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Figure 1: Top: Plot of the well-log data between t “ 300 and t “ 500 with one obvious outlying
period. Middle Top: KLD run length posterior under the Gaussian error model with the MAP of the
run length posterior at each time point overlayed in red. Middle Bottom: KLD run length posterior
under the Student’s t with 5 degrees of freedom error model with the MAP of the run length posterior
at each time point overlayed in red. Bottom: β-D run length posterior under the Gaussian error
model with βp “ 0.25 and βrlm“ 0.5 with the MAP of the run length posterior at each time point
overlayed in blue.

1 Student-t Experiments

In Section 2.3 (Quantifying Robustness) of the paper we argue that substituting the Gaussian error
model in the BLR setting for a Student’s t error model – a traditional solution for robust parameter
inference – will be insufficient to ensure that standard Bayesian run-length posteriors are robust.
Here, the type of robustness we refer to is defined in Theorem 1. To demonstrate this, we implement
a version of BOCPD using both the Gaussian error model and the Student’s t error model on two
subsets of the well-log data. The Student’s t distribution is no longer an exponential family and thus
cannot be implemented in analytical form or via our structural variational approximation. Hence,
we used stan [Carpenter et al., 2016] for MCMC sampling from the parameter posterior under the
Student’s t error model. For comparability, hyperparameters were fixed for both the Gaussian and
Student’s t error models at µ0 “ 0, Σ0 “

?
5, a0 “ 0.5, b0 “ 2, hprt`1q “ 0.01 @rt`1, where

N “ 1000 values were sampled from the parameter posterior, M “ 25 run lengths were stored and
the degrees of freedom of the Student’s t error model were set to be ν “ 5. Figures 1 and 2 plot the
KLD run-length posteriors of the Gaussian and Student’s-t error models as well as the β-D run-length

2



posteriors of the Gaussian error models for the two subsets of the well-log data. In both examples, the
KLD run-length posteriors favor declaring a CP under both the Gaussian and Student’s t error model
at the first sign of an outlier. In the second example, the outlier is severe enough to permanently
disrupt the run-length inference for both KLD-based methods, while the β-D-based method remains
robust. Theorem 1 outlines situations were this desireable behaviour of β-D-based inference can be
guaranteed to happen when it would not happen under the KLD with any error model.
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Figure 2: Top: Plot of the well-log data between t “ 1100 and t “ 1300 with one obvious outlying
period. Middle: KLD run length posterior under the Gaussian error model with the MAP of the run
length posterior at each time point overlayed in red. Bottom: KLD run length posterior under the
Student’s t with 5 degrees of freedom error model with the MAP of the run length posterior at each
time point overlayed in red. Bottom: β-D run length posterior under the Gaussian error model with
βp “ 0.5 and βrlm“ 1 with the MAP of the run length posterior at each time point overlayed in blue.
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2 Proof of Theorem 1

Proof. This proof looks at the run length posterior parameterised by βrlm, however to ease notation we
refer to βrlm=β throughout. Condition on the event rt “ r then after one time step either rt`1 “ r`1
or rt`1 “ 0. The odds of these two possibilities are as in Thm. 1. Now substituting the definitions of
fβmtpyt`1|Ftq and fβmtpyt`1|y0q leaves

fβmtpyt`1|Ftq
fβmtpyt`1|y0q

“

exp
´

1
β ppyt`1|y1:tq

β ´ 1
1`β

ş

ppz|y1:tq
1`βdz

¯

exp
´

1
β ppyt`1|y0q

β ´ 1
1`β

ş

ppz|y0q
1`βdz

¯ (1)

“ exp

ˆ

1

β

`

ppyt`1|y1:tq
β ´ ppyt`1|y0q

β
˘

´
1

1` β

ż

ppz|y1:tq
1`β ´ ppz|y0q

1`βdz

˙

. (2)

This proof first seeks a lower bound for this ratio. A lower bound on 1
β ppyt`1|y1:tq

β is 0, while the
maximal value of 1

β ppyt`1|x0q
β will occur at the prior mode. For the multivariate t-distribution prior

predictive with NIG hyperparameters a0, b0, µ0, Σ0 of dimensions p the prior mode has density

ppµ0|ν0,µ0,V0, pq “
Γppν0 ` pq{2q

Γpν0{2qν
p{2
0 πp{2 |V0|

1{2

„

1`
1

ν0
pµ0 ´ µ0qΣ

´1
0 pµ0 ´ µ0q

´pν0`pq{2

(3)

“
Γppν0 ` pq{2q

Γpν0{2qν
p{2
0 πp{2 |V0|

1{2
(4)

“
Γpa0 ` p{2q

Γpa0q p2b0πq
p{2
|I `XΣ0XT |

1{2
. (5)

As a result the only term in the lower bound of fβmtpyt`1|Ftq{fβmtpyt`1|y0q that does not solely
depend on the prior parameters is 1

1`β

ş

ppz|y1:tq
1`βdz. This term appears in the negative and thus

to lower bound fβmtpyt`1|Ftq{fβmtpyt`1|y0q, an upper bound for 1
1`β

ş

ppz|y1:tq
1`βdz must be

found. The multivariate t-distribution can be integrated as

1

1` β

ż

MVStνpz|µ,V q1`βdz “
Γppν ` pq{2qβ`1Γppβν ` βp` νq{2q

Γpν{2qβ`1Γppβν ` βp` ν ` pq{2q

1

p1` βqpνπqpβpq{2 |V |
β{2
(6)

“
Γppν ` pq{2qβΓppν ` pq{2qΓppβν ` βp` νq{2q

Γpν{2qβΓpν{2qΓppβν ` βp` ν ` pq{2q

1

p1` βqpπνqpβpq{2 |V |
β{2

(7)

ď
Γppν ` pq{2qβ

Γpν{2qβ
1

p1` βqpπνqpβpq{2 |V |
β{2

. (8)

The inequality is derived from the fact that
Γpx` p2 q

Γpxq is increasing in x and as β ě 0 and ν ě 0 then

pβν ` βp` νq{2q ě ν{2 which implies Γppν`pq{2qΓppβν`βp`νq{2q
Γpν{2qΓppβν`βp`ν`pq{2q ď 1.

Now employing the well-known result using Stirling’s formula to bound the gamma function

p2πq1{2xx´1{2 expp´xq ď Γpxq ď p2πq1{2xx´1{2 expp1{p12xq ´ xq (9)

we can therefore rewrite the ratio of gamma functions leaving
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1

1` β

ż

MVSt´ tνpz|µ,V q1`βdz ď
Γppν ` pq{2qβ

Γpν{2qβ
1

p1` βqpπνqpβpq{2 |V |
β{2

(10)

ď

`?
2πppν ` pq{2qpν`p´1q{2q expp´pν ` pq{2` 1{6pν ` pq

˘β

`?
2πpν{2qpν´1q{2 expp´ν{2q

˘β
p1` βqpπνqpβpq{2 |V |

β{2
(11)

“ pp1`
p

ν
qβpν`p´1q{2q exppβp1{p6pν ` pqq ´ p{2qq

1

p1` βqpπqpβpq{2 |V |
β{2

. (12)

Clearly exp pβp1{p6pν ` pqq ´ p{2qq is decreasing in ν for all p and to demonstrate when pp1 `
p
ν q
βpν`p´1q{2q is decreasing in ν we examine its derivative

w “
´

1`
p

ν

¯βpν`p´1q{2

(13)

“ exp
´

pβpν ` p´ 1q{2q log
´´

1`
p

ν

¯¯¯

(14)

dw

dν
“
β

2

ˆ

log
´

1`
p

ν

¯

´ pν ` p´ 1q
p
ν2

1` p
ν

˙

´

1`
p

ν

¯βpν`p´1q{2q

. (15)

The sign of dwdν is dictated by
´

log
`

1` p
ν

˘

´ pν ` p´ 1q
p

ν2

1` p
ν

¯

, which can be demonstrated to be
positive always if p “ 1 and negative always if p ą 1.

Case 1: when p ą 1, 1
1`β

ş

ppz|y1:tq
1`βdz is decreasing in ν and thus we can upper bound it by

substituting the smallest value of ν. Here we bound ν above 1 in order to enforce that the mean of
the predictive t-distribution exists. Under the KLD posterior it is clear that a0 rises as more data is
seen and while we do not have closed forms associated with the variational approximation to the β-D
posterior we expect this to be the case here. As more data is seen the finite sampling uncertainty,
represented by ν in the NIG case, should be decreasing. Therefore provided a0 is set such that
2a0 ą 1, then this lower bound should never be violated.

Case 2: when p “ 1, Stirling’s formula has failed to provide a decreasing upper bound for
1

1`β

ş

ppz|y1:tq
1`βdz. However in the univariate case

1

1` β

ż

Stνpz|µ,V q1`βdz ď
Γppν ` 1q{2qβ

Γpν{2qβ
1

p1` βqpν |V |qpβq{2πpβq{2
(16)

ď
1

p1` βq |V |
pβq{2

πpβq{2
(17)

Where p “ 1 is substituted into the bound from equation (8) and the inequality comes from that fact
that Γppx`1q{2q

Γpx{2q ď
?
x. This bound conveniently does not depend on the degrees of freedom ν at all.

