
Frequency-Domain Dynamic Pruning for
Convolutional Neural Networks

Zhenhua Liu1, Jizheng Xu2, Xiulian Peng2, Ruiqin Xiong1
1Institute of Digital Media, School of Electronic Engineering and Computer Science, Peking University

2Microsoft Research Asia
liu-zh@pku.edu.cn, jzxu@microsoft.com, xipe@microsoft.com, rqxiong@pku.edu.cn

Abstract

Deep convolutional neural networks have demonstrated their powerfulness in a
variety of applications. However, the storage and computational requirements have
largely restricted their further extensions on mobile devices. Recently, pruning
of unimportant parameters has been used for both network compression and ac-
celeration. Considering that there are spatial redundancy within most filters in
a CNN, we propose a frequency-domain dynamic pruning scheme to exploit the
spatial correlations. The frequency-domain coefficients are pruned dynamically
in each iteration and different frequency bands are pruned discriminatively, given
their different importance on accuracy. Experimental results demonstrate that the
proposed scheme can outperform previous spatial-domain counterparts by a large
margin. Specifically, it can achieve a compression ratio of 8.4× and a theoretical
inference speed-up of 9.2× for ResNet-110, while the accuracy is even better than
the reference model on CIFAR-10.

1 Introduction

In recent years, convolutional neural networks have been performing well in a variety of artificial tasks
including image classification, face recognition, natural language processing and speech recognition.
Since convolutional neural networks tend to be deeper and deeper which means more storage
requirements and floating-point operations, there are many works devoting to simplify and accelerate
the deep neural networks.

Some works performed structural sparsity approximation which alter the large sub-networks or
layers into shallow ones. Jaderberg et al. [1] proposed to construct a low rank basis of filters by
exploiting cross-channel or filter redundancy. [2] took the nonlinear units into account and minimized
the reconstruction error of nonlinear responses, subjecting to a low-rank constraint. [3] and [4]
employed tensor-decomposition and tucker-decomposition to simplify convolutional neural networks,
respectively.

Since operations in high precision are much more time-consuming than those with fewer fix-point
values, Courbariaux et al. [5] proposed to constrain activations to +1 and −1. [6] proposed XNOR-
Networks which computed the scaling factor applying to both binary weights and binary input. [7]
proposed HORQ Network which recursively computed the quantized residual to reduce the informa-
tion loss. Methods in [8–11] employed ternary or fixed-point values to compress and accelerate the
convolutional neural networks.

Some researchers also employed quantization to reduce the computation of CNNs. [12] utilized
k-means clusting to identify the shared weights and limited all the weights that fell into the same
cluster sharing the same weight. [13] employed product quantization to implement the efficient inner
product computation. [14] extended the quantization method into frequency domain and used a hash
function to randomly group frequency parameters into hash buckets and all parameters assigned to

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



the same hash bucket shared a single value learned with standard backpropagation. [15] decomposed
the representations of convolutional filters in frequency domain as common parts (i.e. cluster centers)
shared by other similar filters and their individual private parts (i.e. individual residuals). [16] revived
a principled regularization method based on soft weight-sharing.

Besides decomposition and quantization, network pruning is also a widely studied and efficient
approach. By pruning the near-zero connections and retraining the pruned network, both the network
storage and computation can be reduced. Han et al. [17] showed that network pruning can compress
AlexNet and VGG-16 by 9× and 13×, respectively, with negligible accuracy loss on ImageNet. [18]
proposed a dynamic network surgery (DNS) method to reduce the network complexity. Compared
with the pruning methods which accomplished this task in a greedy way, they incorporated connection
splicing into the surgery to avoid incorrect pruning and made it as a continual network maintenance.
They compressed the parameters in LeNet-5 and AlexNet by 108× and 17.7× respectively. To
further accelerate the deep convolutional nerural networks, [19] proposed to conduct channel pruning
by a LASSO regression based channel selection and least square reconstruction. [16] and [20]
process kernel weights in spatial domain and achieve both pruning and quantization in one training
procedure. [21], [22] and [23] prune nodes or filters by employing Bayesian point of view and L0

norm regularization.

