
A IS with approximate behavior policy

In this section, we include some theoretical and empirical results about the effect of using an estimated
behavior policy in importance sampling, when the true behavior policy is not accessible.

Proposition 1. Assume the reward is in [0, Rmax]. For any estimator bµ(a|s) of the true behavior

policy µ(a|s), let VIS(µ̂) be the IS estimator using this estimated µ̂(a|s) and VIS(µ) be the IS

estimator with true behavior policy. Both of the IS estimators are computed using n trajectories that

are independent from the data used to estimate bµ(a|s). If the relative error of bµ(a|s) is bounded by �:
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The bias of VIS(µ̂) is bounded by:
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where v is the true evaluation policy value.
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Plug this into Equation 12:
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Similarly, for the bias:
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We bound the error of IS estimates by the relative error of behavior policy estimates. Proposition 3
from Farajtabar et al. [7] gave an expression for the bias when using an empirical estimate of behavior
policy in IS. The result in Farajtabar et al. [7] is similar to this proposition, but the authors did not
explicitly bound the bias by the error of behavior policy. Note that this bound increases exponentially
with the horizon H , which shows the accumulated error effect of behavior policy error.

By using the tree MDP example in Jiang and Li [10] we can show that the order of magnitude
O(exp(H)) is tight: there exists an MDP and a policy estimator µ̂ with k(µ̂�µ)/µk1 = � such that
the bias of VIS(µ̂) is O(exp (H)). Define a binary discrete tree MDP [10] as following: At each node
in a binary tree, we can take two actions a = 0, a = 1, leading to the two next nodes with observations
o = 0, o = 1. The state of a node is defined by the whole path to the root: o0a0o1ai . . . oh. That
means each node in the tree will have a unique state. The depth of the tree, as well as the horizon
of the trajectories, is H . Only the leftmost leaf node (by always taking a = 0) has non-zero reward
r = 1. Denote this state as the target state. The evaluation policy always takes action a = 0 and
the behavior policy µ is a uniform random policy. Let the estimated policy µ̂ differ from µ with
��/2 in all the state-action pairs on the path to target state. That means the action probability in µ̂ is
1/2� �/2 for all state-action pairs on the path to target state. The IS estimator with µ has expectation
1 since it is unbiased. It is easy to verify that the IS estimator using µ̂ has expectation (1� �)�H .
Thus the bias is O(exp(H)).

This result represents the worst-case upper bound on the bias of IS when using an estimated behaviour
policy; the fact it is exponential in the trajectory length illustrates the problem when using IS without
knowing the true behaviour policy. To support this result with an empirical example illustrating the
challenge of using IS with an unknown behaviour policy for a real data distribution, consider Figure
1 which represents the error in OPPE (found using Per-Decision WIS) as we vary the accuracy of
the behaviour policy estimation. Two different behaviour policies are considered. The domain used
in this example is a continuous 2D map (s 2 R2) with a discrete action space, A = {1, 2, 3, 4, 5},
with actions representing a movement of one unit in one of the four coordinate directions or staying
in the current position. Gaussian noise of zero mean and specifiable variance is added onto state of
the agent after each action, to provide environmental stochasticity. An agent starts in the top left
corner of the domain and receives a positive reward within a given radius of the top right corner,
and a negative reward within a given radius of the bottom left corner. The horizon is set to be 15. A
k-Nearest Neighbours (kNN) model is used to estimate the behaviour policy distribution, given a set
of training trajectories. The accuracy of the model is varied by changing the number of trajectories
available and the number of neighbours used for behaviour policy estimation.

This plot shows how IS suffers from very poor estimates with even slight errors in the estimated
behaviour policy – average absolute errors of as small as 0.06 can incur errors of up over 50% in
OPPE. This provides additional motivation for our approach – we do not require the behaviour
policy to be known for OPPE, avoiding the significant errors incurred by using incorrectly estimated
behaviour policies.
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Figure 1: Plots showing the mean and standard deviation of the fractional error in
OPE, V̂�V

V
, as a function of the average absolute error in behaviour policy estimation,

1
n

P
n

i=1 |µ(a
(i)
|s(i))� µ̂(a(i)|s(i))|, for two different behaviour policies. The quality of OPE with

IS has a very significant dependence on the accuracy of the behaviour policy estimation.

B Clarification of CATE/HTE and ITE

In the causal inference literature[14], for an single unit i with covariate (state) xi, we observe Yi(1)
if we give the unit treatment and Yi(0) if not. The Individual Treatment Effect (ITE) is defined as:

Di = Yi(1)� Yi(0), (18)

for this particular set of observations Yi, xi. However Yi(1) and Yi(0) cannot be observed at the same
time, which makes ITE unidentifiable without strong additional assumptions. Thus the conditional
average treatment effect (CATE), also known as heterogeneous treatment effect (HTE) is defined as:

⌧(x) = E[Yi(1)� Yi(0)|x] (19)

which is a function of x and is identifiable. Shalit et al. [19] defined ITE as ⌧(x), which is actually
named as CATE or HTE in most causal reasoning literature. So we use the name CATE/HTE to
refer to this quantity and it is inconsistent with Shalit et al. ’s work. We clarify it here so that it does
confuse the reader.

