?  72d0?6,
b b
)

E[[[vi]I3]< IV £ (xi)l13]+ E [|x; — x513]+

3Different from the standard SVRG [19]], we consider its mini-batch variant in [20].
“*For mini-batch Z, SVRG [20] assumes i.i.d. samples with replacement, while a variant of SVRG (called
SCSG) assumes samples without replacement [23]]. This paper considers both sampling strategies.



where 6, = 1 if the mini-batch contains i.i.d. samples from [n] with replacement, and 6,, = I(b < n)
if samples are randomly selected without replacement. Here I(b < n)is 1 ifb < n, and 0 if b = n.

Proof: See Appendix A.3. O

Compared to SVRG and its variants [20} 23], the error bound (@) involves a new error term O(do? /b)
for b < n, which is induced by the second-order moment of (Appendix A.1). With the
aid of Proposition[I] Theorem([I] provides the convergence rate of ZO-SVRG in terms of an upper
bound on E[|V £(x)]|?] at the solution %.

Theorem 1 Suppose Al and A2 hold, and the random gradient estimator (RandGradEst) is used.
The output X of Algorithm 2 satisfies

L SG) = L S

=\[12
E[|V)l3] et 75t T )
where T = Sm, f* = miny f(x), 7 = mingem) Yo Xm = ZZ':_Ol Xk, and
=3 (1= B8 i — (5 + opp) S22 ©)
: 2d*L? 65, +b)L2d* 1> +72do> 5,
= (1= %) S5t (§ + ) ORTRERGET ™
In ©)-(7), B is a positive parameter ensuring v, > 0, and the coefficients {cy} are given by
6(4d + 1) L*6,.n; 3(4d + 1) L*6,.m;,
cr = |:1+5k77k+W] Ck+l+wv —0. (8)
Proof: See Appendix A.4. O

Compared to the convergence rate of SVRG as given in 20, Theorem 2], Theorem([I| exhibits two
additional errors (Lu?/(T#)) and (Sx,m/(T%)) due to the use of ZO gradient estimates. Roughly
speaking, if we choose the smoothing parameter ;1 reasonably small, then the error (Lu?/(T%))
would reduce, leading to non-dominant effect on the convergence rate of ZO-SVRG. For the term
(Sxm/(T7)), the quantity X, is more involved, relying on the epoch length m, the step size 7y, the
smoothing parameter y, the mini-batch size b, and the number of optimization variables d. In order
to acquire explicit dependence on these parameters and to explore deeper insights of convergence, we
simplify (3] for a specific parameter setting, as formalized below.

Corollary 1 Suppose we set

_ 1 —p=2r
d

By =p8=L,andm = f], where 0 < p < 1is a universal constant that is independent of b, d,

%0)— £ 2
L, and T. Then Theorem implies % <O (%) % <O (%) and % <O (% + %)
which yields

d &

EIvi@IE <o (F+%). (10)

Proof: See Appendix A.5. O

It is worth mentioning that the condition on the value of smoothing parameter /. in Corollary[T]is less
restrictive than several ZO algorithm¢’| For example, ZO-SGD in [24] required pu < O(d—*T~1/2),
and ZO-ADMM [5] and ZO-mirror descent [[14] considered p; = O(d~-5¢~1). Moreover, similar to
[5]], we set the step size n linearly scaled with 1/d. Compared to the aforementioned ZO algorithms
5} (141 [24]], the convergence performance of ZO-SVRG in (T0) has an improved (linear rather than
sub-linear) dependence on 1/T. However, it suffers an additional error of order O(4,,/b) inherited
from (Sx,/(T%)) in (3)), which is also a consequence of the last error term in ({@). We recall from the
definition of d,, in Proposition[I|that if b < n or samples in the mini-batch are chosen independently
from [n], then 6,, = 1. However, the error term is eliminated when Z;, = [n] (corresponding to
0, = 0). In this case, ZO-SVRG (Algorithm 2) reduces to ZO-GD in [[13]] since Step 7 of Algorithm 2

becomes v; = Vf (x7). A recent work [25| Theorem 1] also identified the possible side effect

3One exception is ZO-SCD [[7] (and its variant ZO-SVRC [26])), where p < O(1/v/T).