We can therefore lower bound fβmtpyt`1|Ftq{fβmtpyt`1|y0q as

fβmtpyt`1|Ftq
fβmtpyt`1|y0q

ě

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

exp

"

´ 1
β

´

Γpa0`1{2q

Γpa0qp2b0πq
1{2|I`XΣ0XT |1{2

¯β

´ 1
p1`βq|V |pβq{2πpβq{2

`

Γpa0`1{2qβ`1Γpβa0`β{2`a0q
Γpa0qβ`1Γpβa0`β{2`a0`1{2q

1
p1`βqp2πb0qpβq{2|I`XΣ0XT |β{2

)

if p “ 1

exp

"

´ 1
β

´

Γpa0`p{2q

Γpa0qp2b0πq
p{2|I`XΣ0XT |1{2

¯β

`

Γpa0`p{2q
β`1Γpβa0`βp{2`a0q

Γpa0qβ`1Γpβa0`βp{2`a0`p{2q
1

p1`βqp2πb0qpβpq{2|I`XΣ0XT |β{2
´

pp1` pqβp{2q exppβp1{p6p1` pqq ´ p{2qq 1
p1`βqpπqpβpq{2|V |β{2

)

if p ą 1

(18)

Now fixing p, a0, b0, µ0,Σ0 and |V |min which values of β and Hprt, rt`1q would leave

1´Hprt, rt`1qq

Hprt, rt`1q

fβmtpyt`1|Ftq
fβmtpyt`1|y0q

ě 1? (19)
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We demonstrate this for p ą 1 but it is straightforward to see that it extends to when p “ 1.
Rearranging the inequality in equation (18) gives us that (19) holds providing

1

|V |
β{2

ď

˜

Γpa0 ` p{2q
β

Γpa0q
β p2b0πq

βp{2
|I `XΣ0XT |

β{2

ˆ

Γpa0 ` p{2qΓpβa0 ` βp{2` a0q

Γpa0qΓpβa0 ` βp{2` a0 ` p{2q

1

p1` βq
´

1

β

˙

(20)

` log

ˆ

1´Hprt, rt`1qq

Hprt, rt`1q

˙˙

p1` βqpπqpβpq{2

pp1` p
2a0
qαp2a0`p´1q{2q exppβp1{p6p2a0 ` pqq ´ p{2qq

We define the set defined by inequality (20) as S pp, β, a0, b0, µ0,Σ0, |V |minq “

tpβ,Hprt, rt`1qq : pβ,Hprt, rt`1qq satisfy (20) for p, β, a0, b0, µ0,Σ0, |V |minu. As a result
we can see that for fixed of a0, b0, µ0,Σ0 and |V | ě |V |min it is always possible to choose values of
β and Hprt, rt`1q such that this holds. To see this consider fixing β, the the upper bound is simply
increasing in log

´

1´Hprt,rt`1q

Hprt,rt`1q

¯

which takes values in R and thus can be set large enough so that
the inequality holds.

We note that in practice this result is likely to be stronger than is necessary. The observation that
is most likely to generate a change-point will have 0 mass under the predictive associated with the
current segment but also appears at the prior mode. While this was necessary to demonstrate this
result for all situations this is incredibly unlikely to occur. The requirement for |Vmin| is a result
of the beta-divergence loss function depending on

ş

ppz|y1:tq
1`βdz. In the proof of this result we

demonstrate that fβmtpyt`1|Ftq{fβmtpyt`1|y0q is increasing in |V | and as a result if it is allowed to
get too small the inequality in equation (20) would not hold. This is an undesirable consequence
of the beta-divergence score not being completely local, that is to say not solely depending on the
predictive probability of the observation, thus the score under the prior can be quite a lot bigger than
the score under the continuing run length independent of the observations seen and solely based on
the predictive covariances.

3 Variational Bayes Approximation for β-divergence based General
Bayesian Inference with the Bayesian Linear Model

For ease of notation, we use β “ βp. We wish to approximate the posterior belief dis-
tribution πβDPDpµ, σ

2|yq which for observations y “ py1,y2, . . . ,ynq
T with yi P Rd, prior

NIG0
pµ, σ2|a0, b0,µ0,Σ0q, model likelihood f and density power divergence (DPD) loss

`βpµ, σ2|yiq “
1

β
fpyi|µ, σ

2qβ ´
1

1` β

ż

Y
fpyi|µ, σ

2q1`βdy (21)

is given by

πβDPDpµ, σ
2|yq “ NIG0

pµ, σ2|a0, b0,µ0,Σ0q ¨ exp

#

´

n
ÿ

i“1

`βpµ, σ2|yiq

+

. (22)

In particular, we want to approximate it with a posterior NIGVB
pµ, σ2|pan,pbn, pµn, pΣnq via Variational

Bayes. This can be done by minimizing the variational parameters in a Kullback-Leibler sense:

pa˚, b˚,µ˚,Σ˚q “ argmin
ppan,pbn,pµn, pΣnq

!

KL
´

πβDPDpµ, σ
2|yq

›

›

›
NIGVB

pµ, σ2|pan,pbn, pµn, pΣnq

¯)

. (23)
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It is straightforward to rewrite the objective function for the above minimization as the Evidence
Lower Bound (ELBO) induced by the DPD:

ELBODPD “ ´KL
´

NIGVB
pµ, σ2|pan,pbn, pµn, pΣnq

›

›NIG0
pµ, σ2|a0, b0,µ0,Σ0q

˘

looooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooon

“Q1

.

´EVB

«

´

n
ÿ

i“1

`βpµ, σ2|yiq

ff

loooooooooooooooomoooooooooooooooon

“Q2

. (24)

In what follows, closed forms are derived for both Q1 and Q2. Some algebraic tricks will be applied
multiple times, and will be referred to by the following symbols:

� Completion of Squares, i.e. u1Au´ 2v1u “ pu´A´1vq1Apu´A´1vq ´ v1A´1v;
IpN q Integrating out the Normal density;
IpIGq Integrating out the Inverse Gamma density.

Throughout, the dimensionality of µ is p P N, N pµ|µ0,Σ0q refers to a normal pdf in µ with
expectation µ0, variance Σ0 and IGpσ2|a, bq to an inverse gamma pdf in σ2 with shape a and scale
b.

3.1 Q1

First, note that by definition,

Q1 “

ż

µ,σ2

log

˜

NIGVB
pµ, σ2|pan,pbn, pµn, pΣnq

NIG0
pµ, σ2|a0, b0,µ0,Σ0q

¸

looooooooooooooooooooooomooooooooooooooooooooooon

“Qlog
1

NIGVB
pµ, σ2|pan,pbn, pµn, pΣnqdµdσ

2. (25)

Writing out Qlog
1 , one obtains a natural sum of three components C1, C2pσ

2q, C3pσ
2,µq:

Qlog
1 “ log

¨

˝

|pΣn|
´0.5 pbpann

Γppanq
pσ2q´0.5p´pan´1 exp

!

´ 1
2σ2

”

pµ´ pµnq
1
pΣ´1
n pµ´ pµnq ` 2pbn

ı)

|Σ0|
´0.5 b

a0
0

Γpa0q
pσ2q´0.5p´a0´1 exp

 

´ 1
2σ2

“

pµ´ µ0q
1Σ´1

0 pµ´ µ0q ` 2b0
‰(

˛

‚

“ log

˜

pbpann Γpa0q

ba00 Γppanq

¸

` 0.5 log
ˇ

ˇ

ˇ
Σ0

pΣ´1
n

ˇ

ˇ

ˇ

loooooooooooooooooooooomoooooooooooooooooooooon

“C1

`ppan ´ a0q logp
1

σ2
q

loooooooooomoooooooooon

“C2pσ2q

´
1

2σ2

”

pµ´ pµnq
1
pΣ´1
n pµ´ pµnq ´ pµ´ µ0q

1Σ´1
0 pµ´ µ0q ` 2ppbn ´ b0q

ı

looooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooon

“C3pσ2,µq

. (26)

Next, note that C3pσ
2,µq further decomposes into

1

2σ2

”

µ1
´

pΣ´1
n ´Σ´1

0

¯

µ´ 2µ1
´

pΣ´1
n pµn ´Σ´1

0 µ0

¯ı

looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

“C4pσ2,µq

`
1

σ2

„

1

2
pµ1n

pΣ´1
n pµn ´

1

2
µ10Σ

´1
0 µ0 ` ppbn ´ b0q



loooooooooooooooooooooooooomoooooooooooooooooooooooooon

“C5
looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

“C6pσ2q

.

Notice that we have isolated the random variable µ inside C4pσ
2,µq and that by definition,

NIGVB
pµ, σ2|pan,pbn, pµn, pΣnq “ NVBpµ|pµn, σ

2
pΣnq ¨ IGVB

pσ2|pan,pbnq, meaning that

Q1 “ C1 `

ż

σ2

 

C2pσ
2q ´ C6pσ

2q
(

IGVB
pσ2|pan,pbnqdσ

2

´

ż

σ2

#

ż

µ

C4pσ
2,µqNVBpµ|pµn, σ

2
pΣnqdµ

+

loooooooooooooooooooooooomoooooooooooooooooooooooon

“C7pσ2q

IGVB
pσ2|pan,pbnqdσ

2. (27)
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The inner integral is available in closed form, and naturally decomposes as

C7pσ
2q “

1

2σ2
ENVB

”

µ1
´

pΣ´1
n ´Σ´1

0

¯

µ
ı

´
2

2σ2
ENVB

“

µ1
‰

´

pΣ´1
n pµn ´Σ´1

0 µ0

¯

“
1

2σ2
ENVB

”

tr
´´

pΣ´1
n ´Σ´1

0

¯

µµ1
¯ı

´
1

σ2
pµ1n

´

pΣ´1
n pµn ´Σ´1

0 µ0

¯

“
1

2σ2
tr
´´

pΣ´1
n ´Σ´1

0

¯

ENVB

“

µµ1
‰

¯

´
1

σ2
pµ1n

´

pΣ´1
n pµn ´Σ´1

0 µ0

¯

“
1

2σ2
tr
´´

pΣ´1
n ´Σ´1

0

¯ ”

σ2
pΣn ´ pµnpµ

1
n

ı¯

´
1

σ2
pµ1n

´

pΣ´1
n pµn ´Σ´1

0 µ0

¯

“
1

2
tr
´

I ´Σ´1
0

pΣn

¯

loooooooooomoooooooooon

“C8

´
1

σ2

„

1

2
pµ1np

pΣ´1
n ´Σ´1

0 qpµn ´ pµ1n

´

pΣ´1
n pµn ´Σ´1

0 µ0

¯



looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

“C9
looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

“C10pσ2q

.(28)

We may now rewrite Q1 so as to integrate out σ2 next:

Q1 “ C1 ´ C8 `

ż

σ2

 

C2pσ
2q ´ C6pσ

2q ´ C10pσ
2q
(

IGVB
pσ2|pan,pbnqdσ

2.