C Proofs of Section 4

C.1 Proofs of Theorem 1 and Corollary 1

Before we prove Lemma 4 and Theorem 1, we need some useful lemmas and assumptions. We restate
a well-known variant of Simulation Lemma [13] in finite horizon case here:
Lemma 1. (Simulation Lemma with finite horizon case) Define that V ⇡
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Lemma 2. Let J (z) be the absolute of the determinant of the Jacobian of  (z). Then for any

zt = �(st) and any sequence of actions a0:t = a0, . . . , at:
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The following lemma recursively bounds ✏V (cM,H � t) by ✏V (cM,H � t� 1), whose result allows
us to bound MSE⇡ = ✏V (cM,H).

The main idea to prove this is using Equation 20 from simulation lemma to decompose the loss of
value functions into a one step reward loss, a transition loss and a next step value loss, with respect to
the on-policy distribution. We can treat this as a contextual bandit problem, with the right side of
Equation 20 as the loss function. For the distribution mismatch term, we follow the method in Shalit
et al.’s work [19] about binary action bandits to bound the distribution mismatch by a representation
distance penalty term. By converting the next step value error in the right side of Equation 20 into
✏V (cM,H � t� 1), we can repeat this process recursively to bound the value error for H steps.

Lemma 4. For any MDP M , approximate MDP model cM , behavior policy µ and deterministic

evaluation policy ⇡, let B�,t and Gt be a scalar and a function family such that:
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Then for any t  H � 1:
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Proof. Note the recursive form in Lemma 1. We could treat RL as dealing with a contextual bandit
problem at each step. Here we view the right side of recursive result in simulation lemma (restated
here)
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as a kind of square loss for a one-step prediction problem, and we bound the whole loss by recursively
bounding these one-step losses. The key here is to find the recursive form of this square loss.

Recall that the definition of ¯̀
r, ¯̀T We will apply Cauchy-Schwarz inequality to bound Equation
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Note that:
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satisfying that:
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Then following Lemma 3 we have that:
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Substituting this into Equation 36 we have that
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Thus we finish the proof.

Iteratively applying this result for t = 0, 1, . . . , H we will have Theorem 1. Note that
1

pM,µ(a0:t=⇡)
pM,µ(st, a0:t = ⇡) = pM,µ(st|a0:t = ⇡).

Theorem 1. (Restated) For any MDP M , approximate MDP model cM , behavior policy µ and

deterministic evaluation policy ⇡, let B�,t and Gt be a real number and function family that satisfies

the condition in Lemma 4. Then:
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�

For MSEµ, we can apply the simulation lemma to bound it by the reward and transition losses since
the data distribution matches the policy µ. Then we combine it with the theorem above. Note that
MSE⇡  MSE⇡ + MSEµ.

Corollary 1. For any MDP M , approximate MDP model cM , behavior policy µ and deterministic

evaluation policy ⇡, let B�,t and Gt be a real number and function family that satisfies the condition
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in Lemma 4. Let u0:t = pµ,M (a0:t = ⇡). Then:

MSE⇡  MSE⇡ + MSEµ

 2H
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⇣
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⇣
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Proof. According to Lemma 1, the mean square error of estimating the behavior policy value could
be written as:
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=
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⇣
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V ⇡
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⇣
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V ⇡
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⇣
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r(st, at,cM) + ¯̀

T (st, at,cM)
⌘
pµ,M (st, at)dst (44)

The first step follows from Lemma 1. The second step follows from Jensen’s inequality, and the third
step follows from Cauchy-Schwarz inequality. By combining the results above with Theorem 1, we
have that:

Es0

h
V ⇡

cM (s0)� V ⇡

M
(s0)

i2

 Es0

h
V ⇡

cM (s0)� V ⇡

M
(s0)

i2
+ Es0

h
V µ

cM
(s0)� V µ

M
(s0)

i2
(45)

 2H
H�1X

t=0

Z

S

⇣
¯̀
r(st,⇡(st),cM) + ¯̀

T (st,⇡(st),cM)
⌘
pM,µ(st|a0:t = ⇡)dst

+

Z

S

X

at2A

⇣
¯̀
r(st, at,cM) + ¯̀

T (st, at,cM)
⌘
pµ,M (st, at)dst

+B�,tIPMGt

⇣
p�,F
M,µ

(zt), p
�,CF

M,µ
(zt)

⌘i
(46)

= 2H
H�1X

t=0


1

u0:t

Z

S

⇣
¯̀
r(st,⇡(st),cM) + ¯̀

T (st,⇡(st),cM)
⌘
pM,µ(st, a0:t = ⇡)dst

+

Z

S

X

at2A

⇣
¯̀
r(st, at,cM) + ¯̀

T (st, at,cM)
⌘
pµ,M (st, at)dst

#

+2H
H�1X

t=0

B�,tIPMGt

⇣
p�,F
M,µ

(zt), p
�,CF

M,µ
(zt)

⌘
(47)
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C.2 Proof of Theorem 2

