
A Appendix

A.1 Performance Plots for Models

We include the train/test curves for models trained in Figure 1. Comparing the curves to Figure 1,
we can see that for all the models, there is a train time t0 where performance is almost equivalent
to final performance, but most CCA coefficients ρ(i) still haven’t converged. This suggests that the
vectors associated with these ρ(i) are noise in the representation, which is not necessary for doing
well at the task.

a

0 10000 20000 30000 40000 50000 60000 70000 80000
Step

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CIFAR-10 Resnet Performance

train acc
test acc

b

0 100 200 300 400 500
Epoch Number

50

100

150

200

250

300

Pe
rp

le
xi

ty

PTB Test Perplexity c

0 100 200 300 400 500 600 700
Epoch Number

100

200

300

400

500

600

Pe
rp

le
xi

ty

WikiText-2 Test Perplexity

Figure A1: Performance convergence for CIFAR-10 CNNs, and PTB and WikiText-2 RNNs.

A.2 Additional reduction methods for CCA

Bartlett’s Test Another potential method to reduce across CCA vectors of varying importnace is
to estimate the number of important CCA vectors k, and perform an average over this. A statistical
hypothesis test, proposed by Bartlett [3], and known as Bartlett’s test, attempts to identify the number
of statistically significant canonical correlations. Key to the test is the computation of Bartlett’s
statistic:

Tk = −

(
n− k − 1

2
(a+ b+ 1) +

k∑
i=1

1

(ρ(i))2

)
log

(
c∏

i=k+1

(1− (ρ(i))2

)

where, in the same notation as previously, n is the number of datapoints, and a, b are the number
of neurons in L1, L2, with c = min(a, b). The null hypothesis H0 is that there are k statistically
significant canonical correlations with the remaining ρ(i) are generated randomly via a normal dis-
tribution [3]. Under the null, the distribution of Tk becomes chi-squared with (a−k)(b−k) degrees
of freedom. We can then compute the value of Tk and determine if H0 satisfactorily explains the
data.

However, the iterative nature of this metric makes it expensive to compute. We therefore focus on
projection weighting in this work, and leave further exploration of Bartlett’s test for a future study.

A.3 Representation Dynamics in RNNs Through Sequence (Time) Steps

Here, we investigate the utility of CCA for analyzing representations of RNNs unrolled across se-
quence time steps. As a toy example of CCA’s benefit in this case, we first initialize a linear vanilla
RNN with a unitary recurrent matrix (such that it simply rotates the hidden representation on each
timestep). We then use cosine distance, Euclidean distance, and CCA to compare the hidden rep-
resentation at each timestep to the representation at the final timestep (Figure A2a-c). While both
cosine and Euclidean distance fail to realize the similarity between timesteps, CCA, because of its
invariance to linear transforms, immediately recognizes that the representations at all timesteps are
linearly equivalent.

However, as linear networks are limited in their representational capabilities, we next examine a toy
case of a network involving both a linear and non-linear component. We again initialize a simple
RNN with the following update rule:

ht+1 = Wrotht + α · σ(Wrandht) + b

11



a b
Linear

c

d e
Blended linear/nonlinear

f

Figure A2: Toy RNN examples demonstrating that CCA is comparatively rotation invariant. In a toy
example, vanilla RNNs were initialized with a random rotation matrix and run 1000 times with a random
starting hidden state and no inputs. Hidden states at each timepoint were compared to the final hidden state
using cosine distance (a, d), Euclidean distance (b, e), and CCA (c, f). Due to its rotation invariance, CCA
recognized all states as similar in both linear RNNs (a-c), and a blended linear/non-linear case (d-f; ht+1 =
Wrotht+α ·σ(Wrandht)+b, whereWrot is a random rotation matrix,Wrand ∼ N (0, I)), while both cosine
and Euclidean distance largely fail. Error bars represent mean ± std.

where ht is the hidden state at time t, σ represents the sigmoid nonlinearity, Wrot is a random
rotation matrix, Wrand ∼ N (0, I)), and α is a scale factor between the linear and non-linear com-
ponents. For values of α as high as 100 (suggesting that the nonlinear component has 100 times the
magnitude of the linear component), we again find that, in contrast to CCA, cosine and Euclidean
distance fail to recognize the similarity between timesteps (Figure A2d-f).