The pruning methods mentioned above are all conducted in spatial domain. Actually, due to the local
smoothness of images, most filters in a CNN tend to be smooth, i.e. there are spatial redundancies. In
this paper, we try to fully exploit this spatial correlation and propose a frequency-domain network
pruning approach. First we show that a convolution or an inner product can be implemented by a
DCT-domain multiplication. Further we apply a dynamic pruning to the DCT coefficients of network
filters, since the dynamic method achieves a pretty good performance among the spatial pruning
approaches. What’s more, due to variant importance of different frequency bands, we compressed
them with different rates. Experimental results show that the proposed scheme can outperform
previous spatial-domain counterparts by a large margin on several datasets, without or with negligible
accuracy loss. Specifically, the proposed algorithm can acquire accuracy gain for the ResNet on
CIFAR-10, while achieving an impressive compression and acceleration of the network.

The rest of this paper is organized as follows. In Section 2, we introduce the proposed band-adaptive
frequency-domain dynamic pruning scheme. The theoretical analysis of computational complexity
is presented in Section 3. Section 4 shows the experimental results on several datasets. Section 5
concludes the paper.

2 Frequency-Domain Network Pruning

In this section, we first show how a spatial-domain convolution or inner product can be implemented
by multiplication in frequency domain. Here we use 2-D DCT for spatial redundancy removal.
Then the proposed frequency-domain dynamic pruning method is introduced. Further, the band-
adaptive rate allocation strategy is explained, which prunes different frequency bands discriminatively
according to their importances.

2.1 Frequency-Domain CNN

We first consider a convolutional layer of a CNN with the input tensor I ∈ Rcin×win×hin and
convolutional filters W ∈ Rcin×d×d×cout . For the weight tensor W , the spatial support of each
kernel filter is d× d. There are cin input channels and cout output feature maps. We unfold each cin
filters into a 1-D vector with a size of (cin × d× d)× 1. Then the weight tensorW is reshaped to a
(cin × d× d)× cout matrix W (see Fig. 1).

Let O ∈ Rcout×wout×hout denote the output of the convolutional layer 〈I,W, ∗〉, where wout =
b(win + 2p − d)/sc + 1 and hout = b(hin + 2p − d)/sc + 1. p and s are the padding and stride
parameters, respectively. The input tensor I can be reshaped into a (wout × hout)× (cin × d× d)
matrix I , where each row is the unfolded version of a sub-tensor in I with the same size of a group
of cin filters. Then the convolution can be implemented by a matrix multiplication between I and W .
The output is given by O = I ·W , where O has a shape of (wout×hout)× (cout). The matrix O can
be reshaped to the output tensor O ∈ Rcout×wout×hout by folding each column into a wout × hout
feature map.

2



* =

 =

inw

inh
outc

inc outc

o
u
t

o
u
t

w
h



outc

outw

outh

Input 
Extension

Weight 
Reshape

Output 
Reshape

2-D DCT 2-D DCT



o
u
t

o
u
t

w
h


o
u
t

o
u
t

w
h



...

...

...

outc

outc

... ... ...

inc

I W O

X Y

ddcin 

d
d

c i
n




ddcin 

d
d

c i
n




d

Figure 1: This figure shows the process of convolution in frequency domain.

Suppose w =
[
wT1 ,wT2 , · · · ,wTcin

]T
is a column vector in W , where wk(k ∈ [1, cin]) represents the

1-D form of a kernel filter. Then the 2-D DCT whose transformation size is d × d can be applied
to each kernel filter. The operation can be seen as a matrix multiplication yk = B · wk, where B
is the Kronecker tensor product of 2-D DCT transformation matrix and itself. The shape of B is
(d× d)× (d× d). After obtaining each sub-vector of coefficients yk, the coefficients matrix Y is
generated by reconnecting the sub-vectors and regrouping the vectors y. The input coefficients matrix
I can be obtained using the same scheme except that we apply 2-D DCT to the row sub-vectors of I .
The shapes of X and Y are the same as I and W , respectively.

In fact, the 2-D DCT transform of W can be viewed as a matrix multiplication, i.e.Y = A ·W . A is
the Kronecker tensor product of B and a unit matrix E whose size is cin × cin.

A =


B 0 . . . 0
0 B . . . 0
...

...
. . .

...
0 0 · · · B

 (1)

On the other hand, we can derive XT = A · IT . The computations of XT
i,j and Yi,j are shown in

Eq. 2 and 3, respectively.