Using the additivity of integrals, we consider its three components separately and then add them up
together afterwards. For C2pσ

2q, (I) apply a change of variable with z “ σ2

pbn
and then use (II) that

d
dxa

´x “ ´ax ¨ logpaq “ ax ¨ logpa´1q together with Fubini’s Theorem (III) to find that

C11 “

ż

σ2

C2pσ
2qIGVB

pσ2|pan,pbnqdσ
2

“ ppan ´ a0q

ż

σ2

log

ˆ

1

σ2

˙

pbpann
Γppanq

pσ2q´pan´1 exp

#

´
pbn
σ2

+

dσ2

(I)
“ ppan ´ a0q

ż

z

log

ˆ

1

zpbn

˙

pbpan`1
n

Γppanq

´

zpbn

¯´pan´1

exp

"

´
1

z

*

dz

“ ppan ´ a0q
1

Γppanq

ż

z

´

´ logpzq ´ logppbnq
¯

z´pan´1 exp

"

´
1

z

*

dz

IpIGq
“ ppan ´ a0q

«

1

Γppanq

ż

z

p´ logpzqq z´pan´1 exp

"

´
1

z

*

dz ´ logppbnq

ff

(II)
“ ppan ´ a0q

«

1

Γppanq

ż

z

d

dpan

"

z´pan´1 exp

"

´
1

z

**

dz ´ logppbnq

ff

(III)
“ ppan ´ a0q

»

—

—

—

—

—

—

–

1

Γppanq

d

dpan

#

ż

z

z´pan´1 exp

"

´
1

z

*

dz

+

looooooooooooooooomooooooooooooooooon

IpIGq
“ Γppanq

´ logppbnq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ ppan ´ a0q

ˆ

Γ1ppanq

Γppanq
´ logppbnq

˙

“ ppan ´ a0q

´

Ψppanq ´ logppbnq
¯

,
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where Ψ is the digamma function. For C6pσ
2q, one obtains the closed form as

C12 “

ż

σ2

C6pσ
2qIGVB

pσ2|pan,pbnqdσ
2

“ C5

ż

σ2

pbpann
Γppanq

pσ2q´pan´1´1 exp

#

´
pbn
σ2

+

dσ2

IpIGq
“ C5

Γppan ` 1q

pbnΓppanq
. (29)

Using the exact same steps for C10pσ
2q, one finds

C13 “

ż

σ2

C10pσ
2qIGVB

pσ2|pan,pbnqdσ
2

IpIGq
“ C9

Γppan ` 1q

pbnΓppanq
, (30)

finally yielding

Q1 “ C1 ´ C8 ` C11 ´ C12 ´ C13

“ log

˜

pbpann Γpa0q

ba00 Γppanq

¸

` 0.5 log
ˇ

ˇ

ˇ
Σ0

pΣ´1
n

ˇ

ˇ

ˇ
´

1

2
tr
´

I ´Σ´1
0

pΣn

¯

` ppan ´ a0q

´

Ψppanq ´ logppbnq
¯

´

„

1

2
pµ1n

pΣ´1
n pµn ´

1

2
µ10Σ

´1
0 µ0 ` ppbn ´ b0q



¨
Γppan ` 1q

pbnΓppanq

´

„

1

2
pµ1np

pΣ´1
n ´Σ´1

0 qpµn ´ pµ1n

´

pΣ´1
n pµn ´Σ´1

0 µ0

¯



¨
Γppan ` 1q

pbnΓppanq

“ log

˜

pbpann Γpa0q

ba00 Γppanq

¸

` 0.5 log
ˇ

ˇ

ˇ
Σ0

pΣ´1
n

ˇ

ˇ

ˇ
´

1

2
tr
´

I ´Σ´1
0

pΣn

¯

` ppan ´ a0q

´

Ψppanq ´ logppbnq
¯

`
1

2

”

pµ0 ´ pµnq
1Σ´1

0 pµ0 ´ pµnq ` 2pb0 ´pbnq
ı

¨
Γppan ` 1q

pbnΓppanq
(31)

(32)

3.2 Q2

Noting that one can write Q2 as

“ EVB

«

n
ÿ

i“1

`βpµ, σ2|yiq

ff

“

ż

µ,σ2

#

n
ÿ

i“1

„

1

β
fpyi|µ, σ

2qβ ´
1

1` β

ż

Y
fpy|µ, σ2q1`βdy



NIGVB
pµ, σ2|pan,pbn, pµn, pΣnq

+

dσ2dµ

“

n
ÿ

i“1

«

ż

µ,σ2

"

1

β
fpyi|µ, σ

2qβ ´
1

1` β

ż

Y
fpy|µ, σ2q1`βdy

*

NIGVB
pµ, σ2|pan,pbn, pµn, pΣnqdσ

2dµ

ff

.(33)

The last equation implies that it is sufficient to concern ourselves with the integral for a single term.
To this end, observe that the likelihood for a single observation yi with regressor matrixXi is given
by

fpyi|µ, σ
2q “ N pyi|X 1

iµ, σ
2Idq, (34)
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where Id is the identity matrix of dimension d . Looking at the likelihood terms inside `β , the
β-exponentiated likelihood term can be rewritten as

1

β
fpyi|µ, σ

2qβ “
1

β
p2πq´0.5dβpσ2q´0.5dβ

looooooooooooomooooooooooooon

“D1pσ2q

¨ exp

"

´
β

2σ2

“

pyi ´X
1
iµq

1pyi ´X
1
iµq

‰

*

“ D1pσ
2q ¨ exp

$

’

’

&

’

’

%

´
β

2σ2

»

—

—

–

y1iyi ` µ
1 pXiX

1
iq

looomooon

“ qΣ´1
i

µ´ 2py1iXiqµ

fi

ffi

ffi

fl

,

/

/

.

/

/

-

�
“ D1pσ

2q ¨ exp

$

’

’

&

’

’

%

´
1

2σ2

»

—

—

–

βpµ´ qΣipX
1
iyiq

loooomoooon

“qµi

q1 qΣ´1
i pµ´ qµiq ` β

”

y1iyi ´ pyiX
1
iq
qΣipXiy

1
iq

ı

looooooooooooooooomooooooooooooooooon

“D2,i

fi

ffi

ffi

fl

,

/

/

.

/

/

-

“ D1pσ
2q ¨ exp

$

’

&

’

%

´
1

2σ2

»

—

–

βpµ´ qµiq
1
qΣ´1
i pµ´ qµiq

loooooooooooooomoooooooooooooon

“D3,ipµq

`D2,i

fi

ffi

fl

,

/

.

/

-

“ D1pσ
2q ¨ exp

"

´
1

2σ2
rD3,ipµq `D2,is

*

, (35)

while the integral is available in closed form as

1

1` β

ż

Y
fpy|µ, σ2q1`βdy

IpN q
“ pσ2q´0.5pβ p2πq´0.5dβp1` βq´0.5d´1

looooooooooooooomooooooooooooooon

“D4

(36)

One can see a neat separation between terms involving σ2 and terms involving µ again, allowing
us to rewrite the integral in equation (33) such as to exploit the conditional structure of the normal
inverse-gamma distribution in Eqs. (36), (35). Looking at integrating out σ2 from (35) first, note that

L1 “

ż

σ2

"

1

1` β

ż

Y
fpy|µ, σ2q1`βdy

*

IGVB
pσ2|pan,pbnqdσ

2

“ D4

ż

σ2

pσ2q´0.5dβ´pan´1
pbpann

Γppanq
exp

#

´
pbn
σ2

+

dσ2

IpN q
“ D4 ¨

Γppan ` 0.5dβq

Γppanqpb
0.5dβ
n

. (37)

For the β-exponentiated likelihood term, one finds that

L2,i “

ż

σ2,µ

1

β
fpyi|µ, σ

2qβNIGVB
pµ, σ2|pan,pbn, pµn, pΣnqdσ

2dµ

“

ż

σ2

D1pσ
2q ¨ exp

"

´
1

2σ2
D2,i

*

«

ż

µ

exp

"

´
1

2σ2
D3,ipµq

*

NVBpµ|pµn, σ
2
pΣnqdµ

ff

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

“D5,ipσ2q

IGVB
pσ2|pan,pbnqdσ

2,

where we have again exploited the conditional structure of our assumed posterior. The inner integral
equals

D5,ipσ
2q “ p2πq´0.5p

ˇ

ˇ

ˇ
σ2

pΣn

ˇ

ˇ

ˇ

´0.5

ż

µ

exp

$

’

’

&

’

’

%

´
1

2σ2

”

D3,ipµq ` pµ´ pµnq
1
pΣ´1
n pµ´ pµnq

ı

looooooooooooooooooooooomooooooooooooooooooooooon

“D6,ipµq

,

/

/

.