However, both of the above cases are toy examples. We next analyze the application of CCA to the
more realistic situation of LSTM networks trained on PTB and WikiText-2. To do this, we unroll
the RNN for 20 sequence steps, and collect the activations of each neuron in the hidden state over
the appropriate sequence tokens for each of the 20 timesteps. More precisely, we can represent our
output by a matrix O with dimensions (N,m) where N is the number of neurons and m is the total
sequence length. Our per sequence step matrices would then be O0, ..., O19, with Oj consisting of
all the outputs corresponding to sequence tokens with index equal to j modulo 20, and our matrix
would have dimensions (N,m/20). We can then compareOj toO19 analogous with the comparison
to the final timestep. We then apply CCA, Cosine and Euclidean distance as above. To our surprise,
the hidden state varies significantly from sequence timestep to sequence timestep, Figure A4.

0 2 4 6 8 10 12 14 16 18
Sequence Step

0.0

0.2

0.4

0.6

0.8

Di
st

an
ce

CCA Distance

0 2 4 6 8 10 12 14 16 18
Sequence Step

0.0

0.2

0.4

0.6

0.8

Cosine Distance

Layer
0
1
2

0 2 4 6 8 10 12 14 16 18
Sequence Step

0.0

0.5

1.0

Euclidean Distance

Figure A3: Hidden states are nonlinearly variable over sequence timesteps. Using CCA (left), cosine dis-
tance (middle), and Euclidean distance (right), we measured the distance between representations at sequence
timestep t and the final sequence timestep T . Interestingly, even CCA failed to find similarity until late in the
sequence, suggesting that the hidden state varies nonlinearly in the presence of unique inputs.

The above result demonstrates that the hidden state varies nonlinearly in the presence of unique
inputs. However, this nonlinearity could be caused by the recurrent dynamics or novel inputs. To
disambiguate these two cases, we asked how the hidden state changes when the same input is re-

12



peated. We therefore repeat the same input for 20 timesteps, beginning the repetition after some
percentage of previous steps containing unique inputs (e.g., 1%, 10%, ... through the m input se-
quence tokens). When the repeating inputs were presented early in the sequence, CCA recognized
that the hidden state was highly similar, while cosine and Euclidean distance remained insensitive
to this similarity (Figure A4, light blue lines). This result appears to suggest that the recurrent
dynamics are approximately linear in nature.

However, when the same set of repeating inputs was presented late in the sequence (Figure A4, dark
blue lines), we found that the CCA distance increased markedly, suggesting that the nonlinearity of
the recurrent dynamics depends not only on the (fixed) recurrent matrix, but also on the sequence
history of the network.

0 2 4 6 8 10 12 14 16 18
Sequence Step

0.0

0.2

0.4

0.6

0.8

Di
st

an
ce

CCA Distance

0 2 4 6 8 10 12 14 16 18
Sequence Step

0.0

0.2

0.4

0.6

0.8

1.0
Cosine Distance

0 2 4 6 8 10 12 14 16 18
Sequence Step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Euclidean Distance

Repeat Start 1% 
Repeat Start 8% 
Repeat Start 24% 
Repeat Start 48% 
Repeat Start 81% 
No Repeat

Figure A4: Hidden states vary linearly in the presence of repeated inputs. To test whether the nonlinearity
in the hidden state over sequence timesteps was due to input variability or recurrent dynamics, we measured
the CCA distance (left), cosine distance (middle), and Euclidean distance (right) between sequence timestep
t and the final sequence timestep T in the presence of repeating inputs. Interestingly, we found that when
the repetition started after only a small set of unique inputs have been presented (light blue lines), CCA was
able to recognize that the hidden states at each sequence timestep were highly similar. However, after many
unique inputs had been delivered, the CCA distance markedly increased, suggesting that the nonlinearity of the
recurrent dynamics is dependent on the network’s history.

