
DeepExposure: Learning to Expose Photos with
Asynchronously Reinforced Adversarial Learning

Supplementary Materials

Runsheng Yu∗

Xiaomi AI Lab
South China Normal University

runshengyu@gmail.com

Wenyu Liu ∗

Xiaomi AI Lab
Peking University

liuwenyu@pku.edu.cn

Yasen Zhang
Xiaomi AI Lab

zhangyasen@xiaomi.com

Zhi Qu
Xiaomi AI Lab

quzhi@xiaomi.com

Deli Zhao
Xiaomi AI Lab

zhaodeli@xiaomi.com

Bo Zhang
Xiaomi AI Lab

zhangbo@xiaomi.com

Appendix

A. Experience buffer and asynchronous policy gradient

In this section we will discuss how our asynchronous update method can replace the experience
buffer.

The V -value function is as follows

V π(s) = E
s∼s0,t∼π

[rγ0 ]. (1)

The updates for online V -value and policy network function can be written as

ωt+1 = ωt + α[r(t) + γV π(p(st, at);ωt)− V π(st;ωt)]∇ωV π(st;ωt) (2)

and
θt+1 = θt + [∇θπθ(s)∇aAπ(s, a; θt)|a = π(s)]. (3)

Thus the update for weights (or dynamic equation) is

dω

dt
= α[r(t) + γV π(p(st, at);ω)− V π(st;ω)]∇ωV π(st;ω)). (4)

Under the asynchronous update method, Eq. (4) can be put as

dω

dt
= α

1

TN

N∑
i=0

T∑
t=0

[rit + γV π(p(sit, ait);ω)− V π(sit;ω)]∇ωV π(sit;ω)). (5)

Liu et al. gives the Q-value parameter dynamics under experience buffer [4]. We can rewrite it into
V -value parameter dynamics under experience buffer

dω

dt
= β

∫ t

t−nt
[r(t) + γV π(p(st, at);ω)− V π(st;ω)]∇ωV π(st;ω)). (6)

∗Joint first authors.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



Taking the discrete approximation, we get

β

∫ t

t−nt
[r(t) + γV π(p(st, at);ω)− V π(st;ω)]∇ωV π(st;ω)) (7)

≈ β
t∑

i=t−nt

[r(i) + γV π(p(si, ai);ω)− V π(si;ω)]∇ωV π(si;ω)). (8)

The Eq. (5) can be reformed as

α
1

NT

∑
N

∑
T

[r(t) + γV π(p(st, at);ω)− V π(st;ω)]∇ωV π(st;ω)) (9)

= α
1

NT

NT−1∑
i=0

[r(i) + γV π(p(si, ai);ω)− V π(si;ω)]∇ωV π(si;ω)). (10)

Therefore Eq. (8) coincides with Eq. (10) when

α
1

NT
= β and NT − 1 = nt. (11)

Obviously, there always exists β and nt satisfying Eq. (11). This means that our asynchronous policy
gradient can approximate the experience replay method.

B. Solving the V -value function directly

In this section we will discuss an alternative way to represent the V -value function.

We have already known that the equation of the V-value function is V π(s) = E
s∼s0,PT∼π

[rT ] and that

of the TD error δ = rt + γV π(p(st, at))− V π(st). We can simplify the TD error as

δ =

{
D(PT (s0,A))− γV (st), t = T − 1
γV (p(at, st))− V (st), t < T − 1.

