A LQR and MPC Algorithms

Algorithm 1 LQR - (zinit; C, ¢, F, f) Solves Equation (2) as described in Levine [2017]
The state space is n-dimensional and the control space is m-dimensional.

T € Z4 is the horizon length, the number of nominal timesteps to optimize for in the future.

Tinit € R™ is the initial state

C € RTxntmxntm and ¢ € RT*"+™ are the quadratic cost terms. Every C; must be PSD.

F ¢ RTxnxntm ¢ RTXn are the affine cost terms.

> Backward Recursion
VT =Ur = 0
fort=Tto1do
Qi =Cy+F Vi Fy
@w=c+F Vi fi + Flop
Kt = _Qgith,uz
ky = 7Qt_,7iuqt,u
‘/t = Qt,wz + Qt,a;uKt + KtTQt,u;B + KtTQt,uuKt
Ut = Qt,x + Qt,zukt + Kt—rqt,u + K;er,uukt
end for

> Forward Recursion
1 = Tinit
fort=1to T do

Uy = thL't + kt

x
Tep1 = Iy UZ] + f

end for

return xi.7, ui.7

13

Algorithm 2 MPCr ,, 7(Zinit, Uinit; C, f) Solves Equation (10) as described in Tassa et al. [2014]

The state space is n-dimensional and the control space is m-dimensional.

T € Z+ is the horizon length, the number of nominal timesteps to optimize for in the future.
u,u € R™ are respectively the control lower- and upper-bounds.

Zinit € R™, Uiniz € RT*™ are respectively the initial state and nominal control sequence

C : R™*™ — R is the non-convex and twice-differentiable cost function.

F : R**™ — R" is the non-convex and once-differentiable dynamics function.

T1 = Tinit
fort=1toT-1 do
It1+1 = f(ilit,uinit,t)
end for
Tl = [xlvuinit]
for i =1 to [converged] do
fort=1toTdo
> Form the second-order Taylor expansion of the cost as in Equation (12)
C} = szC (1})
¢ =V Cr) — ()

> Form the first-order Taylor expansion of the dynamics as in Equation (13)
Fi =V f(r)
fi= 1) — Fiwi
end for _ S
it = MPCstepy ,, 7 (init, C, f, 7.7, C*, ¢, F*,)
end for

function MPCstepT&ﬂ(ZTinit C, f, T1:T, C, ¢, F, f)
> C, f are the true cost and dynamics functions. 71.7 is the current trajectory iterate.
> C, ¢, F, f are the approximate cost and dynamics terms around the current trajectory.

> Backward Recursion: Over the linearized trajectory.
VT = UVr = 0
fort=Tto1do_ ~

Qi = Cy +~FtTVt+1~Ft 3

G =+ F Vi fy + Flog

ki = argming, %&[FQLW(M + Q;éu st. u<u+dou<u
> Can be solved with a Projected-Newton method as described in Tassa et al. [2014].
> Let f, c respectively index the free and clamped dimensions of this optimization problem.

Kt,f = _Q;imet,uz
Kt7c =0

Vi= Qt,zz + Qt,a:uKt + KtTQt,ua: + KtTQt,uuKt
Ve = @z + Qreuke + KtTQt,u + KtTQt,uukt
end for

> Forward Recursion and Line Search: Over the true cost and dynamics.
repeat
i’l = 7'3[;1
fort=1toTdo
1:% = Tu, +Aakf + Ki(Zy — 7T2,)
Tt41 = f(xnut)
end for
a =y«

until 3, C([d, @) < 3, C(11)

return Zi.7, t1.7
end function

14

B Imitation learning experiment losses

Lo Pendulum (#Train: 10) 108 Pendulum (#Train: 50) 101 Pendulum (#Train: 100)
o 107 - 10 - 107 -
w
3 3 -3 - -3
= 10 10 107 -
S
® 10° - 10° - 107 -
E 107 - 107 - 107 -
109 - 109 - 10° -
sia hwcdx mDCCOStDCCOSZc/ Vs Meeg mchOstpCCOStg " Y e ay MDCCDSTDCCOStd
w0, Cartpole (#Train: 10) 107 Cartpole (#Train: 50) Cartpole (#Train: 100)
101
2
S 10D
S0t :
®
= 10'2 K
E
1073 . . 7 : ;
104 . L

s Mpe . M B Mpe M 5 Mpe M
"M sy Mocg, Mec Cogy Mpe., “Cost g n Vg Mo gy Pc cony Mpe, st g "M Ssig Mg, Mec, Cogr Moe, ot g

M Train M Val M Test

Figure 6: Learning results on the (simple) pendulum and cartpole environments. We select the best
validation loss observed during the training run and report the corresponding train and test loss. Every
datapoint is averaged over four trials.

15

	A LQR and MPC Algorithms
	B Imitation learning experiment losses