A.4 Experimental details

CIFAR-10 ConvNet Architecture: The convolutional networks trained on CIFAR-10 were iden-
tical to those used in [21]. All CIFAR-10 networks were trained for 100 epochs using the Adam op-
timizer with default parameters, unless otherwise specified (learning rate: 0.001, beta1: 0.9, beta2:
0.999). Default layer sizes were: 64, 64, 128, 128, 128, 256, 256, 256, 512, 512, 512, with strides
of 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, respectively. All kernels were 3x3 and a batch size of 32. Batch
normalization layers were present after each convolutional layer. For the experiments in Section 3.2,
all layers were scaled equally by a constant factor ∈ 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 3.0,
4.0, 5.0, 6.0, 7.0.

RNN Experiments: RNN experiments on PTB and WikiText2 followed the experimental setup
in [18] and [19]. In particular, we used the open sourced model code9 for training the word level
Penn TreeBank and WikiText-2 LSTM models, (without finetuning or continuous cache pointer
augmentation). All hyperparameters were left unmodified, so experiments can be reproduced by
training LSTM models using the command to run main.py, and then applying CCA to the hidden
states, via the open source implementation10.

Toy Experiments: Generate k vectors in R2000 of ‘signal’ (iid standard normal), for k ∈
20, 50, 70, 80, 100, 120, 140, 160, 180, 199 and concatenate this Rk×2000 matrix with a noise ma-
trix: R(200−k)×2000 ∼ N (0, 0.1) to. (Note that the noise being lower magnitude than the signal
is something that we see in typical neural networks – work on network compression has showing
that pruning low magnitude weights is an effective compression strategy.) Putting together gives
matrix X , 200 (neurons) by 2000 (datapoints). Apply a randomly sampled orthonormal transform
to the k by 2000 subset of X to get a new k by 2000 matrix, and again add iid noise of dimensions

9https://github.com/salesforce/awd-lstm-lm
10https://github.com/google/svcca/

13



(200 − k) by 2000 to get matrix Y . Apply CCA based methods to detect similarity between X,Y .
Of particular interest are cases k << 200 (low dim. signal in noise).

A.5 Additional control experiments

Figure A5: Cosine and Euclidean distance do not reveal the difference in converged solutions between
groups of generalizing and memorizing networks. Groups of 5 networks were trained on CIFAR-10 with
either true labels (generalizing) or random labels (memorizing). The pairwise cosine (left) and eucldean (right)
distance was then compared among generalizing networks, memorizing networks, and between generalizing
and memorizing networks (inter) for each layer. While its invariance to linear transforms enabled CCA distance
to reveal a difference between groups generalizing and memorizing networks in later layers (Figure 3), cosine
and Euclidean distance fail to detect this difference. Error bars represent mean ± std distance across pairwise
comparisons.

Figure A6: Cosine and Euclidean distance do not reveal the relationship between network size and sim-
ilarity of converged solutions. Groups of 5 networks with different random initializations were trained on
CIFAR-10. Each group contained filter sizes of λ[64, 64, 128, 128, 128, 256, 256, 256, 512, 512, 512] with
λ ∈ {0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0}. Pairwise cosine (left) and Euclidean
(right) distance was computed for each group of networks. While CCA distance revealed that larger networks
converge to more similar solutions (Figure 4), cosine and Euclidean distance fail to find this relationship. Error
bars represent mean ± std distance across pairwise comparisons.

14



Figure A7: Relationship between network size and similarity of converged solutions is not
present at initialization. Activations at initialization (random weights) and after training (learned
weights) were extracted from groups of 5 networks with different random initializations from CIFAR-10
data. Each group contained filter sizes of λ[64, 64, 128, 128, 128, 256, 256, 256, 512, 512, 512] with λ ∈
{0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0}. While CCA distance decreases substantially
for trained networks (from approximately 0.47 to 0.28), CCA distance only decreased moderately (from ap-
proximately 0.67 to 0.63) and plateaued past approximately 1000 filters. Error bars represent mean ± std
distance across pairwise comparisons.

