
7 Appendix
7.1 Relation between the PIP Loss and Word Analogy, Relatedness
We need to show that if the PIP loss is close to 0, i.e. ‖EET − FFT ‖ ≈ 0, then F ≈ ET for some
unitary matrix T . Let E = UDV T and F = XΛY T be the SVDs, we claim that we only need to
show U ≈ X andD ≈ Λ. The reason is, if we can prove the claim, thenEV Y T ≈ F , or T = V Y T

is the desired unitary transformation. We prove the claim by induction, assuming the singular values
are simple. Note the PIP loss equals

‖EET − FFT ‖ = ‖UD2UT −XΛ2XT ‖

where Λ = diag(λi) and D = diag(di). Without loss of generality, suppose λ1 ≥ d1. Now let x1
be the first column of X , namely, the singular vector corresponding to the largest singular value λ1.
Regard EET − FFT as an operator, we have

‖FFTx1‖ − ‖EETx1‖ ≤ ‖(EET − FFT )x1‖

≤ ‖EET − FFT ‖op
≤ ‖EET − FFT ‖F

Now, notice
‖FFTx1‖ = ‖XΛ2XTx1‖ = λ2

1,

‖EETx1‖ = ‖UD2UTx1‖ =

n∑
i=1

d2
i 〈ui, x1〉 ≤ d2

1 (1)

So 0 ≤ λ2
1 − d2

1 ≤ ‖EET − FFT ‖ ≈ 0. As a result, we have

1. d1 ≈ λ1

2. u1 ≈ x1, in order to achieve equality in eqn (1)

This argument can then be repeated using the Courant-Fischer minimax characterization for the rest
of the singular pairs. As a result, we showed that U ≈ X and D ≈ Λ, and hence the embedding F
can indeed be obtained by applying a unitary transformation on E, or F ≈ ET for some unitary T ,
which ultimately leads to the fact that analogy and relatedness are similar, as they are both invariant
under unitary operations.

Lemma 4. For orthogonal matrices X0 ∈ Rn×k, Y1 ∈ Rn×(n−k), the SVD of their inner product
equals

SVD(XT
0 Y1) = U0 sin(Θ)Ṽ T1

where Θ are the principal angles between X0 and Y0, the orthonormal complement of Y1.

7.2 Proof of Lemma 4
Proof. We prove this lemma by obtaining the eigendecomposition of XT

0 Y1(XT
0 Y1)T :

XT
0 Y1Y

T
1 X0 = XT

0 (I − Y0Y
T
0 )X0

= I − U0 cos2(Θ)UT0

= U0 sin2(Θ)UT0

Hence the XT
0 Y1 has singular value decomposition of U0 sin(Θ)Ṽ T1 for some orthogonal Ṽ1.

7.3 Proof of Lemma 1

Proof. Note Y0 = UUTY0 = U(

[
XT

0

XT
1

]
Y0), so

Y0Y
T
0 = U(

[
XT

0

XT
1

]
Y0Y

T
0

[
X0 X1

]
)UT

= U

[
XT

0 Y0Y
T
0 X0 XT

0 Y0Y
T
0 X1

XT
1 Y0Y

T
0 X0 XT

1 Y0Y
T
0 X1

]
UT
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Let XT
0 Y0 = U0 cos(Θ)V T0 , Y T0 X1 = V0 sin(Θ)ŨT1 by Lemma 4. For any unit invariant norm,∥∥∥Y0Y

T
0 −X0X

T
0

∥∥∥
=

∥∥∥∥U(

[
XT

0 Y0Y
T
0 X0 XT

0 Y0Y
T
0 X1

XT
1 Y0Y

T
0 X0 XT

1 Y0Y
T
0 X1

]
−
[
I 0
0 0

]
)UT

∥∥∥∥
=

∥∥∥∥[XT
0 Y0Y

T
0 X0 XT

0 Y0Y
T
0 X1

XT
1 Y0Y

T
0 X0 XT

1 Y0Y
T
0 X1

]
−
[
I 0
0 0

]∥∥∥∥
=

∥∥∥∥[ U0 cos2(Θ)UT0 U0 cos(Θ) sin(Θ)ŨT1
Ũ1 cos(Θ) sin(Θ)UT0 Ũ1 sin2(Θ)ŨT1

]
−
[
I 0
0 0

]∥∥∥∥
=

∥∥∥∥∥
[
U0 0

0 Ũ1

] [
− sin2(Θ) cos(Θ) sin(Θ)

cos(Θ) sin(Θ) sin2(Θ)

] [
U0 0

0 Ũ1

]T∥∥∥∥∥
=

∥∥∥∥[ − sin2(Θ) cos(Θ) sin(Θ)
cos(Θ) sin(Θ) sin2(Θ)