We showed in Theorem 1 that we can bound MSE by expected losses under the behavior policy
distribution and an IPM term. In this section, we are going to further bound this by empirical losses
and a generalization gap. We will firstly define some loss terms that are based on observations, instead
of losses that are on expected values, r̄ and T (·|s, a). Then we will introduce some lemmas that allow
us to bound the generalization gap of weighted losses and IPM terms from previous works. Finally
we will prove the finite sample MSE bound by putting these generalization gaps together.
Definition 4. (Restated) Let rt and s0

t
be an observation of reward and next step given state action

pair st, at. Define the loss function as:

`r(st, at, rt,cM) = (br(st, at)� rt)
2

`T (st, at, s
0

t
,cM) =

✓Z

S

⇣
bT (s0|st, at)� �(s0 � s0

t
)
⌘
V ⇡

cM,H�t�1
(s0)ds0

◆2

=

✓Z

S

bT (s0|st, at)V ⇡

cM,H�t�1
(s0)ds0 � V ⇡

cM,H�t�1
(s0

t
)

◆2

where � is the Dirac delta function.

Actually the difference between ` and ¯̀can be captured by the variance of the reward and transition
dynamics, which only depend on the underlying dynamics. The following definition and lemmas
show that.
Definition 6. Define the variance of t-th step reward and transition with respect to the state-action

distribution q(st, at) as:

�q,t = �q(r) + �q(T ) �q,t(r) =

Z

S

X

at

Z

R

(r � r̄(st, at))
2pM (r|st, at)q(st, at)drdst

�q,t(T ) =

Z

S

X

at

Z

S

✓Z

S

T (s0|st, at)V
⇡

cM,H�t�1
(s0)ds0 � V ⇡

cM,H�t�1
(s0

t
)

◆2

pM (s0
t
|st, at)q(st, at)ds

0

t
dst

Lemma 5. (Variance decomposition)

Z

S

X

at

⇣
¯̀
r(st, at,cM) + ¯̀

T (st, at,cM)
⌘
q(st, at)dst =

Z

S

X

at

✓Z

R

`r(st, at, r,cM)p(r|st, at)dr

+

Z

S

`T (st, at, s
0

t
,cM)p(s0

t
|st, at, s

0

t
)ds0

t

◆
q(st, at)dst � �q,t

Proof. Let’s start with the `r and `T terms:

`r(st, at, rt,cM) = (br(st, at)� rt)
2 = (br(st, at)� r̄(st, at))

2 + (r̄(st, at)� rt)
2

+ 2 (br(st, at)� r̄(st, at)) (r̄(st, at)� rt) (48)
Note that E [r̄(st, at)� rt] = 0 so the last term will be zero after we apply the integral. Then:
Z

S

X

at

Z

R

`r(st, at, r,cM)p(r|st, at)q(st, at)drdst =

Z

S

X

at

¯̀
r(st, at,cM)q(st, at)dst + �q,t(r)

Similarly, for `T we have that:

`T (st, at, s
0

t
,cM) (49)

=

✓Z

S

bT (s0|st, at)V ⇡

cM,H�t�1
(s0)ds0 � V ⇡

cM,H�t�1
(s0

t
)

◆2

(50)

=
⇣
E
s0⇠bTV

⇡

cM,H�t�1
(s0)� V ⇡

cM,H�t�1
(s0

t
)
⌘2

(51)

=
⇣
EbTV

⇡

cM,H�t�1
(s0)� ETV

⇡

cM,H�t�1
(s0)
⌘2

+
⇣
ETV

⇡

cM,H�t�1
(s0)� V ⇡

cM,H�t�1
(s0

t
)
⌘2

+2
⇣
EbTV

⇡

cM,H�t�1
(s0)� ETV

⇡

cM,H�t�1
(s0)
⌘⇣

ETV
⇡

cM,H�t�1
(s0)� V ⇡

cM,H�t�1
(s0

t
)
⌘

(52)
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Note that

Es
0
t
⇠T

h
Es0⇠TV

⇡

cM,H�t�1
(s0)� V ⇡

cM,H�t�1
(s0

t
)
i
= Es0⇠TV

⇡

cM,H�t�1
(s0)�Es

0
t
⇠TV

⇡

cM,H�t�1
(s0

t
) = 0

So the last term here will also be zero when we apply integral over s0
t

to `T (st, at, s0t,cM) and we
have that:
Z

S

X

at

Z

S

`T (st, at, s
0

t
,cM)p(s0

t
|st, at, s

0

t
)q(st, at)ds

0

t
dst

=

Z

S

X

at

¯̀
T (st, at,cM)q(st, at)dst + �q,t(T ) (53)

Thus we finished the proof by combining the `r part with `T part.