O(1/b) for b < n in the context of ZO nonconvex multi-agent optlmlzatlon using a method of
multipliers. Note that a large mini-batch reduces the variance of R and improves the
convergence of ZO optimization methods. Although the tightness of the error bound (T0) is not
proven, we conjecture that the dependence on 7" and b could be optimal, since the form is consistent
with SVRG, and the latter does not rely on the selected parameters in ().

Lastly, we highlight that the theoretical analysis of ZO-SVRG is different from ZO-SVRC [26].
For the latter, the coordinate-wise (deterministic) gradient estimate is used and hence maintains
Lipschitz continuity, which does not hold for a random gradient estimate. As a result, it becomes
nontrivial to bound the distance of two random gradient estimates; see Appendix A.3. Moreover,
reference [26] does not fully uncover the effect of dimension dependency on the convergence of
ZO-SVRC. However, we clearly analyze this effect for ZO-SVRG in Corollary[l] Furthermore,
our convergence analysis is performed under milder assumptions, while ZO-SVRC requires extra
assumptions on gradients of coordinate-wise smoothing functions. In Sec.[] we will compare the
empirical performance of ZO-SVRC with our method through two real-life applications.

5 Acceleration of ZO-SVRG: Towards improved iteration complexity

In this section, we improve the iteration complexity of ZO-SVRG (Algorithm 2) by using
[RandGradEst| and [CoordGradEst] respectively. We start by comparing the squared errors of different
gradient estimates to the true gradient V f, as formalized in Proposition[2]

Proposition 2 Consider a gradient estimator ¥V f (x) = V f (X) +w, then the squared error E[||w)|3]

E[[lwlz] <O (@) V)3 + O (n*L*d) for[RandGradEsi

E[|wl3] <O (q%‘i) IVf(x)l3 + O (u*L*d*)  for[Avg-RandGradEsi, (11)
lwl3 < 0 (125, u?) for{CoordGradEsi
Proof: See Appendix A.6. O

Proposition[2] shows that compared to[CoordGradEst [RandGradEsf| and [Avg-RandGradEsf| involve
an additional error term within a factor O(d) and O((q + d)/q) of ||V f(x)||3, respectively. Such
an error is introduced by the second-order moment of gradient estimators using random direction
samples [[13|[14], and it decreases as the number of direction samples g increases. On the other hand,
all gradient estimators have a common error bounded by O(p? L2d?), where let py = p for £ € [d] in
[CoordGradEst If 1 is specified as in (), then we obtain the error term O(d/T), consistent with the
convergence rate of ZO-SVRG in Corollaryl[l]

In Theorem[2] we show the effect of [Avg-RandGradEsf on the convergence rate of ZO-SVRG.

Theorem 2 Suppose Al and A2 hold, and |Avg-RandGradEst| is used in Algorithm2. Then
E[[|[Vf(x)|3] is bounded in the same way as given in @), where the parameters i, x) and
¢k for k € [m] are modified by

Vi = % (1 _ Ck+1) N — (% + Ck+1) (726, -&-;1;)(11-&-<l)7727
2 2 2
(1 Ck+1> pid LG + (é + Ck+1) (68, 4b)(g+1) L2 d* > +72(g+d)0 >, 771%’

bg

6(4d+5q) 3(4d+5q) L3

o = {1 + B + nk} | + SEERAE w2 with ¢, = 0.

Given the setting in Corollary and m = (%1, the convergence rate simplifies to

N2 d On
E[|Vf(®)2] <O (T + m) . (12)

Proof: See Appendix A.7 O

By contrast with Corollary[l] it can be seen from (I2)) that the use of [Avg-RandGradEst|reduces the
error O(6,,/b) in (T0) through multiple (¢) direction samples. If 2 75 < q < d, then the convergence
error under Ave-RandGradEst will be dominated by O(d/T). Our empirical results show that a
moderate choice of g can significantly speed up the convergence of ZO-SVRG.