(12)

The ideal V (st) is to minimize 1
2E[δ2]. De facto, Eq. (12) can be solved directly. Setting 1

2E[δ2] to
be zero, we have

1

2
E[δ2] = 0. (13)

Approximately, one of its solution is to make δ close to zero, thus resulting in

D(PT (s0,A)) = γV (st−1), t = T
γV (p(at, st)) = V (st), t < T. (14)

Eq. (14) above can be re-written in unified form

V (st) = D(PT (s0,A)) ∗ γ−t+T (15)

and
Q(st, at) = rt + γV π(p(st, at)) = D(PT (s0,A)) ∗ γ−t+1+T . (16)

Therefore, the advantage function can be written as

A(st, at) = Q(st, at)− V (st) (17)

= D(PT (s0,A)) ∗ γ−t+1+T −D(PT (s0,A)) ∗ γ−t+T (18)

= D(PT (s0,A)) ∗ (γ − 1) ∗ γ−t+T . (19)

Since PT (s0,A) contains future information difficult to obtain. If the sub-images are not so many, in
practical, we can use the intermediate state slt to approximate the final step slt ≈ PT (s0,A).

2



One interesting thing is that if we regard the discriminatorD as the reward function, then theA(st, at)
is like the potential-based reward shaping function [6, 1]

F = γ ∗ rγt+1 − r
γ
t (20)

= γT+1 ∗D(PT (s0,A))−D(PT (s0,A)) (21)

= γT+1 ∗ (D(PT (s0,A))) ∗ γ−t+1 −D(PT (s0,A)) ∗ γ−t) (22)

= γ−t−1+T ∗ (V (p(st, at))− V (st)) = γ−t+1+TAπ(st, at). (23)

Through Eq. (23), we can see that the advantage function Aπ is the same form as reward shaping
function F . Moreover, since Aπ(st, at) ∝ −D(PT (s0,A)), this algorithm can be explained as an
actor-only reinforcement learning which greedily maximizes the reward shaping function F . We use
this method to solve sparse reward problem.

C. Generative loss and policy gradient

From the equations given above, we have two forms of the value function. Now, we will discuss how
these two value functions affect the policy gradient method.

C.1 Solving form of value function directly

If value function is replaced by D, the policy gradient can be

E
s∼ρ

[∇θπθ(s)∇aAπ(s, a)|a = π(s)] = E
s∼ρ

[∇θπθ(s)∇aDπ(s, a)|a = π(s)] ∗ C, (24)

where C = (γ − 1) ∗ γ−t+T . This is one form of our value function. We solve it directly and thus
can avoid building another neural network to approximate value function. For Generative Adversarial
Network (GAN), the original generator loss function is

LG = −Ex∼pg [D]. (25)

The differential form of LG gives

∇θgLG = −∇θgEx∼pg [D(Gθg (x))] = −Ex∼pg [∇θgGθg (x)∇yD(y)|y = Gθg (x)]. (26)

Eq. (24) and Eq. (26) are of the same form (only different by a decay parameter). Thus using the
policy gradient to approximate the original derivative is reasonable.

C.2 Value function approximated by neural networks

We know that the policy gradient is

E
s∼ρ

[∇θπθ(s)∇aAπ(s, a)|a = π(s)]. (27)

According to Eq. (25), the differential form of LG is

E
s∼ρ

[∇θπθ(s)∇aAπ(s, a)∇ADπ(A)|a = π(s)]. (28)

Supposing that Eq. (12) approximately equals zero. Then ∇AD(A) = 1
C1

, where C1 is constant
which equals to (γ − 1) ∗ γ−t+T . If we regard the C1 as one part of the total learning rate, then we
can draw the conclusion that

E
s∼ρ

[∇θπθ(s)∇aAπ(s, a)|a = π(s)] = C1 ∗ E
s∼ρ

[∇θπθ(s)∇aAπ(s, a)∇ADπ(A)|a = π(s)]. (29)

Where C1 E
s∼ρ

[∇θπθ(s)∇aAπ(s, a)∇ADπ(A)|a = π(s)] = −C1∇θgLG. Therefore, we can also

view this problem from another perspective. If we replace the discriminator D(Gθg (x)) by advantage
function Aπ(s, a), then Eq. (27) is the same as Eq. (26). This means that for the neural-network-
based value function, it acts as the discriminator. Moreover, the advantage function Aπ(s, a) is
trained through the discriminator. From this perspective, we think that the advantage function and the
discriminator bear a resemblance. Thus, the equation∇θJ(πθ) ≈ C ∗ ∇θLGθ is established, where
C = −C1 is a positive constant.