Now we are going to bound the expected value of `r and `T terms by the empirical mean of it. We
restate our definition about empirical risk and add the definition about corresponding generalization
risk:
Definition 5. (Restate)

Rµ(cM) =
H�1X

t=0

Z

S

X

at

✓Z

R

`r(st, at, r,cM)p(r|st, at)dr

+

Z

S

`T (st, at,cM)p(s0
t
|st, at)ds

0

t

◆
pµ,M (st, at)dst

bRµ(cM) =
H�1X

t=0

Z

S

X

at

✓Z

R

`r(st, at, r,cM)p(r|st, at)dr

+

Z

S

`T (st, at,cM)p(s0
t
|st, at)ds

0

t

◆
bpµ,M (st, at)dst

=
1

n

nX

i=1

H�1X

t=0

`r(s
(i)
t
, a(i)

t
, r(i),cM) + `T (s

(i)
t
, a(i)

t
, s0(i)

t
,cM),

where n is the number of trajectories and s(i)
t

is the state of the tth step in the ith trajectory. Similarly

we define R⇡,u and bR⇡,u:

R⇡,u(cM) =
H�1X

t=0

Z

S

X

at

1(a0:t = ⇡)

u0:t

✓Z

R

`r(st, at, r,cM)p(r|st, at)dr

+

Z

S

`T (st, at,cM)p(s0
t
|st, at)ds

0

t

◆
pM,µ(st, at)dst

bR⇡,u(cM) =
1

n

nX

i=1

H�1X

t=0

1(a(i)0:t = ⇡)

bu0:t

h
`r(s

(i)
t
, a(i)

t
, r(i),cM) + `T (s

(i)
t
, a(i)

t
, s0(i)

t
,cM)

i
,

where bu0:t =
P

n

i=1
1(a(i)

0:t=⇡)
n

We could bound Rµ and R⇡,u and pseudo-dimension which is a complexity term of the model class.
We will use the learning bound about importance sampling and weighted importance sampling in
Cortes et al. [4] to bound Rµ and R⇡,u. The following lemma is an immediate consequence of
Corollary 2 and section 6 in Cortes et al. [4].
Lemma 6. For a hypothesis class H over input space X , let d be the pseudo-dimension of a

real valued loss function class {`h(x), h 2 H, x 2 X}. w(x) is a weighting function such that

Ep[w(x)] = 1. Let bp be the empirical distribution over n samples, and bw(xi) = nw(xi)/
P

n

i=1 w(xi)
is the normalized weights. For any ` in the loss function class. with probability 1� �

|Ep[w(x)`(x)]� Ebp[ bw(x)`(x)]|  Vp,bp[w, `]
C
M

n,�

n3/8
+ `maxVp,bp[w, 1]

C
M

n,�

n3/8
(54)
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where C
H

n,�
= 25/4 (d log(2ne/d) + log(4/�))3/8, Vp,bp[w, `] =

max{
p
E[w(x)2`(x)2],

q
bE[w(x)2`(x)2]}, and `max = maxx |`(x)|.

Proof. We can decompose the gap into two parts by adding Ebp[w(x)`(x)]:

|Ep[w(x)`(x)]� Ebp[ bw(x)`(x)]|
 |Ep[w(x)`(x)]� Ebp[w(x)`(x)]|+ |Ebp[w(x)`(x)]� Ebp[ bw(x)`(x)]| (55)

For the first part, we can bound it by Corollary 2 from Cortes et al. [4]:

|Ep[w(x)`(x)]� Ebp[w(x)`(x)]|  Vp,bp[w, `]
C
M

n,�

n3/8
(56)

For the second part, according to section 6 from Cortes et al. [4], we have that 2:
����
1

n
( bw(xi)� w(xi))

���� =
w(xi)

W

����1�
W

n

���� 
w(xi)

W
Vp,bp[w, 1]

C
M

n,�

n3/8
(57)

where W =
P

i
w(xi). Then:

|Ebp[(w(x)� bw(x))`(x)]|  `maxEp[|w(x)� bw(x)|] (58)

= `max

"
1

n

X

i

|w(xi)� bw(xi)|

#
(59)

 `maxVp,bp[w, 1]
C
M

n,�

n3/8
(60)

Thus we finished the proof.

We will apply this lemma to the risk at each time step t separately. Since EM,µ[
1(a(i)

0:t=⇡)
u0:t

] = 1 for

each t, we can let w(x) = 1(a(i)
0:t=⇡)
u0:t

. In that case 1(a(i)
0:t=⇡)
bu0:t

is the normalized weights bw(x). We can
also bound of Rµ from this as well, by setting the weight function to be one. In that case w = bw = 1
and Vp,bp[1, `]  `max  R2

max + V 2
max,t for the tth step loss function `.

For the IPM term, using norm-1 reproducing kernel Hilbert space (RKHS) function class for G leads
to IPM being the maximum mean discrepancy (MMD) distance. We can bound the gap between
MMD distance and its empirical estimation using the following lemma in Sriperumbudur et al.’s
work [20]. There are many other choice such as of 1-Lipschitz functions, leading to Wasserstein
distance, and l1 norm unit ball, leading to total variation distance. There are similar results with
those function class and distance measure, with worse bounds. We also use norm-1 RKHS functions
and MMD metric in our experiment section.
Lemma 7. (Theorem 11 from Sriperumbudur et al. [20]) Let X be a measurable space. Suppose

k is measurable kernel such that sup
x2X

k(x, x)  C  1 and H the reproducing kernel Hilbert

space induced by k. Let F = {f : kfkH = 1}, and ⌫ = sup
x2X ,f2F

|f(x)| < 1. Then, with bp, bq
the empirical distributions of p, q from m1 and m2 samples respectively, and with probability at least

1-�,

|IPMF (p, q)� IPMF (bp, bq)| 
p
18⌫2 ln(4/�)C

✓
1

p
m1

+
1

p
m2

◆
(61)

Theorem 2. (Restated) Suppose M� is a model class of model MDP models based on

twice-differentiable, invertible state representation �’s: cM� = hbr(s, a), bT (s0, s, a)i =
hhr(�(s), a), hT (�(s0),�(s), a)i. Given n H-step trajectories sampled from policy µ, let the loss

function for (st, at) pair at tth
step be `t(st, at,cM�) = `r(st, at, rt,cM) + `T (st, at, s0t,cM).