XT
i,j =

cin∑
k=1

d2∑
`=1

Ai,(k−1)·d2+`I
T
(k−1)·d2+`,j (2)

Yi,j =

cin∑
k=1

d2∑
`=1

Ai,(k−1)·d2+`W(k−1)·d2+`,j (3)

Since the basis of a 2-D DCT are orthonormal, we can easily derive that both B and A are also
orthonormal matrices. As shown in Figure 1, the output matrix O can be computed by directly
multiplying X and Y , the proof of which is given as follows.

X · Y = (A · IT )T · (A ·W )

= I ·AT ·A ·W
= I · (AT ·A) ·W
= I ·W = O

In this way, the convolution in spatial domain is realized by the matrix multiplication in frequency
domain.

3



As for the fully-connected layers, the weights can be viewed as a matrix shape of cin × cout and the
input is a vector shape of 1× cin. The same scheme of convolutional layers can be directly applied
to implement an inner product in frequency domain. For those fully-connected layers whose inputs
are the outputs of convolutional layers, the 2-D DCT size can be set as the size of feature map in the
previous connected convolutional layer. As for other fully-connected layers, the 2-D DCT size can be
decided according to the size of input vector. In this paper, we do not apply transformation to the
latter kind of fully-connected layers, since the correlations among their weights are not so strong.

2.2 Frequency-Domain Dynamic Network Pruning (FDNP)

As mentioned in Section 2.1, we can obtain the transform coefficients of the input X and the weight
filters Y in a matrix form. In this section, we show how the proposed frequency-domain dynamic
network pruning approach works. In spatial domain, the filters in a CNN are mostly smooth due to
the local pixel smoothness in natural images. In frequency domain, this leads to components with
large magnitudes in the low frequency bands and small magnitudes in the high frequency bands. The
coefficients in frequency domain are more sparse than that in spatial domain, so they have more
potential to be pruned while retaining the same crucial information.

In order to represent a sparse model with part of its parameters pruned away, we utilize a mask matrix
T whose values are binary to indicate the states of parameters, i.e., whether they are currently pruned
or not. Then the optimization problem can be described as

min
Y,T
L(D−1(Y ⊗ T )) s.t.Ti,j = f(Yi,j), (4)

where L(·) is the loss function. D−1 denotes the inverse 2-D DCT. ⊗ represents the Hadamard
product operator and f(·) is the discriminative function which satisfies f(Yi,j) = 1 if coefficient
Yi,j seems to be important in the current layer and 0 otherwise. Following the dynamic method in
[18], we set two thresholds a and b to decide the mask values of coefficients for each layer. And to
properly evaluate the importance of each coefficient, an absolute value is utilized. Using function
f(·) as below, the coefficients are not pruned forever and have a chance to return during the training
process.

f(Y t+1
i,j ) =


0 if a > |Y t+1

i,j |
T t(i,j) if a ≤ |Y t+1

i,j | ≤ b
1 if b < |Y t+1

i,j |
(5)

The a and b are set according to the distribution of coefficients in each layer, i.e.

a = 0.9 ∗ (µ+ γ ∗ σ) (6)
b = 1.1 ∗ (µ+ γ ∗ σ) (7)

in which µ and σ are the mean value and the standard deviation of all coefficients in one layer,
respectively. γ denotes the compression rate of each layer, by which the number of remaining
coefficients in each layer is determined.

2.3 Band Adaptive Frequency-Domain Dynamic Network Pruning (BA-FDNP)

As components of different frequencies tend to be of different magnitudes, their importances vary for
the spatial structure of a filter. Thus we allow varying compression rates for different frequencies.
The frequencies are partitioned into 2d− 1 regions after analyzing the distribution of the coefficients,
where d is the transformation size. The compression rate γk is set for the kth frequency region where
k = u + v is the index of a frequency region. A smaller γk introduces lower threshold and less
parameters will be pruned. Since lower frequency components seem to be of higher importance, we
commonly assign lower γk to low-frequency regions with small indices (u, v). Correspondingly, the
high frequencies with large indices (u, v), have magnitudes near zero. Larger compression rates will
fit them better.

We set the compression rate of kth frequency region γk with a parameterized function, i.e. γk = g(·).
We adopt the beta distribution in the experiment:

g(x;λ, ω) = xλ−1(1− x)ω−1 (8)

where x = (k + 1)/2d, k ∈ [0, 2d− 1].

4



As we mentioned before, we expect a smaller compression rate for low-frequency components due to
the higher importance. In the experiment, we modify function g(·) to be positively related with x by
adjusting the values of λ and ω.