We next study the effect of the coordinate-wise gradient estimator on the convergence
rate of ZO-SVRG, as formalized in Theorem@

Theorem 3 Suppose Al and A2 hold, and|[CoordGradEsqwith i, = ju is used in Algorithm 2. Then

BIvIE] < FEO= 4 S, 13

where T, f*, 7 and x., were defined in (B), the parameters ~y, xi. and cy. for k € [m] are given by
Ve = ( )7] 74(2 +Ck,+1)77]%a

e = ( _|_ck+1) L? p, 242 nk""(é +Ck+1) 2L2d2 I%’

Cp = <1+Bknk+M)c+ +7"7”“, with ¢,, = 0,

and By, is a positive parameter ensuring i, > 0. Given the specific setting in Corollary[l] and
m = [%], the convergence rate simplifies to

E[IVf(®)3] <O (%) : (14)

Proof: See Appendix A.8. ]

Theorem 3] shows that the use of [C improves the iteration complexity, where the error of
order O(1/b) in Corollary[ljor O(1/ (b mln{d q})) in Theorem[2|has been eliminated in (T4). This
improvement is benefited from the low variance of |C 3 shown by Proposition[2] We can
also see this benefit by comparing xy, in Theorem[3|with (7): the former avoids the term (do?/b).

The disadvantage of [CoordGradEsf|is the need of d times more function queries than [RandGradEsf{)in

gradlent estimation.

Recall that[RandGradEst] [Avg-RandGradEst| and [CoordGradEst|require O(1), O(q) and O(d) func-
tion queries, respectively. In ZO-SVRG (Algorithm 2), the total number of gradient evaluations
is given by nS + b1, where T' = m.S. Therefore, by fixing the number of iterations 7', the func-
tion query complexity of ZO-SVRG using the studied estimators is then given by O(nS + bT),
O(q(nS + bT)) and O(d(nS + bT)), respectively. In Table[T} we summarize the convergence rates
and the function query complexities of ZO-SVRG and its two variants, which we call ZO-SVRG-Ave
and ZO-SVRG-Coord, respectively. For comparison, we also present the results of ZO-SGD [24] and
Z0-SVRC [26]], where the later updates .J coordinates per iteration within an epoch. Table[T] shows
that ZO-SGD has the lowest query complexity but has the worst convergence rate. ZO-SVRG-coord
yields the best convergence rate in the cost of high query complexity. By contrast, ZO-SVRG (with
an appropriate mini-batch size) and ZO-SVRG-Ave could achieve better trade-offs between the
convergence rate and the query complexity.

Table 1: Summary of convergence rate and function query complexity of our proposals given 7' iterations.
Convergence rate

Method Grad. estimator Stepsize (worst case as b < n) Query complexity
ZO-SVRG (RandGradEs() o) O(£+1) O (nS +bT)
ZO-SVRG-Ave | (Avg-RandGrad o) o) (% + m) O (qnS + qbT)
ZO-SVRG-Coord |  (CoordGradEst) o) o(4) O(dnS + dbT)

ZO-SGD [24] (RandGrad 0 (min{%, ﬁ}) 0 (%) o(T)
ZO-SVRC [26] (CoordGradEs) [ O (75).a € (0,1) 0 (%) O (dnS + JbT)

6 Applications and experiments

We evaluate the performance of our proposed algorithms on two applications: black-box classification
and generating adversarial examples from black-box DNNs. The first application is motivated by a
real-world material science problem, where a material is classified to either be a conductor or an insu-
lator from a density function theory (DFT) based black-box simulator [31]]. The second application
arises in testing the robustness of a deployed DNN via iterative model queries [1} 3]. Since ZO-SVRG
belongs to the class of ZO counterparts of first-order algorithms using random/deterministic gradient
estimation, we compare it with ZO-SGD and ZO-SVRC, the most relevant methods to ZO-SVRG.