Let dt be the pseudo-dimension of function class {`t(st, at,cM�),cM� 2 M�}. Suppose H

the reproducing kernel Hilbert space induced by k such that sup
z2Z

k(z, z)  C  1, and

2Note that the definition of bw(xi) in Cortes et al. [4] is different with ours by a constant n. Here bw(x)
follows our definition.
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F = {f : kfkH = 1}, and ⌫ = sup
z2X ,f2F

|f(z)| < 1. Assume there exist a constant B�,t such

that
1

B�,t

`t( (z),⇡( (z)),cM�) 2 F . Then with probability 1� 3�, for any cM 2 M�:

Es0

h
V ⇡

cM (s0)� V ⇡

M
(s0)|cM

i2
 MSEµ + MSE⇡  2H bRµ(cM) + 2H bR⇡,u(cM)

+ 2H
H�1X

t=0

B�,t

✓
IPMF

⇣
bp�,F
M,µ

(zt), bp�,CF

M,µ
(zt)

⌘
+min

⇢
D

F

�

✓
1

p
mt,1

+
1

p
mt,2

◆
, 2⌫

�◆

+ 2H
H�1X

t=0

C
M

n,�,t

n3/8

✓
Vp.p̂[

1(a0:t = ⇡)

bu0:t
, `t] + Vp.p̂[1, `t] + `t,maxVp.p̂[

1(a0:t = ⇡)

u0:t
, 1]

◆

mt,1 and mt,2 are the number of samples that used to estimate bp�,F
M,µ

(zt) and bp�,CF

M,µ
(zt)

respectively. D
F

�
=

p
18⌫2 ln(4/�)C. C

M

n,�,t
= 25/4 (dt log(2ne/dt) + log(4/�))3/8.

Vp.p̂[w, `t] = max{
p
EpM,µ

[w(st, at)2`t(st, at)2],
p

EbpM,µ
[w(st, at)2`t(st, at)2]}. `t,max =

maxst,at
|`t(st, at)|  R2

max + V 2
max,t.

Proof. Applying Lemma 5 to the result in Corollary 1 and plugging the definition of Rµ and R⇡,u in,
we have that:

Es0

h
V ⇡

cM (s0)� V ⇡

M
(s0)

i2

= 2H

 
H�1X

t=0

B�,tIPMF

⇣
p�,F
M,µ

(zt), p
�,CF

M,µ
(zt)

⌘
+Rµ(cM) +R⇡,u(cM)� �

!
(62)

 2H

 
H�1X

t=0

B�,tIPMF

⇣
p�,F
M,µ

(zt), p
�,CF

M,µ
(zt)

⌘
+Rµ(cM) +R⇡,u(cM)

!
(63)

where � is
P

H�1
t=0 �pM,µ,t

+ �pM,µ(·|a0:t=⇡),t � 0. We will work term by term. First, we can use
Lemma 7 for the IPM term:

IPMF

⇣
p�,F
M,µ

(zt), p
�,CF

M,µ
(zt)

⌘
 IPMF

⇣
bp�,F
M,µ

(zt), bp�,CF

M,µ
(zt)

⌘
+D

F

�

✓
1

p
mt,1

+
1

p
mt,2

◆
(64)

At the same time, we know that for any two distribution p, q, 0  IPMF (p, q)  2⌫. So:

IPMF

⇣
p�,F
M,µ

(zt), p
�,CF

M,µ
(zt)

⌘

 IPMF

⇣
bp�,F
M,µ

(zt), bp�,CF

M,µ
(zt)

⌘
+min

⇢
D

F

�

✓
1

p
mt,1

+
1

p
mt,2

◆
, 2⌫

�
(65)

For Rµ, if we plug w(s, a) = bw(s, a) = 1, ` = `t(st, at,cM), and p = pM,µ(st, at) into Lemma 6,
we have that:

Rµ =
H�1X

t=0

Ep[`t(st, at)] 

H�1X

t=0

 
Ebp[`t(st, at)] +

C
M

n,�,t

n3/8
Vp,bp[1, `t]

!
(66)

= bRµ +
H�1X

t=0

C
M

n,�,t

n3/8
Vp,bp[1, `t] (67)
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An analogous argument can be made for R⇡,u by letting w(st, at) =
1(a0:t=⇡)

u0:t
which leads to that

bw(st, at) = 1(a0:t=⇡)
bu0:t

:

R⇡,u =
H�1X

t=0

Ep[w(st, at)`t(st, at)] (68)



H�1X

t=0

 
Ebp[ bw(st, at)`t(st, at)] + Vp,bp[ bw, `t]

C
M

n,�

n3/8
+ `t,maxVp,bp[w, 1]

C
M

n,�

n3/8

!
(69)

= bR⇡,u +
H�1X

t=0

 
Vp,bp[ bw, `t]

C
M

n,�

n3/8
+ `t,maxVp,bp[w, 1]

C
M

n,�

n3/8

!
(70)

Thus we finish the proof by combining IPM terms, Rµ and R⇡,u together.