2.4 Training Pruning Networks in Frequency Domain

The key point of training pruning networks in frequency domain is the updating scheme of weight
coefficients matrix Y . Suppose w is a kernel filter inW , and y denotes the corresponding coefficients
after 2-D DCT transformation whose shape is d× d. Since 2-D DCT is a linear transformation, the
gradient in frequency domain is merely the 2-D DCT transformation of the gradient in spatial domain.
The proof is shown in the supplementary material.

∂L
∂y

= D(∂L
∂w

) (9)

where L is the total loss of the network. Then inspired by the method of Lagrange Multipliers and
gradient descent, we can obtain a straightforward updating procedure of the filter parameters Y in
frequency domain.

Y(u,v) ← Y(u,v) − β
∂L(Y ⊗ T )

∂(Y(u,v)T(u,v))
(10)

in which β is a positive learning rate. To enable the returning of improperly pruned parameters, we
update not only the non-zero coefficients, but also the ones corresponding to zero entries of T .

The procedure of training an L−layers BA-FDNP network can be divided into three phases: feed-
forward, back-propagation and coefficient-update. In the feed-forward phase, the input and weight
filters are transformed into frequency domain to complete the computation as shown in Section 2.1.
During back-propagation, after computing the standard gradient ∂L

∂W in spatial domain, 2-D DCT
is directly used to obtain the gradient ∂L

∂Y in frequency domain. Then we apply dynamic pruning
method after updating the coefficients. It should be noticed that we update not only the remained
coefficients, but also the ones considered to be unimportant temporarily. So we can give a chance
for those improperly pruned parameters to be returned. Repeat these steps iteratively, one can train
the BA-FDNP CNN in frequency domain. The process of the proposed algorithm is detailed in the
supplementary material.

3 Computational Complexity

Given a convolutional layer with W ∈ Rcin×d×d×cout as the weight tensor and Y denotes the
compressed coefficients in this layer. Suppose η is the ratio of non-zero elements in Y , the number
of multiplications in convolution operations is ηcind2coutwouthout in frequency domain. And each
sub-input feature map with a size of d× d costs 2d · d2 multiplications due to the separable 2-D DCT
transform. The additional computational cost of 2-D DCT in one layer is 2d · d2cinwouthout (see
Fig. 1). Compared to the original CNN, the theoretical inference speed-up of the proposed scheme is

rs =
cind

2coutwouthout
2d · d2cinwouthout + ηcind2coutwouthout

=
cout

2d+ ηcout
(11)

Suppose ξ is the ratio of non-zero elements in the compressed weights of spatial-domain pruning
method. The inference speed-up of the spatial-domain pruning method is

rs
′ =

cind
2coutwouthout

ξcind2coutwouthout
=

1

ξ
(12)

Eq.11 and 12 give the inference speed-up of one layer, the inference speed-up of whole network is
also related to the size of output feature map in each layer besides the compression rates of each layer.
Although compared to the spatial-domain pruning method, our scheme has an additional computation
cost of transformation, a larger compression ratio can be acquired, i.e. less non-zero elements left
in compressed parameters, due to the sparser representation of the weight filters. We will show the
detailed results in Section 4.

5



Table 1: Compression results comparison of our methods with [17] and [18] on LeNet-5.
LeNet-5 Parameters Top-1 Accuracy Iterations Compression
Reference 431K 99.07% 10K 1×
Pruned [17] 34.5K 99.08% 10K 12.5×
Pruned [18] 4.0K 99.09% 16K 108×
FDNP (ours) 3.3K 99.07% 20K 130×
BA-FDNP (ours) 2.8K 99.08% 20K 150×

Table 2: Comparison of the percentage of remaining parameters in each layer after applying [17],
[18] and our methods on LeNet-5.

Layer Params. Params.%[17] Params.%[18] Params.%(FDNP) Params.%(BA-FDNP)
conv1 0.5K 66% 14.2% 12.4% 12%
conv2 25K 12% 3.1% 2.5% 2.1%

fc1 400K 8% 0.7% 0.6% 0.5%
fc2 5K 19% 4.3% 3.5% 3.6%

Total 431K 8% 0.9% 0.77% 0.67%

4 Experimental Results

In this section, we conduct comprehensive experiments on three benchmark datasets: MNIST,
ImageNet and CIFAR-10. LeNet, AlexNet and ResNet are tested on these three datasets respectively.
We mainly compare our schemes with [17] and [18], which are spatial-domain pruning methods.
The compared results of LeNet and AlexNet are directly acquired from the paper and we train the
compressed model of ResNet ourselves as the paper introduced since they didn’t report the results of
ResNet.