/

/

-

loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon

“D7,ipσ2q

,(38)
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indicating that the closed form for the integral is available if one rewrites it as a normal density. To
this end, one can use completion of squares to rewrite

D6,ipµq “ βpµ´ qµiq
1
qΣ´1
i pµ´ qµiq ` pµ´ pµnq

1
pΣ´1
n pµ´ pµnq

“ µ1
”

pΣ´1
n ` β qΣ´1

i

ı

loooooooomoooooooon

“ rΣ´1
i

µ´ 2
”

pb1n
pΣ´1
n ` βqµ1i

qΣ´1
i

ı

µ`
”

pµ1n
pΣ´1
n pµn ` βqµ

1
i
qΣ´1
i qµi

ı

�
“

¨

˚

˚

˝

µ´ rΣi

”

pΣ´1
n
pbn ` β qΣ

´1
i qµi

ı

loooooooooooooomoooooooooooooon

“rµi

˛

‹

‹

‚

1

rΣ´1
i pµ´ rµiq`

pµ1n
pΣ´1
n pµn ` βqµ

1
i
qΣ´1
i qµi ´

´

pΣ´1
n pµn ` β qΣ

´1
i qµi

¯1
rΣi

´

pΣ´1
n pµn ` β qΣ

´1
i qµi

¯

looooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooon

“D8,i

“ pµ´ rµiq
1
rΣ´1
i pµ´ rµiq `D8,i, (39)

which then allows integrating out µ from D7,ipσ
2q using the density of a normal random variable:

D7,ipσ
2q “ exp

"

´
1

2σ2
D8,i

*

ż

µ

exp

"

´
1

2σ2
pµ´ rµiq

1
rΣ´1
i pµ´ rµiq

*

dµ

IpN q
“ exp

"

´
1

2σ2
D8,i

*

p2πq0.5p|σ2
rΣi|

0.5, (40)

so we can finally rewrite the entire integral as

D5,ipσ
2q “ |pΣ´1

n
rΣi|

0.5 exp

"

´
1

2σ2
D8,i

*

, (41)

which enables rewriting L2,i as

L2,i “
1

β
p2πq´0.5dβ |pΣ´1

n
rΣi|

0.5

loooooooooooooomoooooooooooooon

“D9,i

ż

σ2

pσ2q´0.5dβ exp

"

´
1

σ2
¨

1

2
rD2,i `D8,is

*

IGVB
pσ2|pan,pbnqdσ

2

IpIGq
“

D9,i ¨ Γppan ` 0.5dβq ¨pbpann

Γppanq ¨
”

pbn ` 0.5pD2,i `D7,iq

ıppan`0.5dβq
, (42)

finally implying that one may write

Q2 “

n
ÿ

i“1

L2,i ´ nL1

“

n
ÿ

i“1

$

’

&

’

%

D9,i ¨ Γppan ` 0.5dβq ¨pbpann

Γppanq ¨
”

pbn ` 0.5pD2,i `D8,iq

ıppan`0.5dβq

,

/

.

/

-

´ nD4 ¨
Γppan ` 0.5dβq

Γppanqpb
0.5dβ
n

“

n
ÿ

i“1

$

’

’

’

&

’

’

’

%

1
β p2πq

´0.5dβ

ˇ

ˇ

ˇ

ˇ

pΣ´1
n

”

pΣ´1
n ` βpXiXiq

ı´1
ˇ

ˇ

ˇ

ˇ

0.5

¨ Γppan ` 0.5dβq ¨pbpann

Γppanq ¨
”

pbn ` 0.5 pD2,i `D8,iq

ıppan`0.5dβq

,

/

/

/

.

/

/

/

-

´n ¨
p2πq´0.5dβp1` βq´0.5d´1 ¨ Γppan ` 0.5dβq

Γppanqpb
0.5dβ
n

.
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We further simplify this expression by observing that

D2,i `D8,i “ β
”

y1iyi ´ pyiX
1
iq
qΣipXiy

1
iq

ı

` pµ1n
pΣ´1
n pµn ` βqµ

1
i
qΣ´1
i qµi

´

´

pΣ´1
n pµn ` β qΣ

´1
i qµi

¯1
rΣi

´

pΣ´1
n pµn ` β qΣ

´1
i qµi

¯

“ βy1iyi ´ βpyiX
1
iq
qΣipXiy

1
iq ` pµ1n

pΣ´1
n pµn ` βpyiX

1
iq
qΣipXiy

1
iq

´

´

pΣ´1
n pµn ` βpX

1
iyiq

¯1
rΣi

´

pΣ´1
n pµn ` βpX

1
iyiq

¯

“ βy1iyi ` pµ1n
pΣ´1
n pµn ´

´

pΣ´1
n pµn ` βpX

1
iyiq

¯1 ”

pΣ´1
n ` βpXiXiq

ı´1 ´
pΣ´1
n pµn ` βpX

1
iyiq

¯

,

leaving us with

Q2 “
Γppan ` 0.5dβq ¨pbpann ¨ |pΣ´1

n |
0.5

βp2πq0.5dβΓppanq
ˆ

n
ÿ

i“1

$

’

’

’

&

’

’

’

%

ˇ

ˇ

ˇ

ˇ

”

pΣ´1
n ` βpXiXiq

ı´1
ˇ

ˇ

ˇ

ˇ

0.5

„

pbn ` 0.5

ˆ

βy1iyi ` pµ1n
pΣ´1
n pµn ´

´

pΣ´1
n pµn ` βpX 1

iyiq
¯1 ”

pΣ´1
n ` βpXiXiq

ı´1 ´
pΣ´1
n pµn ` βpX 1

iyiq
¯

˙ppan`0.5dβq

,

/

/

/

.

/

/

/

-

´n ¨
Γppan ` 0.5dβq

Γppanqpb
0.5dβ
n p2πq0.5dβp1` βq0.5d`1

.

3.3 ELBO

Putting together the results of the two previous sections, the ELBO is obtained as

ELBO “ ´Q1 `Q2

“ ´ log

˜

pbpann Γpa0q

ba00 Γppanq

¸

´ 0.5 log
ˇ

ˇ

ˇ
Σ0

pΣ´1
n

ˇ

ˇ

ˇ
`

1

2
tr
´

I ´Σ´1
0

pΣn

¯

´ ppan ´ a0q

´

Ψppanq ´ logppbnq
¯

´

„

1

2
pµ0 ´ pµnq

1Σ´1
0 pµ0 ´ pµnq ` pb0 ´pbnq



¨
Γppan ` 1q

pbnΓppanq

`
Γppan ` 0.5dβq ¨pbpann ¨ |pΣ´1

n |
0.5

βp2πq0.5dβΓppanq
ˆ

n
ÿ

i“1

$

’

’

’

&

’

’

’

%

ˇ

ˇ

ˇ

pΣ´1
n ` β pX 1

iXiq

ˇ

ˇ

ˇ

´0.5

„

pbn ` 0.5

ˆ

βy1iyi ` pµ1n
pΣ´1
n pµn ´

´

pΣ´1
n pµn ` βpX 1

iyiq
¯1 ”

pΣ´1
n ` βpX 1

iXiq

ı´1 ´
pΣ´1
n pµn ` βpX 1

iyiq
¯

˙ppan`0.5dβq

,

/

/

/

.

/

/

/

-

´n ¨
Γppan ` 0.5dβq

Γppanqpb
0.5dβ
n p2πq0.5dβp1` βq0.5d`1

(43)

3.4 Differentiation

In this section, we take derivatives of the ELBO with respect to each variational parameter, i.e.
pan,pbn, pµn, pΣn. Observing that differentiation with respect to pΣ´1

n is easier than with respect to pΣn,
parametrize the optimization using the Cholesky decomposition, i.e. pΣ´1

n “ LL1, where L is a lower
triangular matrix and is unique if pΣn (equivalently pΣ´1

n ) is positive definite1.

1Note that L need not be unique if pΣn is positive semi-definite, but this is of no concern for us here: Since
we implicitly impose that pΣn is non-singular (so that pΣ´1

n is unique and well-defined), all covariance matrices
pΣn considered have to be positive definite.
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3.4.1 Derivative with respect to L

In what follows, we differentiate the ELBO term by term with respect to the ppp´ 1q 1
2 entries in the

lower triangular part of L that can be summarized in the vector vech pLq. To this end, define

E1 “ ´0.5 log
ˇ

ˇ

ˇ
Σ0

pΣ´1
n

ˇ

ˇ

ˇ
`

1

2
tr
´

I ´Σ´1
0

pΣn

¯

(44)

E2 “
Γppan ` 0.5dβq ¨pbpann
βp2πq0.5dβΓppanq

looooooooooomooooooooooon

“F

|pΣ´1
n |

0.5 (45)

E3,i “

ˇ

ˇ

ˇ

pΣ´1
n ` β

`

X 1
iXi

˘

ˇ

ˇ

ˇ

´0.5

(46)

E4 “ pµ1n
pΣ´1
n pµn (47)

E5,i “ ´pµ1n
pΣ´1
n

”

pΣ´1
n ` β

`

X 1
iXi

˘

ı´1
pΣ´1
n pµn (48)

E6,i “ ´β
2py1iXiq

”

pΣ´1
n ` β

`

X 1
iXi

˘

ı´1

pX 1
iyiq, (49)

E7,i “ ´2βpµ1n
pΣ´1
n

”

pΣ´1
n ` β

`

X 1
iXi

˘

ı´1

pX 1
iyiq. (50)

Obtaining the derivative of the ELBO is equivalent to obtaining the derivatives of these newly defined
quantities, as

B

Bvech pLq
tELBOu “

B

Bvech pLq
tE1u

`
B

Bvech pLq
tE2u ¨

n
ÿ

i“1

$

’

&

’

%

E3,i
”

pbn ` 0.5 pβy1iyi ` E4 ` E5,i ` E6,i ` E7,iq

ı

pan`0.5dβ

,

/

.

/

-

`E2 ¨

n
ÿ

i“1

$

’

&

’

%

B
BvechpLq tE3,iu

”

pbn ` 0.5 pβy1iyi ` E4 ` E5,i ` E6,i ` E7,iq

ı

pan`0.5dβ

,

/

.