C.3 IS weights and marginal action probability ratio

Theorem 3. For any evaluation policy ⇡ and behavior policy µ satisfying that the support set of µ
covers the support set of ⇡, we have that the variance of importance sampling weights is no less than

the variance of marginal action probability ratios:

Varµ,M

"Q
H�1
t=0 ⇡(ai|si)Q
H�1
t=0 µ(ai|si)

#
� Varµ,M


p⇡,M (a0:H�1)

pµ,M (a0:H�1)

�

= Varµ,M

"R
SH

Q
H�1
t=0 ⇡(ai|si)

Q
H�1
t=0 T (si|si�1, ai�1)ds0:tR

SH

Q
H�1
t=0 µ(ai|si)

Q
H�1
t=0 T (si|si�1, ai�1)ds0:t

#

where T (s0|s�1, a�1) is defined as the initial distribution p0(s0).

Proof.

Varµ,M

"Q
H�1
t=0 ⇡(ai|si)Q
H�1
t=0 µ(ai|si)

#
= Eµ,M

2

4
 Q

H�1
t=0 ⇡(ai|si)Q
H�1
t=0 µ(ai|si)

!2
3

5�

"
Eµ,M

 Q
H�1
t=0 ⇡(ai|si)Q
H�1
t=0 µ(ai|si)

!#2

(71)

Varµ,M


p⇡,M (a0:H�1)

pµ,M (a0:H�1

�
= Eµ,M

"✓
p⇡,M (a0:H�1)

pµ,M (a0:H�1)

◆2
#
�


Eµ,M

✓
p⇡,M (a0:H�1)

pµ,M (a0:H�1)

◆�2
(72)
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Among them, the expectation of marginal action probability ratio is equal to the expectation of IS
weights:

Eµ,M

✓
p⇡,M (a0:H�1)

pµ,M (a0:H�1)

◆
(73)

=

Z

SH

X

a0,...,aH�1

H�1Y

t=0

µ(ai|si)
H�1Y

t=0

T (si|si�1, ai�1)
p⇡,M (a0:H�1)

pµ,M (a0:H�1)
ds0:t (74)

=
X

a0,...,aH�1

 Z

SH

H�1Y

t=0

µ(ai|si)
H�1Y

t=0

T (si|si�1, ai�1)ds0:t

!
p⇡,M (a0:H�1)

pµ,M (a0:H�1)
(75)

=
X
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pµ,M (a0:H�1)
p⇡,M (a0:H�1)

pµ,M (a0:H�1)
(76)

=
X

a0,...,aH�1

p⇡,M (a0:H�1) = 1 (77)
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H�1
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!
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=

Z

SH

X

a0,...,aH�1

H�1Y

t=0
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t=0

T (si|si�1, ai�1)

 Q
H�1
t=0 ⇡(ai|si)Q
H�1
t=0 µ(ai|si)

!
ds0:t (79)

=
X

a0,...,aH�1

Z

SH

H�1Y

t=0

T (si|si�1, ai�1)
H�1Y

t=0

⇡(ai|si)ds0:t (80)

=
X

a0,...,aH�1

p⇡,M (a0:H�1) = 1 (81)

Thus the second term in Equation 71 and Equation 72 are the same. Now we are going to prove that
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Now we only need to prove that for any a0, a1, . . . aH�1:
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This inequality holds by applying Cauchy-Schwarz inequality. Thus we finish the proof.

D Proof of Section 5

Corollary 2. Let cM⇤
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From theorem 2 we have that:
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The first step follows from Theorem 2. The second step is from the fact that ↵t > B�⇤,t. The
third step is from that cM⇤

�⇤ = argmincM�
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This follows from using Lemma 6 and Lemma 7 similarly with Equation 65, 67, 70 but in different
direction, together with the fact that R(cM�)
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1
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�
.

Put this into equation 99, we have that
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Thus we finished the proof.

Under assumption about support set of µ, mt,1,mt,2 ! 1 when n ! 1. Then an immediate
consequence from this corollary is that, if there exists an MDP and representation model in our model
class that could achieve no generalization error,
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E Details of Experiment

We will clarify the details of the Cart Pole and Mountain Car experiment and provide results from
additional OPPE methods.
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Details of the domain For Cart Pole domain, we follow the same settings as in the OpenAI Gym
[3] CartPole-v0 environment. The state consists of 4 features: position, speed, angle and angular
speed. The agent can take two actions: move to the left or to the right. The trajectory will end either
when the time step is larger than 200 or when the absolute value of position or angle is larger than the
threshold. The goal in this domain is to control a cart as long as possible. We will receive the reward
after each time step if the cart is under control, and the trajectory ends when the cart falls.

We include two different variants in this domain: long horizon and short horizon. For long horizon,
we learn a near-optimal Q function, and use the greedy policy as evaluation policy and ✏�greedy
policy with ✏ = 0.2 as behavior policy. The average value, which is also the average length of
trajectories, of the evaluation policy is 195 and the average value of the behavior policy is 190. For
shorter horizon, we learn a weaker Q function and generate the policies in the same way, with the
average value of 23.8 and 24 respectively. The reason that we learn a near optimal but not optimal
policy for the long horizon is that the optimal policy can always hold the cart for 200 steps (max
length), which makes it easy to estimate since there is no possibility of overestimating it.