The training processes are all performed with the Caffe framework [24]. A pre-trained model is
obtained before applying pruning and the learning policy of fine-tuning is the same as the ones
while obtaining the pre-trained model if not mentioned specifically. The momentum and weight
decay are set to 0.9 and 0.0001 in all experiments. Since LeNet and AlexNet have only a few layers
and the kernel size of each layer is different, we set the compression rate γ of each layer manually.
On the other hand, we set the same γ for every layer in ResNet. In the BA-FDNP scheme, the
hyperparameters λ and ω are set to 1.0 and 0.8 respectively.

4.1 LeNet-5 on MNIST

We firstly apply our scheme on MNIST with LeNet-5. MNIST is a benchmark image classification
dataset of handwritten digits from 0 to 9 and LeNet-5 is a conventional neural network which consists
of four learnable layers, including two convolutional layers and two fully-connected layers. It is
designed by LeCun et al. [25] for document recognition and has 431K learnable parameters. The
learning rate is set to 0.1 initially and reduced by 10 times for every 4K iterations during training. We
use "xavier" initialization method and train a reference model whose top-1 accuracy is 99.07% with
10K iterations.

While compressing LeNet-5 with FDNP and BA-FDNP, the batch size is set to 64 and the maximal
number of iterations is properly increased to 15K. The comparision of our proposed schemes with
[17] and [18] are shown in Table 1. The network parameters of LeNet-5 are reduced by a factor of
130× and 150× with FDNP and BA-FDNP repectively which are much better than [17] and [18],
while the classification accuracies are as good.

To better demonstrate the advantage of our schemes, we make layer-by-layer comparisons among [17],
[18] and our schemes in Table 2. There is a considerable improvement in every layer due to the
transformation. And we can see that the performance can benefit from different compression rates for
different frequency bands.

6



Table 3: Compression results comparison of our methods with [17] and [18] on AlexNet.
AlexNet Top-1 Acc. Top-5 Acc. Parameters Iterations Compression
Reference 56.58% 79.88% 61M 45K 1×
Pruned [17] 57.23% 80.33% 6.8M 480K 9×
Pruned [18] 56.91% 80.01% 3.45M 70K 17.7×
FDNP(ours) 56.84% 80.02% 2.9M 70K 20.9×
BA-FDNP(ours) 56.82% 79.96% 2.7M 70K 22.6×

Table 4: Comparison of the percentage of remaining parameters in each layer after applying [17],
[18] and our methods for AlexNet.

Layer Params. Params.%[17] Params.%[18] Params.%(FDNP) Paras.%(BA-FDNP)
conv1 35K 84% 53.8% 40.7% 42.3%
conv2 307K 38% 40.6% 35.1% 34.6%
conv3 885K 35% 29.0% 28.6% 24.6%
conv4 664K 37% 32.3% 29.9% 27.7%
conv5 443K 37% 32.5% 26.7% 23.8%

fc1 38M 9% 3.7% 3.4% 3.0%
fc2 17M 9% 6.6% 4.7% 4.8%
fc3 4M 25% 4.6% 3.9% 3.8%

Total 61M 11% 5.7% 4.8 4.4%

4.2 AlexNet on ImageNet

We further examine the performance of our scheme on the ILSVRC-2012 dateset, which has 1.2
million training images and 50K validation images. AlexNet is adopted as the inference network.
AlexNet has five convolutional layers and three fully-connected layers. After 450K iterations of
training, a reference model with 61 million well-learned parameters is generated. While performing
FDNP and BA-FDNP, the convolutional layers and fully-connected layers are pruned separately
which is also applied in [18]. We run 350K iterations for convolutional layers and 350K iterations
for fully-connected layers respectively. When the weight coefficients of convolutional layers are
pruning, the weight coefficients of the fully-connected layers update as well but not be pruned and
vice versa. We use a learning rate of 0.01 and reduced it by 10 times for every 100K iterations. The
batch size is set to 32 and we use "gaussian" initialization method for the training.