/

-

`E2 ¨

n
ÿ

i“1

"

E3,i ¨
B

Bvech pLq

"

”

pbn ` 0.5
`

βy1iyi ` E4 ` E5,i ` E6,i ` E7,i

˘

ı´pan´0.5dβ
**

,(51)

where the chain and sum rule imply that

B

Bvech pLq

"

”

pbn ` 0.5
`

βy1iyi ` E4 ` E5,i ` E6,i ` E7,i

˘

ı´pan´0.5dβ
*

“ p´pan ´ 0.5dβq ¨
”

pbn ` 0.5
`

βy1iyi ` E4 ` E5,i ` E6,i ` E7,i

˘

ı´pan´0.5dβ´1

ˆ

0.5 ¨
B

Bvech pLq
tE4 ` E5,i ` E6,i ` E7,iu , (52)

For convenience and simplified notation when taking the derivatives of the expressions defined in
Eqs (44) - (50), also define the following matrices:

R “
”

pΣ´1
n ` β

`

X 1
iXi

˘

ı

(53)

B “ pµnpµ
1
n. (54)

Define also the following symbols to mark operations used in the derivations:

B Switching from differential notation BL to the derivative B
BvechpLq ;

tr Properties of the trace like invariance under cyclic permutations, invariance under the
transpose, additivity, and the fact that for c a scalar, trpcq “ c.
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Note than when the differential operator B is used, its scope is always limited to the next term only,
unless brackets are used. Hence BLL1 uses the differential only with respect to L, while B pLL1q´1

uses it with respect to the entire expression pLL1q´1. It is also worth noting that BL1 “ pBLq1 for
any matrix L, as this will be used in conjunction with the transpose invariance of the trace throughout
to simplify terms. Using these symbols and the differential notation, proceed by noting the following:

BpLL1q “ BR “ BLL1 `LBL1 “ BLL1 `LBL1 “ BLL1 `
`

BLL1
˘1

(55)

BpLL1q´1 “ ´pLL1q´1
“

BpLL1q
‰

pLL1q´1 (56)

B|LL1| “ |LL1| ¨ tr
´

pLL1q´1
”

BLL1 `
`

BLL1
˘1
ı¯

tr
“ 2|LL1| ¨ tr

`

L1pLL1q´1BL
˘

(57)

BR´1 “ ´R´1BRR´1 “ ´R´1BLL1R´1 ´
“

R´1BLL1R´1
‰1
. (58)

With this in place, the derivatives of the quantities defined before are obtained as

BE1 “ ´
1

2
B
 

log |Σ0| ` log |LL1|
(

´
1

2
B

!

tr
´

Σ´1
0

pΣn

¯)

“ ´
1

2
¨ |LL1|´1 ¨ B|LL1| ´

1

2
tr
´

Σ´1
0 B

`

LL1
˘´1

¯

“ ´
1

2
tr
`

L1pLL1q´1BL
˘

`
1

2
tr
`

Σ´1
0 pLL1q´1

“

BpLL1q
‰

pLL1q´1
˘

tr
“ ´tr

`

L1pLL1q´1BL
˘

` tr
´

L1
`

LL1
˘´1

Σ´1
0

`

LL1
˘´1

BL
¯

BE2 “ F ¨ B|LL1|0.5

“
F

2
¨ |LL1|´0.5 ¨ 2|LL1| ¨ tr

`

L1pLL1q´1BL
˘

“ F ¨ |LL1|0.5tr
`

L1pLL1q´1BL
˘

(59)

BE3,i “ BR
´0.5 “ ´

1

2
|R|´1.5BR

“ ´
1

2
|R|´0.5tr

`

R´1B
`

LL1
˘˘

tr
“ ´|R|´0.5tr

`

L1R´1BL
˘

(60)

BE4
tr
“ tr

`

pµ1nBpLL
1qpµn

˘

“ tr
`

pµ1n
“

BLL1 `LBL1
‰

pµn
˘

tr
“ 2 ¨ tr

`

L1BBL
˘

(61)

BE5,i
tr
“ ´tr

`

pµ1nB
`

LL1
˘

R´1
`

LL1
˘

pµn
˘

´ tr
`

pµ1n
`

LL1
˘

BR´1
`

LL1
˘

pµn
˘

´tr
`

pµ1n
`

LL1
˘

R´1B
`

LL1
˘

pµn
˘

tr
“ ´2 ¨ tr

`

pµ1nBLL
1R´1

`

LL1
˘

pµn
˘

` 2 ¨ tr
`

pµ1n
`

LL1
˘

R´1BLL1R´1
`

LL1
˘

pµn
˘

´2 ¨ tr
`

pµ1n
`

LL1
˘

R´1BLL1pµn
˘

tr
“ ´2 ¨ tr

`

L1R´1
`

LL1
˘

BBL
˘

` 2 ¨ tr
`

L1R´1
`

LL1
˘

B
`

LL1
˘

R´1BL
˘

´2 ¨ tr
`

L1B
`

LL1
˘

R´1BL
˘

BE6,i
tr
“ ´β2tr

``

y1iXi

˘

BR´1
`

X 1
iyi

˘˘

tr
“ 2β2tr

``

y1iXi

˘

R´1BLL1R´1
`

X 1
iyi

˘˘

tr
“ 2β2tr

`

L1R´1
`

X 1
iyi

˘ `

y1iXi

˘

R´1BL
˘

(62)

BE7,i
tr
“ ´2β ¨

“

tr
`

pµ1nB
`

LL1
˘

R´1 pXiyiq
˘

` tr
`

pµ1n
`

LL1
˘

BR´1 pXiyiq
˘‰

tr
“ ´2β ¨

„

tr
`

pµ1nBLL
1R´1 pXiyiq

˘

` tr
`

pµ1nLBL
1R´1 pXiyiq

˘

´tr
`

pµ1n
`

LL1
˘

R´1BLL1R´1 pXiyiq
˘

´ tr
`

pµ1n
`

LL1
˘

R´1LBL1R´1 pXiyiq
˘



tr
“ ´2β ¨

„

tr
`

L1R´1 pXiyiq pµ
1
nBL

˘

` tr
`

L1pµn
`

y1iXi

˘

R´1BL
˘
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´tr
`

L1R´1 pXiyiq pµ
1
n

`

LL1
˘

R´1BL
˘

´ tr
`

L1R´1
`

LL1
˘

pµn
`

y1iXi

˘

R´1BL
˘



(63)

This can now be converted into derivative notation and simplified. To this end, first note that for any
pˆ B matrix A which is not a function of L,

trpAdLq “
p
ÿ

i“1

A1idLi1 `
p
ÿ

i“2

A2idLi2 ` ¨ ¨ ¨ “
p
ÿ

j“1

#

p
ÿ

i“j

AjidLji

+

, (64)

implying in particular that
B

Bvech pLq
trpAdLq “ vechpAT q (65)

and use this by defining vechT pAq “ vechpAT q to note that
B

Bvech pLq
E1

B
“ vechT

´

´
“

L1pLL1q´1
‰

`

”

L1
`

LL1
˘´1

Σ´1
0

`

LL1
˘´1

ı¯

“ vechT
´

L1
`

LL1
˘´1

”

Σ´1
0

`

LL1
˘´1

´ Ip

ı¯

“ vechT
´

L´1
”

Σ´1
0

`

LL1
˘´1

´ Ip

ı¯

“ vech
´”

`

LL1
˘´1

Σ´1
0 ´ Ip

ı

L´T
¯

(66)

B

Bvech pLq
E2

B
“ F ¨ |LL1|0.5 ¨ vechT

`

L1pLL1q´1
˘

“ F ¨ |LL1|0.5 ¨ vech
`

L´T
˘

(67)
B

Bvech pLq
E3,i

B
“ ´|R|´0.5 ¨ vech

`

R´1L
˘

(68)

B

Bvech pLq
E4

B
“ 2 ¨ vech pBLq (69)

B

Bvech pLq
E5,i

B
“ vechT

`

´2L1R´1
`

LL1
˘

B ` 2L1R´1
`

LL1
˘

B
`

LL1
˘

R´1 ´ 2L1B
`

LL1
˘

R´1
˘

“ 2 ¨ vechT
`“

L1R´1
`

LL1
˘

B
“`

LL1
˘

R´1 ´ Ip
‰‰

´
“

L1B
`

LL1
˘

R´1
‰˘

“ 2 ¨ vechT
`

L1
“

R´1
`

LL1
˘

B
“`

LL1
˘

R´1 ´ Ip
‰

´B
`

LL1
˘

R´1
‰˘

“ 2 ¨ vech
`““

R´1
`

LL1
˘

´ Ip
‰

B
`

LL1
˘

R´1 ´R´1
`

LL1
˘

B
‰

L
˘

(70)
B

Bvech pLq
E6,i

B
“ 2β2 ¨ vech

`

R´1
`

X 1
iyi

˘ `

y1iXi

˘

R´1L
˘

(71)

B

Bvech pLq
E7,i

B
“ ´2β ¨ vechT

ˆ

L1R´1 pXiyiq pµ
1
n `L

1
pµn

`

y1iXi

˘

R´1

´L1R´1 pXiyiq pµ
1
n

`

LL1
˘

R´1 ´L1R´1
`

LL1
˘

pµn
`

y1iXi

˘

R´1

˙

“ ´2β ¨ vechT
ˆ

L1R´1
`

X 1
iyi

˘

pµ1n
“

Ip ´
`

LL1
˘

R´1
‰

`
“

Ip ´L
1R´1L

‰

L1pµn
`

y1iXi

˘

R´1

˙

“ ´2β ¨ vech
ˆ

“

Ip ´R
´1

`

LL1
˘‰

pµn
`

y1iXi

˘

R´1L

`R´1
`

X 1
iyi

˘

pµ1nL
“

Ip ´L
1R´1L

‰

˙

(72)

3.4.2 Derivative with respect to pµn

Differentiating with respect to pµn is trivial. One proceeds by the same logic as in the section before,
to which end one additionally needs to define the new term

E8 “ ´
1

2

”

pµ0 ´ pµnq
1Σ´1

0 pµ0 ´ pµnq ` 2pb0 ´pbnq
ı

¨
Γppan ` 1q

pbnΓppanq
, (73)
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allowing us to write
B

Bxµn
tELBOu “

B

Bxµn
tE8u`

E2 ¨

n
ÿ

i“1

"

E3,i ¨
B

Bxµn

"

”

pbn ` 0.5
`

βy1iyi ` E4 ` E5,i ` E6,i ` E7,i

˘

ı´pan´0.5dβ
**

,(74)

where
B

Bxµn

"