Black-box binary classification We consider a non-linear least square problem [32| Sec.3.2],
i.e., problem (I) with f;(x) = (y; — ¢(x;a,))” for i € [n]. Here (ay,y;) is the ith data sample
containing feature vector a; € R? and label y; € {0, 1}, and ¢(x; a;) is a black-box function that
only returns the function value given an input. The used dataset consists of N = 1000 crystalline
materials/compounds extracted from Open Quantum Materials Database [33]. Each compound has
d = 145 chemical features, and its label (0 is conductor and 1 is insulator) is determined by a DFT
simulator [34]]. Due to the black-box nature of DFT, the true ¢ is unknown®l We split the dataset into
two equal parts, leading to n = 500 training samples and (N — n) testing samples. We refer readers
to Appendix A.10 for more details on our dataset and the setting of experiments.

=== ZO-SVRC (b=10) ] 03042 === ZO-SVRC (b=10)
Z0-SGD (b=10) N Z0-SGD (b=10)
0.40 1 ZO-SVRG (b=1) 3\ —— ZO-SVRG (b=40)
—— ZO-SVRG (b=10) 0.25 1 sl —— Z0-SVRG-Coord (b=10)
0.35 1 —— ZO-SVRG (b=40) ZO-SVRG-Ave (q=20,b=10)
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Figure 2: Comparison of different ZO algorithms for the task of chemical material classification.

Table 2: Testing error for chemical material classification using 7.3 x 10° function queries.

Method Z0-SGD [24] ZO-SVRC [26] ZO-SVRG ZO-SVRG-Coord ZO-SVRG-Ave
# of epochs 14600 100 2920 50 365
Error (%) 12.56% 23.70% 11.18% 20.67% 15.26%

In Fig.[2] we present the training loss against the number of epochs (i.e., iterations divided by the
epoch length m = 50) and function queries. We compare our proposed algorithms ZO-SVRG,
Z0O-SVRG-Coord and ZO-SVRG-Ave with ZO-SGD [24] and ZO-SVRC [26]]. Fig.(a) presents the
convergence trajectories of ZO algorithms as functions of the number of epochs, where ZO-SVRG
is evaluated under different mini-batch sizes b € {1,10,40}. We observe that the convergence
error of ZO-SVRG decreases as b increases, and for a small mini-batch size b < 10, ZO-SVRG
likely converges to a neighborhood of a critical point as shown by Corollary[I] We also note that
our proposed algorithms ZO-SVRG (b = 40), ZO-SVRG-Coord and ZO-SVRG-Ave have faster
convergence speeds (i.e., less iteration complexity) than the existing algorithms ZO-SGD and ZO-
SVRC. Particularly, the use of multiple random direction samples in[Avg-RandGradEs{ significantly
accelerates ZO-SVRG since the error of order O(1/b) is reduced to O(1/(bq)) (see Table[l)), leading
to a non-dominant factor versus O(d/T) in the convergence rate of ZO-SVRG-Ave. Fig.(b)
presents the training loss against the number of function queries. For the same experiment, Table[%]
shows the number of iterations and the testing error of algorithms studied in Fig.(b) using 7.3 x 10
function queries. We observe that the performance of based algorithms (i.e., ZO-SVRC
and ZO-SVRG-Coord) degrade due to the need of large number of function queries to construct
coordinate-wise gradient estimates. By contrast, algorithms based on random gradient estimators
(i.e., ZO-SGD, ZO-SVRG and ZO-SVRG-Ave) yield better both training and testing results, while
Z0O-SGD consumes an extremely large number of iterations (14600 epochs). As a result, ZO-SVRG
(b = 40) and ZO-SVRG-Ave achieve better tradeoffs between the iteration and the function query
complexity.