3



D. Details on exposure blending

In this section, we will discuss how to get the fusion weight matrix and its meaning.

D.1 Fusion weight matrix

For different locally-exposed images {Sg1 , . . . , Sgn}, there always exists some areas that are over-
exposed, under-exposed, or both. If we just combine them according to the segmentation directly,
there would be seams at the boundary of each segment. In order to solve this problem, we introduce
an exposure blending method.

Firstly, we should define which parts of an image are well-exposed. Similar to Mertens et al. [5], we
fulfill this through three evaluation metrics: contrast, saturation, and well-exposedness score.

We use Laplacian filter to the grayscale version of an image to calculate the contrasts; and leverage
the standard deviations within R, G and B channels of each pixel to calculate the saturation; and the
distance of raw intensities to 0.5 is to calculate the well-exposedness score. The final weight function
can be

W k = (L(Gray(Ski )))
C1 ∗ (std(Ski ))C2 ∗ (Gauss_cur(Ski ))C3 , (30)

where Gray(·) is to turn the image into grayscale, L(·) is the Laplacian pyramid decomposition func-
tion, std(·) is to get standard deviation within the R, G and B channels at each pixel, Gauss_cur(·)
means Gaussian function with mean = 0.5 and standard deviation = 0.2, and {C1, C2, C3} are the
hyper-parameters to define which evaluation is significant.

After we get the weight matrix, it is easy to calculate the blending results by

L(Sijo )l =

n∑
k=1

Gauss(wlij)
kL(Sgijl)

k. (31)

In fact, the adjustment of our algorithm based on local exposures can be seen as creating a sequence
of pseudo over-exposed and under-exposed images and then fusing them together. Li et al. propose a
method of generating differently virtual exposed images to perform the single image brightening [3].
From this perspective, our method can also be regarded as an adaptive single photo fusion method
which can choose exposure values and exposure areas in images.

E. Algorithm pseudocodes

In this section, we will present the detailed procedures of our algorithms. Algorithm 1 is the
DeepExposure algorithm with neural-network-approximated V function. Algorithm 2 is the one to
leverage the discriminator as V function and Algorithm 3 is how to use our method to high-resolution
images of any size (the inference stage).

F. Network structures and test process

In this section, we demonstrate the details of network structures and the test process in Figure 1 and
Figure 2.

G. Experiment supplements

In this section, we will give more examples of our results from different sizes and different scenarios.
Moreover, the detailed process is also exhibited in this section.

G1. Large image results

In this section we will demonstrate our results on large images.

From the comparison of Figure 3 and Figure 4, we can find that our method preserves the facial
details of original images (Figure 5). Figure 6 and Figure 7 show that our method can preserve the
details of texts in the image better, which is useful in some areas, like taking notes by a photo where
we need to read the words.

These experiments prove that our method has the advantage to deal with large-size images with
well-preserved details of original images.

4



Algorithm 1 DeepExposure I: image retouching with neural-network-approximated V function
Initialize the policy network πθ , the value network V ω, and the discriminator network Dβ with
random weights θ, ω and β, respectively.
Set the pre-training stage: p-step = 30, the policy-training stage step: g-step = 1 and the
discriminator-training stage step: d-step = 5.
Build a memory buffer to restore retouched photos M1, an expert dataset to restore the expert-
retouched photos M2 and a raw photo dataset M3.
Initialize an Ornstein-Uhlenbeck process OU .
for p-step do

choose some raw photos from M3;
create retouched photos by roll-out method on raw photos;
choose arbitrary expert-retouched photos from the expert dataset M2;
pre-train the discriminator network Dβ using Eq. (12) in the main text with unpaired machine-
retouched photos and expert-retouched photos;

end for
repeat

for j in g_step do
choose a minibatch of raw images from M3;
for k in minibatch_size do

segment the image into sub-images;
for t in {1, . . . , T} do

if is the first sub-image seg0 then
e0 = πθ(S0, seg0, S0)+OU // e0 is the exposure and S0 is the original input image
Sg1 = global_filter(e0, S0), Sl1 = local_filter(e0, S0)

else
et+1 = πθ(S0, segt, S

l
t) +OU

Sgt+1 = global_filter(et, S0), Slt+1 = local_filter(et, St)
end if
calculate the one batch gradients of θ and ω, and collect them;
collect global Sgt+1;

end for
end for
perform exposure fusion using {Sg1 , . . . , S

g
T } Eq. (30) in the supplementary materials and Eq.