]∥∥∥∥
=

∥∥∥∥[sin(Θ) 0
0 sin(Θ)

] [
− sin(Θ) cos(Θ)
cos(Θ) sin(Θ)

]∥∥∥∥
=

∥∥∥∥[sin(Θ) 0
0 sin(Θ)

]∥∥∥∥
On the other hand by the definition of principal angles,

‖XT
0 Y1‖ = ‖ sin(Θ)‖

So we established the lemma. Specifically, we have

1. ‖X0X
T
0 − Y0Y

T
0 ‖2 = ‖XT

0 Y1‖2
2. ‖X0X

T
0 − Y0Y

T
0 ‖F =

√
2‖XT

0 Y1‖F

Without loss of soundness, we omitted in the proof sub-blocks of identities or zeros for simplicity.
Interested readers can refer to classical matrix CS-decomposition texts, for example Stewart and Sun
[1990], Paige and Wei [1994], Davis and Kahan [1970], Kato [2013], for a comprehensive treatment
of this topic.

7.4 Proof of Theorem 2
Proof. Let E = X0D

α
0 and Ê = Y0D̃

α
0 , where for notation simplicity we denote D0 = D1:d,1:d =

diag(λ1, · · · , λd) and D̃0 = D̃1:k,1:k = diag(λ̃1, · · · , λ̃k), with k ≤ d. Observe D0 is diagonal
and the entries are in descending order. As a result, we can write D0 as a telescoping sum:

Dα
0 =

k∑
i=1

(λαi − λαi+1)Ii,i

where Ii,i is the i by i dimension identity matrix and λd+1 = 0 is adopted. As a result, we can tele-
scope the difference between the PIP matrices. Note we again split X0 ∈ Rn×d into X0,0 ∈ Rn×k
and X0,1 ∈ Rn×(d−k), together with D0,0 = diag(λ1, · · · , λk) and D0,1 = diag(λk+1, · · · , λd),
to match the dimension of the trained embedding matrix.

‖EET − ÊÊT ‖

=‖X0,1D
2α
0,1X

T
0,1 − Y0D̃

2α
0 Y T0 +X0,2D

2α
0,2X

T
0,2‖

≤‖X0,2D
2α
0,2X

T
0,2‖+ ‖X0,1D

2α
0,1X

T
0,1 − Y0D̃

2α
0 Y T0 ‖

=‖X0,2D
2α
0,2X

T
0,2‖

+ ‖X0,1D
2α
0,1X

T
0,1 − Y0D

2α
0,1Y

T
0 + Y0D

2α
0,1Y

T
0 − Y0D̃

2α
0 Y T0 ‖

≤‖X0,2D
2α
0,2X

T
0,2‖+ ‖X0,1D

2α
0,1X

T
0,1 − Y0D

2α
0,1Y

T
0 ‖

+ ‖Y0D
2α
0,1Y

T
0 − Y0D̃

2α
0 Y T0 ‖

We now approximate the above 3 terms separately.
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1. Term 1 can be computed directly:

‖X0,2D
2α
0,2X

T
0,2‖ =

√√√√‖ d∑
i=k+1

λ2α
i x·,ixT·,i‖2 =

√√√√ d∑
i=k+1

λ4α
i

2. We bound term 2 using the telescoping observation and lemma 1:
‖X0,1D

2α
0,1X

T
0,1 − Y0D

2α
0,1Y

T
0 ‖

= ‖
k∑
i=1

(λ2α
i − λ2α

i+1)(X·,1:iX
T
·,1:i − Y·,1:iY

T
·,1:i)‖

≤
k∑
i=1

(λ2α
i − λ2α

i+1)‖X·,1:iX
T
·,1:i − Y·,1:iY

T
·,1:i‖

=
√

2

k∑
i=1

(λ2α
i − λ2α

i+1)‖Y T·,1:iX·,i:n‖

3. Third term:

‖Y0D
2α
0,1Y

T
0 − Y0D̃

2α
0 Y T0 ‖ =

√√√√‖ k∑
i=1

(λ2α
i − λ̃2α

i )Y·,iY T·,i‖2

=

√√√√ k∑
i=1

(λ2α
i − λ̃2α

i )2

Collect all the terms above, we arrive at an approximation for the PIP discrepancy:

‖EET − ÊÊT ‖ ≤

√√√√ d∑
i=k+1

λ4α
i +

√√√√ k∑
i=1

(λ2α
i − λ̃2α

i )2

+
√

2

k∑
i=1

(λ2α
i − λ2α

i+1)‖Y T·,1:iX·,i:n‖

7.5 Proof of Lemma 2

Proof. To bound the term
√∑k

i=1(λ2α
i − λ̃2α

i )2, we use a classical result [Weyl, 1912, Mirsky,
1960].