Generation of adversarial examples from black-box DNNSE] In image classification, adversarial
examples refer to carefully crafted perturbations such that, when added to the natural images, are
visually imperceptible but will lead the target model to misclassify. In the setting of ‘zeroth order’
attacks [2, 131 [35]], the model parameters are hidden and acquiring its gradient is inadmissible. Only

% One can mimic DFT simulator using a logistic function once the parameter x is learned from ZO algorithms.
"Code to reproduce experiments can be found at https: //github.com/IBM/Z0SVRG-BlackBox- Adv


https://github.com/IBM/ZOSVRG-BlackBox-Adv
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Figure 3: Comparison of ZO-SGD and ZO-SVRG-Ave for generation of universal adversarial perturbations
from a black-box DNN. Left: Attack loss versus epochs. Right: ¢5 distortion and improvement (%) with respect
to ZO-SGD.

the model evaluations are accessible. We can then regard the task of generating a universal adversarial
perturbation (to n natural images) as an ZO optimization problem of the form (I)). We elaborate on
the problem formulation for generating adversarial examples in Appendix A.11.

We use a well-trained DNl\ﬂ on the MNIST handwritten digit classification task as the target black-
box model, which achieves 99.4% test accuracy on natural examples. Two ZO optimization methods,
Z0O-SGD and ZO-SVRG-Ave, are performed in our experiment. Note that ZO-SVRG-Ave reduces
to ZO-SVRG when ¢ = 1. We choose n = 10 images from the same class, and set the same
parameters b = 5 and constant step size 30/d for both ZO methods, where d = 28 x 28 is the image
dimension. For ZO-SVRG-Ave, we set m = 10 and vary the number of random direction samples
q € {10, 20, 30}.

In Fig.[3] we show the black-box attack loss (against the number of epochs) as well as the least
{5 distortion of the successful (universal) adversarial perturbations. We observe that compared to
Z0O-SGD, ZO-SVRG-Ave offers a faster iteration convergence to a more accurate solution, and
its convergence trajectory is more stable as ¢ becomes larger (due to the reduced variance of
[RandGradEst). Note that the sharp drop of attack loss in each method is caused by the hinge-like loss
as part of the total loss function, which turns to 0 only if the attack becomes successful. In addition,
Z0-SVRG-Ave improves the ¢ distortion of adversarial examples compared to ZO-SGD (e.g., 30%
improvement when g = 30). We present the corresponding adversarial examples in Appendix A.11.
In contrast with the iteration complexity, ZO-SVRG-Ave requires roughly 30x (¢ = 10), 77x
(¢ = 20) and 380x (¢ = 30) more function evaluations than ZO-SGD to reach a neighborhood of the
smallest attack loss (e.g., 7 in our example). Furthermore, we present the black-box attack loss versus
the number of query counts in Fig. A1 (Appendix A.11). As we can see, ZO-SVRG-Ave requires
more queries than ZO-SGD to achieve the first significant drop in attack loss. However, by fixing the
total number of queries (107), ZO-SVRG-Ave eventually converges to a lower loss than ZO-SGD:
the former reaches the average loss 4.81 with std 0.32 (computed from the last 100 attack losses),
while the latter reaches 6.74 £ 0.46.

7 Conclusion

In this paper, we studied ZO-SVRG, a new ZO nonconvex optimization method. We presented
new convergence results beyond the existing work on ZO nonconvex optimization. We show that
Z0-SVRG improves the convergence rate of ZO-SGD from O(1/+/T) to O(1/T) but suffers a new
correction term of order O(1/b). The is the side effect of combining a two-point random gradient
estimators with SVRG. We then propose two accelerated variants of ZO-SVRG based on improved
gradient estimators of reduced variances. We show an illuminating trade-off between the iteration and
the function query complexity. Experimental results and theoretical analysis validate the effectiveness
of our approaches compared to other state-of-the-art algorithms. In the future, we will compare
Z0O-SVRG with other derivative-free (non-gradient estimation based) methods for solving black-box
optimization problems. It will also be interesting to study the problem of ZO distributed optimization,

e.g., using under a block coordinate descent framework [36]).

8https ://github.com/carlini/nn_robust_attacks
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