(16) in the main text ;
end for
update the policy network πθ and the value network V ω using Eq. (11) and Eq. (10) in the
main text ;
for i in d_step do

choose arbitrary expert-retouched photos from the expert dataset M3;
choose a batch of retouched photos from memory M1;
update the discriminator network Dβ using Eq. (12) in the main text ;
delete those data in memory M1;

end for
until all networks converge

5



Algorithm 2 DeepExposure II: image retouching with the discriminator as the value function
Initialize the policy network πθ and the discriminator network Dβ with random weights θ and β.
Set the pre-training stage: p-step = 30, the policy-training stage step: g-step = 1 and the
discriminator-training stage step: d-step = 5.
Build a memory buffer to restore retouched photos M1, an expert dataset to restore the expert-
retouched photos M2 and a raw photos dataset M3.
Initialize an Ornstein-Uhlenbeck process OU .
for p-step do

choose some raw photos from M3;
create retouched photos by roll-out method on raw photos;
choose arbitrary expert-retouched photos from the expert dataset M2;
pre-train the discriminator network Dβ using Eq. (12) in the main text with unpaired machine-
retouched photos and expert-retouched photos;

end for
repeat

for j in g_step do
choose a minibatch of raw images from M3;
for k in minibatch_size do

segment the image into sub-images;
for t in {1, . . . , T} do

if is the first sub-image seg0 then
e0 = πθ(S0, seg0, S0)+OU // e0 is the exposure and S0 is the original input image
Sg1 = global_filter(e0, S0), Sl1 = local_filter(e0, S0)

else
et+1 = πθ(S0, segt, S

l
t) +OU

Sgt+1 = global_filter(et, S0), slt+1 = local_filter(et, St)
end if
calculate the one-batch gradient of θ and ω, and collect them;
collect global Sgt+1;

end for
end for
perform exposure fusion using {Sg1 , . . . , S

g
T } according to Eq. (30) in the supplementary

materials and Eq. (16) in the main text ;
end for
calculate the advantage function using Eq. (19);
update the policy network πθ using Eq. (10) in the main text;
put the retouched photos into memory M1;
for i in d_step do

choose arbitrary expert-retouched photos from the expert dataset M3;
choose a batch of retouched photos from memory M1;
update the discriminator network Dβ using Eq. (12) in the main text;
delete those data in memory M1;

end for
until all networks converge

6



Algorithm 3 DeepExposure: the test stage
Require: A raw photo I0 with any size and a well-trained policy network.

Create a small version of that photo by resize I0 into 64× 64 as S0.
Segment S0 into sub-images.
for t in {1, . . . , T} do

if is the first sub-image seg0 then
e0 = πθ(S0, seg0, S0) // e0 is the exposure and S0 is the original low-resolution input image

Sg1 = global_filter(e0, S0), Sl1 = local_filter(e0, S0)
Ig1 = global_filter(e0, I0)

else
et+1 = πθ(S0, segt, S

l
t)

Sgt+1 = global_filter(et, St), Slt+1 = local_filter(et, St)
Igt+1 = global_filter(et, It)

end if
collect global Igt+1;

end for
perform exposure fusion using {Ig1 , . . . , I

g
T } according to Eq. (30) and Eq. (31) in the paper;

return retouched photo

G2. The detailed process

We will show some retouching process here.

Figure 9 and Figure 10 reveal the main principle how the machine learns: For different segmentations
with different colors and brightness, the main purpose is to expose the original image to a certain
level that can facilitate the effect of fusion.