”

pbn ` 0.5
`

βy1iyi ` E4 ` E5,i ` E6,i ` E7,i

˘

ı´pan´0.5dβ
*

“ p´pan ´ 0.5dβq ¨
”

pbn ` 0.5
`

βy1iyi ` E4 ` E5,i ` E6,i ` E7,i

˘

ı´pan´0.5dβ´1

ˆ

0.5 ¨
B

Bxµn
tE4 ` E5,i ` E7,iu , (75)

so that obtaining the derivative is achieved by finding B
Byµn

E4,
B
Byµn

E5,i,
B
Byµn

E7,i and B
Byµn

E8:

B

Bxµn
E4 “ 2 ¨ pµ1n

pΣ´1
n (76)

B

Bxµn
E5,i “ ´2 ¨ pµ1n

pΣ´1
n R

´1
pΣ´1
n (77)

B

Bxµn
E7,i “ ´2β ¨

`

y1iXi

˘

R´1
pΣ´1
n (78)

B

Bxµn
E8 “ ´

1

2
¨

Γppan ` 1q

pbnΓppanq

„

B

Bxµn

`

pµ1nΣ´1
0 pµn

˘

´ 2
B

Bxµn

`

pµnΣ´1
0 µ0

˘



“ ´
1

2
¨

Γppan ` 1q

pbnΓppanq

“

2pµ1nΣ´1
0 ´ 2µ10Σ

´1
0

‰

“
Γppan ` 1q

pbnΓppanq

“

pµ0 ´ pµnq
1
Σ´1

0

‰

(79)

3.4.3 Derivative with respect to pan

We proceed again by the same logic. Define

E9 “ ´ log

˜

pbpann Γpa0q

ba00 Γppanq

¸

(80)

E10 “ ´ppan ´ a0q

´

Ψppanq ´ logppbnq
¯

(81)

E11 “ ´n ¨
Γppan ` 0.5dβq

Γppanqpb
0.5dβ
n p2πq0.5dβp1` βq0.5d`1

. (82)

Use this to write
B

Bpan
tELBOu “

B

Bpan
tE8u `

B

Bpan
tE9u `

B

Bpan
tE10u `

B

Bpan
tE11u`

`
B

Bpan
tE2u

n
ÿ

i“1

$

’

&

’

%

E3,i
”

pbn ` 0.5 pβy1iyi ` E4 ` E5,i ` E6,i ` E7,iq

ı

pan`0.5dβ

,

/

.

/

-

`E2 ¨

n
ÿ

i“1

"

E3,i ¨
B

Bpan

"

”

pbn ` 0.5
`

βy1iyi ` E4 ` E5,i ` E6,i ` E7,i

˘

ı´pan´0.5dβ
**

,(83)

where for pan, the inner term equals

B

Bpan

$

’

’

&

’

’

%

»

—

–

pbn ` 0.5
`

βy1iyi ` E4 ` E5,i ` E6,i ` E7,i

˘

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

“K

fi

ffi

fl

´pan´0.5dβ
,

/

/

.

/

/

-

“ ´ log pKq ¨K´pan´0.5dβ , (84)
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so that the differentiation with respect to pan requires obtaining the following terms:

B

Bpan
E2 “

|pΣ´1
n |

0.5

βp2πq0.5dβ

„ B
Bpan

tΓppan ` 0.5dβqupbpann

Γppanq
`

B
Bpan

!

pbpann

)

Γ ppan ` 0.5dβq

Γppanq

`
B

Bpan

 

Γppanq
´1

(

¨pbpann Γppan ` 0.5dβq



“
|pΣ´1

n |
0.5
pbpann Γppan ` 0.5dβq

βp2πq0.5dβΓppanq

”

Ψppan ` 0.5dβq ` logppbnq ´Ψppanq
ı

(85)

B

Bpan
E8 “ ´

1

2

”

pµ0 ´ pµnq
1Σ´1

0 pµ0 ´ pµnq ` 2pb0 ´pbnq
ı

¨

«

B
Bpan

tΓppan ` 1qu

pbnΓppanq
´

B
Bpan

tΓppanquΓppan ` 1q

Γppanq2pbn

ff

“ ´
1

2

”

pµ0 ´ pµnq
1Σ´1

0 pµ0 ´ pµnq ` 2pb0 ´pbnq
ı

¨
Γppan ` 1q

pbnΓppanq
¨ rΨppan ` 1q ´Ψppanqs (86)

B

Bpan
E9 “ ´

B

Bpan

!

pan logppbnq
)

`
B

Bpan
tlog pΓppanqqu

“ ´ logppbnq `Ψppanq (87)
B

Bpan
E10 “

B

Bpan

!

pan logppbnq
)

´
B

Bpan
tppan ´ a0qΨppanqu

“ logppbnq ´Ψppanq ´ ppan ´ a0qΨp1qppanq (88)
B

Bpan
E11 “ ´

n

pb0.5dβn p2πq0.5dβp1` βq0.5d`1
¨
B

Bpan

"

Γppan ` 0.5dβq

Γppanq

*

“ ´
n

pb0.5dβn p2πq0.5dβp1` βq0.5d`1
¨

Γppan ` 0.5dβq

Γppanq
¨ rΨppan ` 0.5dβq ´Ψppanqs , (89)

where Ψp1q denotes the trigamma function.

3.4.4 Derivative with respect to pbn

As for the other variational parameters, note that

B

Bpbn
tELBOu “

B

Bpbn
tE8u `

B

Bpbn
tE9u `

B

Bpbn
tE10u `

B

Bpbn
tE11u`

`
B

Bpbn
tE2u

n
ÿ

i“1

$

’

&

’

%

E3,i
”

pbn ` 0.5 pβy1iyi ` E4 ` E5,i ` E6,i ` E7,iq

ı

pan`0.5dβ

,

/

.

/

-

`E2 ¨

n
ÿ

i“1

"

E3,i ¨
B

Bpbn

"

”

pbn ` 0.5
`

βy1iyi ` E4 ` E5,i ` E6,i ` E7,i

˘

ı´pan´0.5dβ
**

,(90)

where the chain rule implies that

B

Bpbn

$

’

’

&

’

’

%

»

—

–

pbn ` 0.5
`

βy1iyi ` E4 ` E5,i ` E6,i ` E7,i

˘

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

“K

fi

ffi

fl

´pan´0.5dβ
,

/

/

.

/

/

-

“ p´pan ´ 0.5dβq ¨K´pan´0.5dβ´1.(91)

17



Thus one proceeds by the same logic as before.

B

Bpbn
E2 “

panΓppan ` 0.5dβq ¨ |pΣ´1
n |

0.5

βp2πq0.5dβΓppanq
¨pbpan´1
n (92)

B

Bpbn
E8 “

1

2

“

pµ0 ´ pµnq
1Σ´1

0 pµ0 ´ pµnq ` 2b0
‰ Γppan ` 1q

Γppanq
¨

1

pb2n
(93)

B

Bpbn
E9 “ ´

pan
pbn

(94)

B

Bpbn
E10 “

pan ´ a0

pbn
(95)

B

Bpbn
E11 “

ndβ ¨ Γppan ` 0.5dβq

2 ¨ Γppanqp2πq0.5dβp1` βq0.5d`1
¨pb´0.5dβ´1
n (96)

4 Timing and performance comparisons: Markov Chain Monte Carlo vs
Structured Variational Bayes

We ran timing comparisons of SVI with MCMC for several subsets of the well-log data set. We
ran the β-D BOCPD algorithm implementing an MCMC inference regime using stan [Carpenter
et al., 2016] and compared this with our SVI inference regime. The two inference schemes were
then run on 3 datasets of different time-length; the first 200 observations of the well-log, the first
500 observations of the well log and the full well-log, in order to show the impact changing the
number of observations has on the timings for the algorithm. For the SVI used to produce these
timings, we perform full optimization at every step, which is significantly slower than the SGD-variant
that we present in the paper and that can be found in our repository at https://github.com/
alan-turing-institute/rbocpdms. In spite of this, the SVI is still orders of magnitudes faster.

Table 1: Table of times to run the β-D BOCPD algorithm under the MCMC and SVI with full
optimization on the first 200 observations, the first 500 observations and the full well log dataset.

T=200 T=500 T=4050
MCMC 7615.2 20388.7 106073.0

SVI (full optimization) 102.8 328.5 3240.0

Another question of interest is how much the Stochastic Gradient Descent (SGD) inside our inference
procedure provides robustness and how much the β-D itself is responsile for this. To put this question
to the test, we ran full vs SGD-based optimization on the well-log data. As shown in Fig. 3, the results
are very close to identical: No CPS are declared under one that are not declared in the other, and the
run-length distribution’s maximum coincides throughout.
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Figure 3: MAP segmentation and run-length distributions of the well-log data. SGD inference
outcomes in blue, outcomes under full optimization in red. The corresponding run-length distributions
for SGD (middle) and full (bottom) optimization are shown in grayscale with dashed maximum.
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5 Initialization for βp

The initialization procedure described in the paper is illustrated in Fig. 4. Here, the yellow dashed line
gives a standard normal density corresponding to our model for the data. The gray dotted vertical line
gives the amount of standard deviations from the posterior mean where one wishes to maximize the
influence. We have chosen to maximize the influence at observations with 2.75 standard deviations
away from our posterior mean. In the first picture, βp “ 0 and thus the influence function corresponds
to the Kullback-Leibler Divergence. Concordantly, it has no maximum and observations have more
influence the further in the tail of our model they occur. Thus, one needs to increase βp slightly. This
is done in the second picture. While observations in the tail get smaller influence now than before, the
influence of observations is still increasing beyond 2.75 standard deviations. So one needs to increase
βp two more times, until one finally obtains the desired outcome for βp “ 0.25 in the fourth picture.
Notice that the influence does not immediately drop to 0 for observations further in the tails than 2.75
standard deviations away from the posterior mean, but it does decay. In some sense, we have set βp
such that we think of observations occuring 2.75 standard deviations away from the posterior mean as
being most informative. This is significantly different from what is implied by the Kullback-Leibler
divergence, where an observation is most informative if it agrees least with the fitted model. It is
intuitive why this produces good inferences if one is in the M-closed world and similarly intuitive
why it does not in the M-open world.