For Mountain Car domain, we follow the same settings as in the OpenAI Gym [3] MountainCar-v0
environment. The state consists of 4 features: position and velocity. The agent can take two actions:
accelerate to the left or to the right. The trajectory will end either when the time step is larger than
200 or when the position exceeds the threshold. The goal in this domain is to control the car to reach
the top of mountain as soon as possible. We will receive a negative reward after each time step.

Details of our model Our model has three parts: a representation module, a reward module, and a
transition module. The representation module is a one layer feed-forward network that takes the state
as input and outputs a 32-dimension representation. The reward module takes the representation as
input and outputs A = 2 predictions, corresponding to 2 different actions. The transition module is
similar to the reward module, but it predicts the difference between state and next state which is a
widely-used trick for transition dynamics modeling. Both the reward module and transition module
are feed-forward networks with no hidden layer. We optimize the model using Adam. Since this
domain has variable length of trajectories, we also learn the condition of terminal state. The only
domain prior we assume is that we know the maximum length of a trajectory is 200.

We also need to explain the details of transition loss `T . Since this domain is a deterministic domain,
the loss function turns to be:
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where s0 is the predicted next state prediction and s0
t

is the logged next state in dataset. Since
repeatedly performing planning at training time is very computationally-intensive, it is difficult to get
the function V ⇡

cM,H�t�1
(s). It is also challenging to compute the the derivative of this with respect

to s. If we assume the resulting value is L-Lipschitz, then this loss can be bounded by L(s0 � s0
t
)2.

This is slightly different to the algorithmic part in the main body but it will still be an upper bound of
`T in the main body. In this experiment we set L = 1.

If we are in a discrete state space, the transition loss `T turns to be:
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We can use similar trick with double Q learning for DQN: doing value iteration to generate a target
value vector V ⇡

cM,H�t�1
(s0), and view this as constant vector when we compute derivative with s0.

Then this loss becomes a weighted MSE loss. We can update the target value vector V ⇡

cM,H�t�1
(s0)

every several episodes.

Methods We compare several different methods: 1) RepBM The proposed method. 2) AM We
compare our method RepBM with a baseline approximate model, which uses the exactly same model
class as our model, with the objective of minimizing the on-policy loss Rµ. This is a straight-forward
way to fit a regression model without any off-policy adjustment. 3) MRDR we also compare with
the more robust doubly robust (MRDR) method, which proposed a new way to train a Q function and
use it in doubly robust. MRDR trains the Q function to minimize:
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where R̄(i)
t:H�1 =

P
H�1
j=t+1 w

(i)
t+1:jr

(i)
j

is the per-decision IS return from t+ 1 to H � 1, and w’s are
IS weights. 4) MRDR-WIS Since this objective function can be very noisy and hard to fit when IS
weights are high-variance, we also test another variant of MRDR by changing R̄(i)

t:H�1 to a weighted
per-decision IS return from t+ 1 to H � 1.

Within each one of the methods above, we test five different kinds of estimator. We have a pure
MDP/Q model estimator, doubly robust (DR) using that MDP/Q model and weighted doubly robust
(WDR) using that MDP/Q model. We evaluate a deterministic evaluation policy, which will result
in most of the IS weights being zero; once an IS weight at one timestep is zero, then the product of
all IS weights after that step will be zero. This setting is challenging for importance sampling and
DR. We also test a very simple idea to avoid this problem – we add a slight noise perturbation into
the evaluation policy (✏ = 0.01), and treat it as the true evaluation policy to generate IS weights for
DR and WDR. The additional noise is small enough so that the error introduced by this is negligible
compared with the MSEs of estimators. We call these variants of DR and WDR soft DR and soft
WDR respectively.

We also compare with importance sampling (IS), weighted IS (WIS), soft IS, soft WIS, per-decision
importance sampling (PDIS), weighted PDIS (WPDIS), soft PDIS, soft WPDIS. The soft methods
are produced by changing the IS weights using the soft evaluation policy.

We report the results in Table 4 and 5. Note that in the long horizon case, IS weights are all zero
so WIS estimator is not defined. Though it is clear that for a single individual in continuous state
space, IS and DR would not produce meaningful results due to the fact they only estimate from one
trajectory, here we still include the IS and DR estimates for MSE for individual policy values. Not
surprisingly we observe that those results are enormous which verifies that plain IS and DR are not
reasonable estimators for individual value.