G3. More compared results

Here, we exhibit more results of our experiments from Figure 11 to Figure 50. The compared results
contain original images, our DeepExposure I, expert C as well as the state-of-the-art sequence-based
method of Exposure [2].

7



seg1resize to 

64×64

RAW Input: image 𝑰𝟎
image 𝑺𝟎

seg2

segment mask1

mask2

Ⅰ. Image Preprocessing

Policy 
Network

+1.00

Exposure1

image (seg1+S0+S0)
image 𝑆1

𝑔

action image 𝑆1
𝑙

Ⅱ-1. Step 1

image B

mask1

Policy 
Network

image (seg2 +𝑆1
𝑙+S0)

action

Ⅱ-2. Step 2

Ⅱ. Operation Parameters Acquirement

-0.50

Exposure2

-0.50

Exposure2

+1.00

Exposure1

RAW Input: Image 𝑰𝟎

Fusion

Retouched Image

Ⅲ. RAW Image Operation

……..

The same as step 1

Figure 1: The testing process. The testing process is divided into three stages: image pre-processing,
acquisition of operation parameters as well as raw low-resolution image operations. The image
pre-processing stage consists of image segmentation. In the stages of acquiring operation parameters,
each exposure value et is obtained by the input state st = {segt, S0, S

l
t}: the t-th sub-image, the

original image, and the direct fusion result. At the first stage, since there is no fusion, we use the
original image to replace Slt. The local filter is employed to perform the exposure on local area while
the global fusion operates on global area. The following steps are the same. In the third step, after
collecting all the exposure operations, the global filter will operate on the original raw large image I0
and the resulting re-exposed images are fused together to get the final result.

References
[1] Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau,

Aaron Courville, and Yoshua Bengio. An actor-critic algorithm for sequence prediction. arXiv
preprint arXiv:1607.07086, 2016.

[2] Yuanming Hu, Hao He, Chenxi Xu, Baoyuan Wang, and Stephen Lin. Exposure: A white-box
photo post-processing framework. arXiv preprint arXiv:1709.09602, 2017.

[3] Zhengguo Li and Jinghong Zheng. Single image brightening via exposure fusion. In IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1756–
1760, 2016.

[4] Ruishan Liu and James Zou. The effects of memory replay in reinforcement learning. arXiv
preprint arXiv:1710.06574, 2017.

[5] Tom Mertens, Jan Kautz, and Frank Van Reeth. Exposure fusion: A simple and practical
alternative to high dynamic range photography. In Computer Graphics Forum, volume 28, pages
161–171. Wiley Online Library, 2009.

8



6
4

 ×
6

4
 ×

3
 ×

n

C
o

n
v4

-3
2

, s
tr

id
e 

2

C
o

n
v4

-6
4

, s
tr

id
e 

2

C
o

n
v4

-2
5

6
, s

tr
id

e 
2

C
o

n
v4

-2
5

6
, s

tr
id

e 
2

D
en

se
 L

ay
er

Leaky ReLU(0.2)
3

2
 ×

3
2

 ×
3

2

1
6

 ×
1

6
 ×

6
4

8
 ×

8
 ×

2
5

6

4
 ×

4
 ×

2
5

6

1
2

8

Network Structure
(Policy/Value/Discriminator)

Po=1

Policy Network:

Po = Exposure Param

Value Network:

Po = Action Score

Discriminator Network:

Po = Real/Fake

Dropout
(0.5)

Figure 2: The network architecture. Our whole network architectures are almost the same for three
cases but different in input and output (they do not share weights and each of them is independent).
For policy network, the input n is 9: the original input image S0, one sub-image seg and the direct
fusion image Sl. The output is the exposure parameter e. For value network, the input n is 6: the
retouched image and its corresponding illumination, saturation and contrast. The output is the action
score. For discriminator network, the input n is 6 (the same as value network) and the output is the
judgment of real or fake.