As we mentioned in section 2.1, FDNP and BA-FDNP are appplied to the convolutional layers as
well as the first fully-connected layer whose input is the output feature map of convolutional layer and
the other fully-connected layers are pruned in spatial domain using the method in [18]. Table 3 shows
the comparison of our schemes with [17] and [18] on AlexNet. Our FDNP and BA-FDNP methods
achieve 20.9× and 22.6× compression ratios which are better than the spatial-domain pruning
methods. Besides, the classification accuracies of our compressed schemes are still comparable with
the compared methods and better than the reference model.

We compare the percentage of remaining parameters in each layer of AlexNet after applying [17], [18]
and our methods in Table 4. Our methods pruned more parameters on every single layer. Although we
utilize the method in [18] among the last two fully-connected layers, our compressed model achieves
the lager compression ratios on these two layers due to the more expressive capacity of the other
layers.

4.3 ResNet on CIFAR-10

To further demonstrate the effectiveness of our scheme, we apply it to the modern neural network
ResNet [26] on CIFAR-10. CIFAR-10 is also a classification benchmark dataset containing a training
set of 50K images and a test set of 10K images. During training, we use the same data augmentation
like in [27], which contains flip and translation. ResNet-20 and ResNet-110 are conducted in this

7



(a) Accuracy (b) Compression Rate (c) Speed-up

Figure 2: This figure shows the accuracies, compression rates and theoretical inference speed-up of
ResNet-20 under different γ.

(a) Accuracy (b) Compression Rate (c) Speed-up

Figure 3: This figure shows the accuracies, compression rates and theoretical inference speed-up of
ResNet-110 under different γ.

experiment. The learning rate is 0.1 and reduced by 10 times for every 40K iterations. The "msra"
initialization method is adopted in this experiment. After 100K iterations of training, the top-1
accuracies of two reference models are 91.86% and 93.41% respectively.

We apply the method in [18], FDNP and BA-FDNP to the reference models of ResNet-20 and
ResNet-110 separately. The batch size is set to 100 and the maximal number of iterations is set
to 150K. While applying FDNP and BA-FDNP, we employ the spatial-domain dynamic pruning
method in [18] to compress the convolutional layers whose kernel sizes are 1× 1.

Fig.2 and 3 show the performances of [18] and our proposed schemes under different γ. It can
be seen that a larger γ prominently improves the compression ratio, while coming at a cost of a
little decreased accuracy. Under the same condition, FDNP achieve larger compression ratios and
inferece speed-up rates while the accuracies are nearly the same as or even better than [18]. When we
compress the model using different compression rates for different frequency bands, the performance
can be better. While keeping the accuracies the same as the reference models, our BA-FDNP scheme
can compress ResNet-20 and ResNet-110 by a factor of 6.5× and 8.4× respectively. In the meantime,
the theoretical inference speed-up ratios are 6.4× and 9.2× respectively, which means both the
storage requirements and the FLOPs can be well reduced. The interesting point is that the speed-up
ratio of ResNet-110 is ever larger than the compression ratio even with the additional computational
cost of 2-D DCT transformation. We consider that it owe to our schemes pruning more coefficients
of layers who own larger size of output feature map.

Figure.4(a) shows the number of pruned and remaining parameters of each layer in ResNet-20 when
γ is set to 1.2. The proportions of the remaining parameters in different layers are different though we
set the same compression rate. The energy histogram of the coefficients before and after BA-FDNP is
shown in Figure.4(b). The energy of coefficients is more concentrated on the lower frequency bands
after pruning as we pruned more higher frequency coefficients. By this result, it appears that the
lower frequency components tend to be of higher importance.

8



(a) (b)

Figure 4: This figure shows (a) the number of pruned and remaining parameters of each layer in
ResNet-20 after applying BA-FDNP, (b) the energy histogram of coefficients in each band before and
after BA-FDNP in ResNet-20.

5 Conclusion

In this paper, we propose a novel approach to compress the convolutional neural networks by
dynamically pruning the unimportant weight coefficients in frequency domain. We firstly give an
implementation of CNN in frequency domain. The coefficients can be efficiently pruned since they
are sparser after 2-D DCT transformation and many spatial-domain pruning methods can be applied.
What’s more, we set different compression rates for different frequency bands due to the variant
importance. Our BA-FDNP scheme achieves a 8.4× of compression and a 9.2× of acceleration
for ResNet-110 respectively without any loss of accuracy, which outperforms the previous pruning
methods by a considerable margins. In the future, we will consider to exploit the correlations among
different channels and employ 3-D transform to further compress and accelerate the convolutional
neural networks. Besides, the quantization and Huffman-coding can also be applied to the coefficients
in frequency domain.