0 2 4
SD

0.0

0.1

0.2

0.3

0.4

0.5

0.6

In
flu

en
ce

/D
en

sit
y

N(0, 1)
KLD

0 2 4
SD

N(0, 1)
= 0.05

0 2 4
SD

N(0, 1)
= 0.2

0 2 4
SD

N(0, 1)
= 0.25

Figure 4: Illustration of the initialization procedure, from left to right.

6 Recursive Optimization for βrlm

Recall that

pytpβq “
ÿ

rt,mt

E
`

yt|y1:pt´1q, rt´1,mt´1, βp
˘

pprt´1,mt´1|y1:pt´1q, βrlmq. (97)

the issue reduces to finding the partial derivatives ∇βrlm pytpβq and ∇βp pytpβq. Notice that for
∇βrlm pytpβq, one finds that

∇βrlm pytpβq “
ÿ

rt,mt

E
`

yt|y1:pt´1q, rt´1,mt´1, βp
˘

∇βrlmpprt´1,mt´1|y1:pt´1q, βrlmq. (98)

Observe now that for ppy1:tq “
ř

rt,mt
pprt,mt,y1:t|βrlmq,

∇βrlmpprt,mt|y1:t, βrlmq

“∇βrlm

#

pprt,mt,y1:t|βrlmq
ř

rt,mt
pprt,mt,y1:t|βrlmq

+

“
∇βrlmpprt,mt,y1:t|βrlmq

ppy1:tq
´
pprt,mt,y1:t|βrlmq

ppy1:tq
2

¨
ÿ

rt,mt

∇βrlmpprt,mt,y1:t|βrlmq. (99)

19



Thus we have reduced the problem to finding ∇βrlmpprt,mt,y1:t|βrlmq. Defining for a predictive
posterior distribution fmtpyt|Ft´1q its β-divergence analogue as

fβrlm
mt pyt|Ft´1q “ exp

"

1

βrlm
fmtpyt|Ft´1q

βrlm ´
1

1` βrlm

ż

Y
fmtpyt|Ft´1q

1`βrlmdyt

*

(100)

and uppressing the conditioning on βrlm for convenience, one can using the recursion

ppy1:t, rt,mtq “
ÿ

mt´1,rt´1

!

fβrlm
mt pyt|Ft´1qqpmt|Ft´1,mt´1qHprt, rt´1qppy1:pt´1q, rt´1,mt´1q

)

,(101a)

compute ∇βrlmpprt,mt,y1:tq from ∇βrlmpprt´1,mt´1,y1:pt´1q|βrlmq for rt “ rt´1 ` 1 as
∇βrlmppy1:t, rt,mtq

“

!

∇βrlmf
βrlm
mt pyt|Ft´1qqpmt|Ft´1,mt´1qHprt, rt´1qppy1:pt´1q, rt´1,mt´1q

)

`
!

fβrlm
mt pyt|Ft´1q∇βrlmqpmt|Ft´1,mt´1qHprt, rt´1qppy1:pt´1q, rt´1,mt´1q

)

`
!

fβrlm
mt pyt|Ft´1qqpmt|Ft´1,mt´1qHprt, rt´1q∇βrlmppy1:pt´1q, rt´1,mt´1q

)

. (102)

Similarly, for rt “ 0 the expression becomes
∇βrlmppy1:t, rt,mtq

“ ∇βrlmf
βrlm
mt pyt|Ft´1q ¨ qpmtq

ÿ

rt´1,mt´1

Hp0, rt´1qppy1:pt´1q, rt´1,mt´1q`

fβrlm
mt pyt|Ft´1q ¨ qpmtq

ÿ

rt´1,mt´1

Hp0, rt´1q∇βrlmppy1:pt´1q, rt´1,mt´1q. (103)

This implies that if fβrlm
mt pyt|Ft´1q and qpmt|Ft´1,mt´1q are differentiable with respect to βrlm,

then the entire expression can be updated recursively. For most exponential family likelihoods
(and in particular the normal likelihood of the Bayesian Linear Regression), ∇βrlmf

βrlm
mt pyt|Ft´1q

is available analytically. In particular, as long as
ş

Y fmtpyt|Ft´1q
1`βrlmdyt has a closed form,

∇βrlmf
βrlm
mt pyt|Ft´1q can be found in analytic form. In the case of Bayesian Linear Regression where

the d-dimensional posterior predictive takes the shape of a student-t distribution with ν degrees of
freedom and posterior covariance ν

ν´2Σ, one finds that

∇βrlmf
βrlm
mt pyt|Ft´1q “ ∇βrlmg1pβrlmqg2pβrlmqg3pβrlmq`

g1pβrlmq∇βrlmg2pβrlmqg3pβrlmq`

g1pβrlmqg2pβrlmq∇βrlmg3pβrlmq, (104)
where for η “ νd` dβrlm ` ν,

g1pβrlmq “

ˆ

Γp0.5rν ` dsq

Γp0.5νq

˙1`βrlm

g2pβrlmq “
Γp0.5ηq

Γp0.5rη ` psq

g3pβrlmq “ pνπq
´0.5p¨βrlm ¨ |Σ|´βrlm ,

so that their derivatives are given by
∇βrlmg1pβrlmq “ ´pβrlm ` 1q ¨ logpg1pβrlmqq ¨ g2pβrlmq

∇βrlmg1pβrlmq “ 0.5pν ` pq

„

¨
Γp0.5ηqΨp0.5ηq

Γpr0.5rη ` psq
´

Γp0.5rηsqΨp0.5rp` ηsq

Γpr0.5rη ` psq



∇βrlmg3pβrlmq “ ´g3pβrlmq ¨ logpg3pβrlmqq ¨
1

βrlm
(105)

As for ∇βrlmqpmt|Ft´1,mt´1q, one can again obtain it recursively, since for rt ą 0,
∇βrlmqpmt|Ft´1,mt´1q

“ ∇βrlm

#

ppy1:pt´1q, rt´1,mt´1q
ř

mt´1
ppy1:pt´1q,mt´1q

+

“
∇βrlmppy1:pt´1q, rt´1,mt´1q
ř

mt´1
ppy1:pt´1q, rt´1,mt´1q

´

ř

mt´1
∇βrlmppy1:pt´1q, rt´1,mt´1q

´

ř

mt´1
ppy1:pt´1q, rt´1,mt´1q

¯2 . (106)
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7 Proof of Theorem 2

Proof. For ease of notation, we use βp “ β. The model used for the inference is an exponential
family model of the form

fpx; θq “ exp
`

ηpθqTT pxq
˘

gpηpθqqApxq, (107)

where gpηpθqq :“
`ş

exp
`

ηpθqTT pxq
˘

Apxqdx
˘´1

. Now under our SVI routine the β-D posterior
originating from this model and its conjugate prior is approximated by a member of the conjugate
prior family. As a result the conjugate prior and variational posterior to the above model have the
form

π0pθ|ν0,X0q“gpηpθqq
ν0 exp

`

ν0ηpθq
TX0

˘

hpX0, ν0q (108)

πV Bn pθ|νn,Xnq“gpηpθqqνn exp
`

νnηpθq
TXn

˘

hpXn, νnq, (109)

where pν0,X0q are the prior hyperparameters, pνn,Xnq represent the variational parameters and
hpXi, νiq :“

`ş

gpηpθqqνi exp
`

νiηpθq
TXi

˘

dθ
˘´1

. The resulting ELBO objective function under
GBI has the form

ELBOpνn,Xnq “

EπVBn

«

log

˜

exp

˜

n
ÿ

i“1

´`Dpx; θq

¸¸ff

´ dKL
`

πV Bn pθ|νn,Xnq , π0 pθ|ν0,X0q
˘

,(110)

where for the β-D posterior

´`βpx; θq“
1

β

`

exp
`

ηpθqTT pxq
˘

gpηpθqqApxq
˘β
´

1

β ` 1

ż

`

exp
`

ηpθqTT pzq
˘

gpηpθqqApxq
˘1`β

dz (111)

“
1

β
exp

`

βηpθqTT pxq
˘

gpηpθqqβApxqβ´

1

β ` 1

ż

exp
`

p1` βqηpθqTT pzq
˘

gpηpθqq1`βApxq1`βdz. (112)

Therefore the ELBO pνn,Xnq has three integrals that need evaluating

B1“

n
ÿ

i“1

ż

1

β
exp

`

βηpθqTT pxiq
˘

gpηpθqqβApxiq
βπV Bn pθ|νn,Xnqdθ (113)

B2“
n

β ` 1

ż
"
ż

exp
`

p1` βqηpθqTT pzq
˘

gpηpθqq1`βApzqq1`βdz

*

πV Bn pθ|νn,Xnqdθ(114)

B3“dKL
`

πV Bn pθ|νn,Xnq , π0 pθ|ν0,X0q
˘

. (115)

Now firstly for the term B1 in equation (113)

B1“

n
ÿ

i“1

ż

1

β
exp

`

βηpθqTT pxiq
˘

gpηpθqqβApxiq
βgpηpθqqνn exp

`

νnηpθq
TXn

˘

hpXn, νnqdθ(116)

“

n
ÿ

i“1

1

β
Apxiq

βhpXn, νnq
ż

gpηpθqqβ`νn exp
`

ηpθqT pβT pxiq ` νnXnq
˘

dθ (117)

“

n
ÿ

i“1

1

β
Apxiq

βhpXn, νnq
1

hpβT pxiq`νnXnβ`νn
, β ` νnq

. (118)
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Where we know that hpβT pxiq`νnXnβ`νn
, β ` νnq “