[6] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In International Conference on Machine Learning
(ICML), volume 99, pages 278–287, 1999.

9



Figure 3: The retouched image of our method. The details of the texts are shown in the bottom page.

10



Figure 4: The retouched image of DPED method. The details of the texts are shown in the bottom
page.

11



Figure 5: The original large size image.

12



Figure 6: The retouched image of our method. The facial details are shown in the bottom page.

13



Figure 7: The retouched image of DPED method. The facial details are shown in the bottom page.

14



Figure 8: The original large size image.

15



+3.24

exposure

segment

+3.26

exposure

+3.66

exposure

F
u
si
o
n

+ + +

policy
policy

policy







Figure 9: The process of our retouching stage.





+3.05

exposure

segment

+0.87

exposure

F
u
si
o
n

+ +

policy policy





Figure 10: The process of our retouching stage.

16



RAW Input Expert C Ours Exposure

Figure 11: The compared results.

17



RAW Input Expert C Ours Exposure

Figure 12: The compared results.

18



RAW Input Expert C Ours Exposure

Figure 13: The compared results.

19



RAW Input Expert C Ours Exposure

Figure 14: The compared results.

20



RAW Input Expert C Ours Exposure

Figure 15: The compared results.

21



RAW Input Expert C Ours Exposure

Figure 16: The compared results.

22



RAW Input Expert C Ours Exposure

Figure 17: The compared results.

23



RAW Input Expert C Ours Exposure

Figure 18: The compared results.

24



RAW Input Expert C Ours Exposure

Figure 19: The compared results.

25



RAW Input Expert C Ours Exposure

Figure 20: The compared results.

26



RAW Input Expert C Ours Exposure

Figure 21: The compared results.

27



RAW Input Expert C Ours Exposure

Figure 22: The compared results.

28



RAW Input Expert C Ours Exposure

Figure 23: The compared results.

29



RAW Input Expert C Ours Exposure

Figure 24: The compared results.

30



RAW Input Expert C Ours Exposure

Figure 25: The compared results.

31



RAW Input Expert C Ours Exposure

Figure 26: The compared results.

32



RAW Input Expert C Ours Exposure

Figure 27: The compared results.

33



RAW Input Expert C Ours Exposure

Figure 28: The compared results.

34



RAW Input Expert C Ours Exposure

Figure 29: The compared results.

35



RAW Input Expert C Ours Exposure

Figure 30: The compared results.

36



RAW Input Expert C Ours Exposure

Figure 31: The compared results.

37



RAW Input Expert C Ours Exposure

Figure 32: The compared results.

38



RAW Input Expert C Ours Exposure

Figure 33: The compared results.

39



RAW Input Expert C Ours Exposure

Figure 34: The compared results.

40



RAW Input Expert C Ours Exposure

Figure 35: The compared results.

41



RAW Input Expert C Ours Exposure

Figure 36: The compared results.

42



RAW Input Expert C Ours Exposure

Figure 37: The compared results.

43



RAW Input Expert C Ours Exposure

Figure 38: The compared results.

44



RAW Input Expert C Ours Exposure

Figure 39: The compared results.

45



RAW Input Expert C Ours Exposure

Figure 40: The compared results.

46



RAW Input Expert C Ours Exposure

Figure 41: The compared results.

47



RAW Input Expert C Ours Exposure

Figure 42: The compared results.

48



RAW Input Expert C Ours Exposure

Figure 43: The compared results.

49



RAW Input Expert C Ours Exposure

Figure 44: The compared results.

50



RAW Input Expert C Ours Exposure

Figure 45: The compared results.

51



RAW Input Expert C Ours Exposure

Figure 46: The compared results.

52



RAW Input Expert C Ours Exposure

Figure 47: The compared results.

53



RAW Input Expert C Ours Exposure

Figure 48: The compared results.

54



RAW Input Expert C Ours Exposure

Figure 49: The compared results.

55



RAW Input Expert C Ours Exposure

Figure 50: The compared results.

56