Acknowledgemetns This work was part supported by the National Key Research and Development
Program of China (2017YFB1002203), the National Natural Science Foundation of China (61772041),
the Beijing Natural Science Foundation (4172027), and also by the Cooperative Medianet Innovation
Center. This work was done when Z. Liu was with Microsoft Research Asia.

References
[1] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolutional neural networks with

low rank expansions,” british machine vision conference, 2014.

[2] X. Zhang, J. Zou, X. Ming, K. He, and J. Sun, “Efficient and accurate approximations of
nonlinear convolutional networks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2015, pp. 1984–1992.

[3] C. Tai, T. Xiao, Y. Zhang, X. Wang, and E. Weinan, “Convolutional neural networks with
low-rank regularization,” international conference on learning representations, 2016.

[4] Y. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, “Compression of deep convolutional
neural networks for fast and low power mobile applications,” international conference on
learning representations, 2016.

[5] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized neural networks:
Training deep neural networks with weights and activations constrained to+ 1 or-1,” arXiv
preprint arXiv:1602.02830, 2016.

[6] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet classification using
binary convolutional neural networks,” in European Conference on Computer Vision. Springer,
2016, pp. 525–542.

9



[7] Z. Li, B. Ni, W. Zhang, X. Yang, and W. Gao, “Performance guaranteed network acceleration
via high-order residual quantization,” in IEEE International Conference on Computer Vision,
2017, pp. 2603–2611.

[8] P. Wang and J. Cheng, “Fixed-point factorized networks,” computer vision and pattern
recognition, pp. 4012–4020, 2016.

[9] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quantization,” international
conference on learning representations, 2016.

[10] N. Mellempudi, A. Kundu, D. Mudigere, D. Das, B. Kaul, and P. Dubey, “Ternary neural
networks with fine-grained quantization,” arXiv preprint arXiv:1705.01462, 2017.

[11] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network quantization: Towards
lossless cnns with low-precision weights,” arXiv preprint arXiv:1702.03044, 2017.

[12] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding,” international conference on learning
representations, 2016.

[13] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional neural networks for
mobile devices,” computer vision and pattern recognition, pp. 4820–4828, 2016.

[14] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen, “Compressing convolutional
neural networks in the frequency domain.,” in KDD, 2016, pp. 1475–1484.

[15] Y. Wang, C. Xu, S. You, D. Tao, and C. Xu, “Cnnpack: packing convolutional neural networks
in the frequency domain,” in Advances in Neural Information Processing Systems, 2016, pp.
253–261.

[16] Karen Ullrich, Edward Meeds, and Max Welling, “Soft weight-sharing for neural network
compression,” arXiv preprint arXiv:1702.04008, 2017.

[17] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and connections for efficient
neural networks,” neural information processing systems, pp. 1135–1143, 2015.

[18] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient dnns,” in Advances In
Neural Information Processing Systems, 2016, pp. 1379–1387.

[19] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deep neural networks,” in
International Conference on Computer Vision (ICCV), 2017, vol. 2, p. 6.

[20] Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov, “Variational dropout sparsifies deep
neural networks,” arXiv preprint arXiv:1701.05369, 2017.

[21] Christos Louizos, Karen Ullrich, and Max Welling, “Bayesian compression for deep learning,”
in Advances in Neural Information Processing Systems, 2017, pp. 3288–3298.

[22] Christos Louizos, Max Welling, and Diederik P Kingma, “Learning sparse neural networks
through l_0 regularization,” arXiv preprint arXiv:1712.01312, 2017.

[23] Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha, and Dmitry P Vetrov, “Structured
bayesian pruning via log-normal multiplicative noise,” in Advances in Neural Information
Processing Systems, 2017, pp. 6775–6784.

[24] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick,
Sergio Guadarrama, and Trevor Darrell, “Caffe: Convolutional architecture for fast feature
embedding,” in Proceedings of the 22nd ACM international conference on Multimedia. ACM,
2014, pp. 675–678.

[25] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document
recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

10



[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp.
770–778.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Identity mappings in deep residual
networks,” in European conference on computer vision. Springer, 2016, pp. 630–645.

11