15



a

0 100 200 300 400 500
Epoch Number

0.0

0.2

0.4

0.6

0.8

Co
sin

e 
Di

st
an

ce

PTB Learning Dynamics Cosine Distance
Layer

1
2
3

b

0 100 200 300 400 500
Epoch Number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Eu
cli

de
an

 D
ist

an
ce

PTB Learning Dynamics Euclidean Distance
Layer

1
2
3

c

0 100 200 300 400 500 600 700
Epoch Number

0.0

0.2

0.4

0.6

0.8

Co
sin

e 
Di

st
an

ce

WikiText-2 Learning Dynamics Cosine Distance
Layer

1
2
3

d

0 100 200 300 400 500 600 700
Epoch Number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Eu
cli

de
an

 D
ist

an
ce

WikiText-2 Euclidean Distance
Layer

1
2
3

e

0 100 200 300 400 500 600 700
Epoch Number

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e 
Di

st
an

ce

WikiText-2 Cosine Distance Deeper LSTM
Layer

1
2
3
4
5

f

0 100 200 300 400 500 600 700
Epoch Number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Eu
cli

de
an

 D
ist

an
ce

WikiText-2 Euclidean Distance Deeper LSTM
Layer

layer 1
layer 2
layer 3
layer 4
layer 5

Figure A8: Controls for RNN learning dynamics with cosine and Euclidean distance To test whether layers
converge to their final representation over the course of training with a particular structure, we compared each
layer’s representation over the course of training to its final representation using cosine (a, c, e) and Euclidean
distance (b, d, f). In shallow RNNs trained on PTB (a-b), and WikiText-2 (c-d), both cosine and Euclidean
distance display properties of bottom-up convergence, albeit with substantially more noise than CCA (6). In
deeper RNNs trained on WikiText-2, we observed a similar pattern (e-f).

16



a b

Figure A9: Unweighted CCA and SVCCA also finds that generalizing networks converge to more similar
solutions than memorizing networks, but misses several key features. While weighted CCA (Figure 3),
unweighted CCA (a), and SVCCA (b) reveal the same broad pattern across generalizing and memorizing
networks, unweighted CCA and SVCCA miss several key features. First, unweighted CCA misses the fact that
generalizing networks become more similar to one another in the final two layers. Second, both unweighted
CCA and SVCCA overestimate the distance between networks in early layers. Error bars represent mean± std
unweighted mean CCA and unweighted mean SVCCA distance across pairwise comparisons.

Figure A10: On test data, generalizing networks converge to similar solutions at the softmax, but memo-
rizing networks do not. Groups of 5 networks were trained on CIFAR-10 with either true labels (generalizing)
or random labels (memorizing). The pairwise CCA distance was then compared within each group and be-
tween generalizing and memorizing networks (inter) for each layer, based on the test data. At the softmax, sets
of generalizing networks converged to similar (though not identical) solutions, but memorizing networks did
not, reflecting the diverse strategies used by memorizing networks to memorize the training data. Error bars
represent mean ± std weighted mean CCA distance across pairwise comparisons.

17


	Introduction
	Canonical Correlation Analysis on Neural Network Representations
	Mathematical Details of Canonical Correlation
	Beyond Mean CCA Similarity

	Using CCA to measure the similarity of converged solutions
	Generalizing networks converge to more similar solutions than memorizing networks
	Wider networks converge to more similar solutions
	Across many initializations and learning rates, networks converge to discriminable clusters of solutions

	CCA on Recurrent Neural Networks
	Learning Dynamics Through Training Time

	Discussion and future work
	Appendix
	Performance Plots for Models
	Additional reduction methods for CCA
	Representation Dynamics in RNNs Through Sequence (Time) Steps
	Experimental details
	Additional control experiments