ş

gpηpθqqβ`νn exp
`

ηpθqT pβT pxiq ` νnXnq
˘

dθ

is integrable and closed form as it represents the normalising constant of the same exponential family
as the prior and the variational posterior. Next we look at B2 in equation (114). The whole integral
is the product of two densities which must be positive and in order for the ELBO pνn,Xnq to be
defined it must also be integrable. Therefore we can use Fubini’s theorem to switch the order of
integration

B2 “
n

β ` 1

ż
"
ż

exp
`

p1` βqηpθqTT pzq
˘

gpηpθqq1`βπV Bn pθ|νn,Xnqdθ
*

Apzq1`βdz (119)

“
n

β ` 1
hpXn, νnq

ż
"
ż

exp
`

ηpθqT pp1` βqT pzq ` νnXnq
˘

gpηpθqq1`β`νndθ

*

Apzq1`βdz(120)

“
n

β ` 1
hpXn, νnq

ż

Apzq1`β

hp p1`βqT pzq`νnXn1`β`νn
, 1` β ` νnq

dz. (121)

once again hp p1`βqT pzq`νnXn1`β`νn
, 1`β`νnq “

ş

exp
`

ηpθqT pp1` βqT pzq ` νnXnq
˘

gpηpθqq1`β`νndθ

is the normalisisng constant of the same exponential family as the prior and the variational posterior
and is thus closed form. Lastly we look at B3 in equation (115)

B3 “

ż

πV Bn pθ|νn,Xnq log
gpηpθqqνn exp

`

νnηpθq
TXn

˘

hpXn, νnq
gpηpθqqν0 exp pν0ηpθqTX0qhpX0, ν0q

(122)

“log
hpXn, νnq
hpX0, ν0q

ż

πV Bn pθ|νn,Xnq
 

pνn ´ ν0q log gpηpθqq `
`

ηpθqT pνnXn ´ ν0X0q
˘(

(123)

“log
hpXn, νnq
hpX0, ν0q

 

pνn ´ ν0qλ
V B
n `

`

pµV Bn qT pνnXn ´ ν0X0q
˘(

, (124)

where µV Bn “ EπVBn rηpθqs and λV Bn “ EπVBn rlog gpηpθqqs.

As a result we get that

ELBOpνn,Xnq“B1 ´B2 ´B3 (125)

“

n
ÿ

i“1

1

β
Apxiq

βhpXn, νnq
1

hpβT pxiq`νnXnβ`νn
, β ` νnq

´
n

β ` 1
hpXn, νnq

ż

Apzq1`β

hp p1`βqT pzq`νnXn1`β`νn
, 1` β ` νnq

dz (126)

´ log
hpXn, νnq
hpX0, ν0q

 

pνn ´ ν0qλ
V B
n `

`

pµV Bn qT pνnXn ´ ν0X0q
˘(

.

8 Complexity Analysis of Inference

Time complexity: Our SVRG method crucially hinges on the complexity of the gradient evaluations.
For BLR, we note that evaluating the complete ELBO gradient derived above for n observations
has complexity Opnp3q, where p is the number of regressors. We proceed by defining g as the
(generic) complexity of a gradient evaluation, so for BLR g “ p3. Clearly, an SGD step using b
observations is of order Opbgq. Similarly, the computation of the anchors is OpBgq. Next, let the
optimization routine used for full optimization have complexity Opmpn, dimpθqqq. Most standard
(quasi-) Newton optimization routines such as BFGS or LBFGSB (used in our implementation) are
polynomial in n and dimpθq. For such methods, since it holds that at most W ě n observations are
evaluated in the full optimization, and since dimpθq is time-constant, mpn, dimpθqq is also constant
in time. Thus, though these constants can be substantial, all optimization steps (whether SVRG steps
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or full optimization steps) are Op1q in time. Since one performs T of them for T observations, the
computational complexity (in time) is OpT q.
Space complexity: One needs to store observations yt as well as gradient evaluations. Storing
one of them takes Opdq and Opdimpθqq space, respectively. Since we only keep a window W
of the most recent observations (and gradients), this means that the space requirement is of order
OpW pd` dimpθqqq and in particular constant in time.

9 Additional Details on Experiments

For all experiment, constrained Limited Memory Broyden–Fletcher–Goldfarb–Shannon is used for the
full optimization step, where the constraints are pan ą 1,pbn ą 1. We use Python’s scipy.optimize
wrapper, which calls a Fortran implementation. We also tested whether inference is sensitive to
different initializations of βp and found that it is fairly stable as long as βp is chosen reasonably.
For example, for the Air Pollution data, we could recover the same changepoint (˘5 days) for
initializations of βp ranging from 0.005 up to 0.1. All experiments were performed on a 2017
MacBook Pro with 16 GB 2133 MHz LPDDR3 and 3.1 GHz Intel Core i7.

9.1 Well-log data

Hyperparameters: We set the hyperparameters for standard Bayesian On-line Changepoint Detec-
tion slightly differently, the reason being that due to the robustness guarantee of Theorem 1, we can
use much less informative priors with the robust version than we can with the standard version: If
priors are too flat, the standard version declares far too many changepoints. Thus, for the standard
version, we use a constant CP prior (hazard) Hprt “ rt´1 ` 1|rt´1q “ 0.01, a0 “ 1, b0 “ 104,
Σ0 “ 0.25, µ0 “ 1.15¨104, while for the robust version we can use a less informative prior by instead
setting b0 “ 107. By virtue of our initialization procedure for βp, this implies setting βp,0 « 0.05.
To start out close to the KLD, we initialize βrld,0 “ 0.0001.

Inferential procedure: For the robust version, we set W “ 360, B “ 25, b “ 10, m “ 20,
K “ 1. For both versions, only the 50 most likely run-lengths are kept. For the robust version, the
average processing time was 0.487 per observation.

9.2 Air Pollution data

Preprocessing & Model Setup: The air pollution data is observed every 15 minutes across 29
stations for 365 days. We average the 96 observations made over 24 hours. This is done to move the
observed data closer to a normal distribution, as the measurements have significant daily volatility
variations. To account for weekly cycles, we also calculate for each station the mean for each weekday
and subtract it from the raw data.. Yearly seasonality is not accounted for. Afterwards, the data is
normalized station-wise. This is done only for numerical stability, because the internal mechanisms
of the used VAR models perform matrix operations (QR-decompositions and matrix multiplications
in particular) that can adversely affect numerical stability for observations with large absolute value.
Fig. 5 shows some of the station’s data after these preprocessing steps have been taken.

The autoregressive models and spatially structured vector autoregressive models (VARs) are chosen
to have lag lengths 1, 2, 3. These short lag lengths are chosen to explicitly disadvantage the robust
model universe: The non-robust run we compare against uses more than 20 models, with lag lengths
1, 5, 6, 7, meaning that it is much more expressive and should be able to cope with outliers better. In
spite of this, it not only declares more CPs, but also does worse than the robust version in terms of
predictive performance. For both the robust and non-robust model, two spatially structured VARs are
included as in Knoblauch and Damoulas [2018].

Hyperparameters: We setHprt “ rt´1`1|rt´1q “ 0.001, a0 “ 1, b0 “ 25,µ0 “ 0, Σ0 “ I ¨20,
which yields initialization βp « 0.005, βrlm “ 0.1. The non-robust results are directly taken
from Knoblauch and Damoulas [2018] and can be replicated running the code available from
https://github.com/alan-turing-institute/bocpdms/
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Figure 5: Some of the stations after preprocessing steps. x-axis gives NOX level, y-axis the day.

Inferential procedure: We set W “ 300, m “ 50, B “ 20 and b “ 10, K “ 25 and retain
the 50 most likely run-lengths. Processing times are more volatile than for the well-log because
the full optimization procedure is significantly more expensive to perform. Most observations take
significantly less than 20 seconds to process, but some take over a minute (depending on how many
of the retained run-lengths are divisible by m at each time point).

9.3 Optimizing β

Lastly, we investigate the trajectories for β as it is being optimized. For all trajectories, a bounded
predictive absolute loss was used with threshold τ , i.e. Lpxq “ maxt|x|, τu. For βrld, τ “ 5{T
(where T is the length of the time series) while for βp, τ “ 0.1. The results are not sensitive
to these thresholds, and they are picked with the intent that (1) a single observation should not
affect βp by more than 0.1 and (2) that overall, βrld should not change by more than 5 in absolute
magnitude. As the initialization procedure for βp works very well for predictive performance, the
on-line optimization never even comes close to making a step with size τ . The picture is rather
different for βrld, which reaches τ rather often. We note that this is because the estimated gradients
for βrld can be very extreme, which is why the implementation averages 50 consecutive gradients
before performing a step. Overall, we note that for the well log data whose trajectories are depicted
in Fig. 6, the degrees of robustness do not change much relative to their starting points at βp “ 0.05
and βrld “ 0.001. In particular, the absolute change over more than 4, 000 observations is ă 0.002
for βp and ă 0.015 for βrld. Step sizes are 1{t at time t.

For the Air Pollution Data, the story is slightly different: Here, βp does not change after the first
iteration, where it jumps from 0.005 directly to 10´10. While this seems odd, it is mainly due to the
fact that for numerical stability reasons2 , one needs to ensure that βp ą ε for some ε ą 0; and in
our implementation, ε “ 10´10. The interpretation of the trace graph is thus that the optimization
continuously suggests less robust values for βp, but that we cannot admit them due to numerical
stability. The downward trend also holds for βrld, which is big enough to not endanger numerical
stability and hence can drift downwards.

Fig. 6 also shows that the optimization technique used for β needs further investigation and research.
For starters, the outcomes suggest that a second order method could yield better results than using
a first-order SGD technique. In the future, we would like to explore this in greater detail and also

2In particular, working with the β-D implies that one takes the exponential of a density, i.e. ef
β

. So even
working on a log scale now means working with the densities fβ directly. It should be clear that these quantities
become numerically unstable for β too large or too small.
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Figure 6: β trajectories for the well-log data. For βrld, steps are only taken every 50 observations to
average gradient noise

explore more advanced optimization methods like line search or trust region optimization methods
for this problem.
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