Table 4: Root MSE for Cart Pole

Long horizon Short horizon
MSE (mean) MSE (individual) MSE (mean) MSE (individual)

RepBM 0.412 1.033 0.078 0.481
DR(RepBM) 1.359 40.820 0.021 0.789
WDR(RepBM) 0.619 17.760 0.026 0.857
Soft DR(RepBM) 1.608 53.390 0.020 0.686
Soft WDR(RepBM) 0.730 24.95 20.59 634.7

AM 0.754 1.313 0.125 0.551
DR(AM) 1.786 58.66 0.024 0.863
WDR(AM) 0.706 19.73 0.025 0.929
Soft DR(AM) 1.613 52.56 0.020 0.744
Soft WDR(AM) 0.848 29.71 20.28 640.4
AM (⇡) 41.80 47.63 0.1233 0.5974

MRDR’s Q 151.1 151.9 3.013 3.823
MRDR 202.0 7055 0.258 8.266
WMRDR 123.6 1049 2.343 59.640
Soft MRDR 813.8 2590 0.211 6.758
Soft WMRDR 92.00 2669 22.550 601.4

MRDR-WIS’s Q 143.9 145.1 2.486 3.440
MRDR-WIS 190.9 6106 0.248 8.075
WMRDR-WIS 122.0 1054 2.599 68.60
Soft MRDR-WIS 746.9 23610 0.199 6.626
Soft WMRDR-WIS 108.3 2992 21.26 570.6

IS 194.500 194.7 2.860 93.87
WIS - - 0.505 93.86
Soft IS 187.9 1115 2.179 70.78
Soft WIS 8.144 4698 0.380 70.55

PSIS 477.5 1526 1.083 36.67
WPSIS 125.9 622.5 1.819 63.59
Soft PSIS 215.2 6853 0.903 30.08
Soft WPSIS 4.225 1983 24 678.2
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Table 5: Root MSE for Mountain Car

MSE (mean) MSE (individual)

RepBM 12.31 31.38
DR(RepBM) 135.8 4352
WDR(RepBM) 27.27 790.7
Soft DR(RepBM) 59.9 1929
Soft WDR(RepBM) 22.6 825.4

AM 17.15 36.36
DR(AM) 141.6 4548
WDR(AM) 24.89 756.9
Soft DR(AM) 66.45 2129
Soft WDR(AM) 23.79 831.7
AM (⇡) 72.61 79.46

MRDR’s Q 135.4 138.1
MRDR 172.7 5427
WMRDR 78.34 1400
Soft MRDR 4481 125100
Soft WMRDR 5631 104500

MRDR-WIS’s Q 140.5 143.1
MRDR-WIS 212 6975
WMRDR-WIS 110.1 2101
Soft MRDR-WIS 5308 139000
Soft WMRDR-WIS 8564 167700

IS 149.7 152.2
WIS nan nan
Soft IS 208.5 3936
Soft WIS 301.3 3862

PSIS 108.6 2334
WPSIS 99.79 440.7
Soft PSIS 117.1 3597
Soft WPSIS 45.8 1924

Evaluation Thomas and Brunskill [22] discussed that it is not obvious how to use the trajectories
to fairly compare DR, IS and AM estimators, in Appendix D.4 from [22]. There are three ways
that are reasonable: the first way is that AM and DR estimators should be provided with additional
trajectories that are not available to IS, which are used to learn the model. This can be viewed as the
additional domain prior knowledge. This is the setting in MRDR’s experiment [7]. The second way
is that all methods should have the same amount of data. DR methods should split the data into two
parts to learn the model and IS weights separately. That partition keeps the unbiasedness of DR, but
reduces the size of available samples for model learning in DR. The third way is that all methods
should have the same amount of data. The DR method reuses the data to learn the model and compute
IS weights. This helps DR methods to achieve best empirical performance in Thomas and Brunskill
[22]. There is not necessarily a "correct" answer to this question. We follow the third setting to make
both DR and IS stronger baselines.

We sample 1024 trajectories to generate off-policy estimators. For our method and AM method, we
split the data into a training set (90%) and a validation set (10%) and use the validation set to tune the
model structure and optimization settings. To compute the MSE of an individual value, we record
the initial state of the 1024 trajectories and roll-out from true environment to get the true policy over
those initial states as ground truth. We use the average policy value over these initial states as the
ground truth for MSE of mean value. We repeat the whole process for N = 100 runs and report the
square root of averaged MSEs (for both individual and mean).

Effect of parameter ↵
We study the effect of the hyper-paramter ↵ in the IPM terms on the estimation results. We show the
MSE of RepBM trained using different ↵.
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Table 6: Root MSEs of RepBM with different ↵ for the cartpole domain

Long horizon ↵ = 0 ↵ = 0.01 ↵ = 0.1 ↵ = 1 ↵ = 10

Mean 0.554 0.412 0.406 0.389 2.287
Individual 1.178 1.033 1.008 1.023 3.903
Short horizon ↵ = 0 ↵ = 0.01 ↵ = 0.1 ↵ = 1 ↵ = 10

Mean 0.114 0.078 0.114 0.357 0.365
Individual 0.672 0.481 0.702 1.684 1.545

E.1 Further discussion

An interesting issue is about the effect of the horizon. Although the "marginal" IS weights have less
variance than IS weights, there is still a concern when the horizon is very long and the overlap of
the behavior policy and the evaluation policy is small. That also has an effect on the IPM term: we
would not have enough factual/counterfactual samples to estimate the IPMs, for large time steps t. In
that case, the IPMs only effectively adjust the representation for the earlier of the trajectories. Both
of the experimental domains actually encounter this case, and the experimental results show that
RepBM still outperforms other methods. In the Cart Pole domain it is clear that RepBM can still
benefit from IPM.
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