Theorem 4 (Weyl). Let {λi}ni=1 and {λ̃i}ni=1 be the spectrum of M and M̃ = M + Z, where we
include 0 as part of the spectrum. Then

max
i
|λi − λ̃i| ≤ ‖Z‖2

Theorem 5 (Mirsky-Wielandt-Hoffman). Let {λi}ni=1 and {λ̃i}ni=1 be the spectrum ofM and M̃ =
M + Z. Then

(

n∑
i=1

|λi − λ̃i|p)1/p ≤ ‖Z‖Sp

We use a first-order Taylor expansion followed by applying Weyl’s theorem 4:√√√√ k∑
i=1

(λ2α
i − λ̃2α

i )2 ≈

√√√√ k∑
i=1

(2αλ2α−1
i (λi − λ̃i))2

= 2α

√√√√ k∑
i=1

λ4α−2
i (λi − λ̃i)2

≤ 2α‖N‖2

√√√√ k∑
i=1

λ4α−2
i
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Now take expectation on both sides and use Tracy-Widom Law:

E[

√√√√ k∑
i=1

(λ2α
i − λ̃2α

i )2] ≤ 2
√

2nασ

√√√√ k∑
i=1

λ4α−2
i

A further comment is that this bound can tightened for α = 0.5, by using Mirsky-Wieland-
Hoffman’s theorem instead of Weyl’s theorem [Stewart and Sun, 1990]. In this case,

E[

√√√√ k∑
i=0

(λ2α
i − λ̃2α

i )2] ≤ kσ

where we can further save a
√

2n/k factor.

7.6 Proof of Lemma 3
Classical matrix perturbation theory focuses on bounds; namely, the theory provides upper bounds
on how much an invariant subspace of a matrix Ã = A + E will differ from that of A. Note we
switched notation to accommodate matrix perturbation theory conventions (where usuallyA denotes
the unperturbed matrix , Ã is the one after perturbation, and E denotes the noise). The most famous
and widely-used ones are the sin Θ theorems:

Theorem 6 (sine Θ). For two matrices A and Ã = A+ E, denote their singular value decomposi-
tions as A = XDUT and Ã = Y ΛV T . Formally construct the column blocks X = [X0, X1] and
Y = [Y0, Y1] where both X0 and Y0 ∈ Rn×k, if the spectrum of D0 and D1 has separation

δk
∆
= min

1≤i≤k,1≤j≤n−k
{(D0)ii − (D1)jj},

then

‖Y T1 X0‖ ≤
‖Y T1 EX0‖

δk
≤ ‖E‖

δk
Theoretically, the sine Θ theorem should provide an upper bound on the invariant subspace discrep-
ancies caused by the perturbation. However, we found the bounds become extremely loose, making
it barely usable for real data. Specifically, when the separation δk becomes small, the bound can be
quite large. So what was going on and how should we fix it?
In the minimax sense, the gap δk indeed dictates the max possible discrepancy, and is tight. However,
the noise E in our application is random, not adversarial. So the universal guarantee by the sine Θ
theorem is too conservative. Our approach uses a technique first discovered by Stewart in a series of
papers [Stewart and Sun, 1990, Stewart, 1990]. Instead of looking for a universal upper bound, we
derive a first order approximation of the perturbation.

7.6.1 First Order Approximation of ‖Y T1 X0‖
We split the signal A and noise E matrices into block form, with A11, E11 ∈ Rk×k, A12, E12 ∈
Rk×(n−k), A21, E21 ∈ R(n−k)×k and A22, E22 ∈ R(n−k)×(n−k).

A =

[
A11 A12

A21 A22

]
, E =

[
E11 E12

E21 E22

]
As noted by Stewart in [Stewart, 1990],

X0 = Y0(I + PTP )
1
2 −X1P (2)

and
Y1 = (X1 −X0P

T )(I + PTP )−
1
2 (3)

where P is the solution to the equation

T (P ) + (E22P − PE11) = E21 − PÃ12P (4)

The operator T is a linear operator on P ∈ R(n−k)×k → R(n−k)×k, defined as

T (P ) = A22P − PA11

16



Now, we drop the second order terms in equation (2) and (3),

X0 ≈ Y0 −X1P, Y1 ≈ X1 −X0P
T

So

Y T1 X0 ≈ Y T1 (Y0 −X1P ) = Y T1 X1P

≈ (XT
1 − PXT

0 )X1P = P

As a result, ‖Y T1 X0‖ ≈ ‖P‖.
To approximate P , we drop the second order terms on P in equation (4), and get:

T (P ) ≈ E21 (5)

or P ≈ T−1(E21) as long as T is invertible. Our final approximation is

‖Y T1 X0‖ ≈ ‖T−1(E21)‖ (6)

7.6.2 The Sylvester Operator T
To solve equation (6), we perform a spectral analysis on T :

Lemma 5. There are k(n− k) eigenvalues of T , which are

λij = (D0)ii − (D1)jj

Proof. By definition, T (P ) = λP implies

A22P − PA11 = λP

Let A11 = U0D0U
T
0 , A22 = U1D1U

T
1 and P̃ = UT1 PU0, we have

D0P̃ − P̃D1 = λP̃

Note that when P̃ = eie
T
j ,

D0eie
T
j − eieTj D1 = ((D0)ii − (D1)jj)eie

T
j

So we know that the operator T has eigenvalue λij = (D0)ii − (D1)jj with eigen-function
U1eie

T
j U

T
0 .

Lemma 5 not only gives an orthogonal decomposition of the operator T , but also points out when
T is invertible, namely the spectrum D0 and D1 do not overlap, or equivalently δk > 0. Since E12

has iid entries with variance σ2, using lemma 5 together with equation (6) from last section, we
conclude

‖Y T1 X0‖ ≈ ‖T−1(E21)‖
= ‖

∑
1≤i≤k,1≤j≤n−k

λ−1
ij 〈E21, eie

T
j 〉‖

=

√ ∑
1≤i≤k,1≤j≤n−k

λ−2
ij E

2
21,ij

By Jensen’s inequality,

E‖Y T1 X0‖ ≤
√∑

i,j

λ−2
ij σ

2 = σ

√∑
i,j

λ−2
ij

Our new bound is much sharper than the sine Θ theorem, which gives σ
√
k(n−k)

δ in this case. Notice
if we upper bound every λ−2

ij with δ−2
k in our result, we will obtain the same bound as the sine Θ

theorem. In other words, our bound considers every singular value gap, not only the smallest one.
This technical advantage can clearly be seen, both in the simulation and in the real data.
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7.7 Growth Rate Analysis of the Variance Terms

The second term 2
√

2nασ
√∑k

i=1 λ
4α−2
i increases with respect to k at rate of λ2α−1

k . Not as
obvious as the second term, the last term also increases at the same rate. Note in (λ2α

k −
λ2α
k+1)

√∑
r≤k<s(λr − λs)−2, the square root term is dominated by (λk−λk+1)−1 which gets closer

to infinity as k gets larger. On the other hand, λ2α
k −λ2α

k+1 can potentially offset this first order effect.
Specifically, consider the smallest non-zero singular value λd, whose gap to 0 is λd. Note when the
two terms are multiplied,

(λ2α
d − 0)(λd − 0)−1 = λ2α−1

d ,

which shows the two variance terms have the same rate of λ2α−1
k .

7.8 Experimentation Setting for Dimensionality Selection Time Comparison
For PIP loss minimizing method, we first estimate the spectrum ofM and noise standard deviation σ
with methods described in Section 5.2.1. E = UDα was generated with a random orthogonal matrix
U . Note any orthogonal U is equivalent due to the unitary invariance. For every dimensionality k,
the PIP loss for Ê = Ũ·,1:kD̃

α
1:k,1:k was calculated and ‖ÊÊT − EET ‖ is computed. Sweeping

through all k is very efficient because one pass of full sweeping is equivalent of doing a single SVD
on M̃ = M + Z. The method is the same for LSA, skip-gram and GloVe, with different signal
matrices (PPMI, PMI and log-count respectively).
For empirical selection method, the following approaches are taken:

• LSA: The PPMI matrix is constructed from the corpus, a full SVD is done. We truncate
the SVD at k to get dimensionality k embedding. This embedding is then evaluated on the
testsets [Halawi et al., 2012, Finkelstein et al., 2001], and each testset will report an optimal
dimensionality. Note the different testsets may not agree on the same dimensionality.

• Skip-gram and GloVe: We obtained the source code from the authors’ Github reposito-
ries45. We then train word embeddings from dimensionality 1 to 400, at an increment of
2. To make sure all CPUs are effectively used, we train multiple models at the same time.
Each dimensionality is trained for 15 epochs. After finish training all dimensionalities, the
models are evaluated on the testsets [Halawi et al., 2012, Finkelstein et al., 2001, Mikolov
et al., 2013a], where each testset will report an optimal dimensionality. Note we already
used a step size larger than 1 (2 in this case) for dimensionality increment. Had we used 1
(meaning we train every dimensionality between 1 and 400), the time spent will be doubled,
which will be close to a week.

4https://github.com/tensorflow/models/tree/master/tutorials/embedding
5https://github.com/stanfordnlp/GloVe
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