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Abstract

In theory, importance sampling speeds up stochastic gradient algorithms for super-
vised learning by prioritizing training examples. In practice, the cost of computing
importances greatly limits the impact of importance sampling. We propose a robust,
approximate importance sampling procedure (RAIS) for stochastic gradient de-
scent. By approximating the ideal sampling distribution using robust optimization,
RAIS provides much of the benefit of exact importance sampling with drastically
reduced overhead. Empirically, we find RAIS-SGD and standard SGD follow
similar learning curves, but RAIS moves faster through these paths, achieving
speed-ups of at least 20% and sometimes much more.

1 Introduction

Deep learning models perform excellently on many tasks. Training such models is resource-intensive,
however, as stochastic gradient descent algorithms can require days or weeks to train effectively. After
a short period training, models usually perform well on some—or even most—training examples. As
training continues, frequently reconsidering such “easy” examples slows further improvement.

Importance sampling prioritizes training examples for SGD in a principled way. The technique
suggests sampling example i with probability proportional to the norm of loss term i’s gradient. This
distribution both prioritizes challenging examples and minimizes the stochastic gradient’s variance.

SGD with optimal importance sampling is impractical, however, since computing the sampling
distribution requires excessive time. [1] and [2] analyze importance sampling for SGD and convex
problems; practical versions of these algorithms sample proportional to fixed constants. For deep
models, other algorithms attempt closer approximations of gradient norms [3, 4, 5]. But these
algorithms are not inherently robust. Without carefully chosen hyperparameters or additional forward
passes, these algorithms do not converge, let alone speed up training.

We propose RAIS, an importance sampling procedure for SGD with several appealing qualities. First,
RAIS determines each sampling distribution by solving a robust optimization problem. As a result,
each sampling distribution is minimax optimal with respect to an uncertainty set. Since RAIS trains
this uncertainty set in an adaptive manner, RAIS is not sensitive to hyperparameters.

In addition, RAIS maximizes the benefit of importance sampling by adaptively increasing SGD’s
learning rate—an effective yet novel idea to our knowledge. This improvement invites the idea that
one RAIS-SGD iteration equates to more than one iteration of conventional SGD. Interestingly, when
plotted in terms of “epochs equivalent,” the learning curves of the algorithms align closely.

RAIS applies to any model that is trainable with SGD. RAIS also combines nicely with standard
“tricks,” including data augmentation, dropout, and batch normalization. We show this empirically in
§6. In this section, we also demonstrate that RAIS consistently improves training times. To provide
context for the paper, we include qualitative results from these experiments in Figure 1.
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Figure 1: Nonpriority and priority training examples for image classification. Left: Examples
that RAIS samples infrequently during training. Right: Examples that RAIS prioritizes. Bold denotes
the image’s label. Parentheses denote a different class that the model considers likely during training.
Datasets are CIFAR-10 (top), CIFAR-100 (middle), and rotated MNIST (bottom).

2 Problem formulation

Given loss functions f1, f2, . . . , fn and a tuning parameter λ ∈ R≥0, our task is to efficiently solve

minimize
w∈Rd

F (w) , where F (w) = 1
n

∑n
i=1 fi(w) + λ

2 ‖w‖
2
. (P)

A standard algorithm for solving (P) is stochastic gradient descent. Let w(t) denote the optimization
variables when iteration t begins. SGD updates these weights via

w(t+1) ← w(t) − η(t)g(t) . (1)

Above, η(t) ∈ R>0 is a learning rate, specified by a schedule: η(t) = lr_sched (t). The vector g(t)

is an unbiased stochastic approximation of the gradient∇F (w(t)). SGD computes g(t) by sampling
a minibatch of |M| indices from {1, 2, . . . , n} uniformly at random (or approximately so). Denoting
this minibatch byM(t), SGD defines the stochastic gradient as

g(t) = 1
|M|

∑
i∈M(t) ∇fi(w(t)) + λw(t) . (2)

In this work, we assume an objective function, learning rate schedule, and minibatch size, and we
propose a modified algorithm called RAIS-SGD. RAIS prioritizes examples by sampling minibatches
non-uniformly, allowing us to train models using fewer iterations and less time.

3 SGD with oracle importance sampling

We now introduce an SGD algorithm with “oracle” importance sampling, which prioritizes examples
using exact knowledge of importance values. RAIS-SGD is an approximation of this algorithm.

Given w(t), let us define the expected training progress attributable to iteration t as

E∆(t) = ‖w(t) −w?‖2 − E
[
‖w(t+1) −w?‖2

]
= 2η(t)〈∇F (w(t)),w(t) −w?〉 − [η(t)]2E

[
‖g(t)‖2

]
. (3)

Here w? denotes the solution to (P), and the expectation is with respect to minibatchM(t). The
equality follows from plugging in (1) and applying the fact that g(t) is unbiased.

We refer to our oracle algorithm as O-SGD, and we refer to SGD with uniform sampling as U-SGD.
At a high level, O-SGD makes two changes to U-SGD in order to increase E∆(t). First, O-SGD
samples training examples non-uniformly in a way that minimizes the variance of the stochastic
gradient. This first change is not new—see [1], for example. Second, to compensate for the first
improvement, O-SGD adaptively increases the learning rate. This second change, which is novel to
our knowledge, can be essential for obtaining large speed-ups.

2



3.1 Maximizing progress with oracle importance sampling

By sampling minibatches non-uniformly, O-SGD prioritizes training examples in order to decrease
E[‖g(t)

O ‖2]. During iteration t, O-SGD defines a discrete distribution p(t) ∈ Rn≥0, where
∑
i p

(t)
i = 1.

O-SGD constructs minibatch M(t) by sampling independently |M| examples according to p(t).
Instead of (2), the resulting stochastic gradient is

g
(t)
O = 1

|M|
∑
i∈M(t)

1

np
(t)
i

∇fi(w(t)) + λw(t) . (4)

Scaling the ∇fi terms by (np
(t)
i )−1 ensures g(t)

O remains an unbiased approximation of∇F (w(t)).
O-SGD defines p(t) as the sampling distribution that maximizes (3):

Proposition 3.1 (Oracle sampling distribution). In order to minimize E[‖g(t)
O ‖2], O-SGD samples

each example i with probability proportional to the ith “gradient norm.” That is,

p
(t)
i = ‖∇fi(w(t))‖

/∑n
j=1 ‖∇fj(w(t))‖ .

Proof sketch. Defining f̄(w) = 1
n

∑n
i=1 fi(w), we write this second moment as

E
[
‖g(t)

O ‖2
]

= 1
n2|M|

∑n
i=1

1

p
(t)
i

‖∇fi(w(t))‖2 − 1
|M|‖∇f̄(w(t))‖2 + ‖∇F (w(t))‖2 . (5)

Finding the distribution p(t) that minimizes (5) is a problem with a closed-form solution. The solution
is the distribution defined by Proposition 3.1, which we show in Appendix A.

The oracle sampling distribution is quite intuitive. Training examples with largest gradient norm
are most important for further decreasing F , and these examples receive priority. Examples that the
model handles correctly have smaller gradient norm, and O-SGD deprioritizes these examples.

3.2 Adapting the learning rate

Because importance sampling reduces the stochastic gradient’s variance—possibly by a large amount—
we find it important to adaptively increase O-SGD’s learning rate compared to U-SGD. For O-SGD,
we propose a learning rate that depends on the “gain ratio” r(t)O ∈ R≥1:

r
(t)
O = E

[
‖g(t)

U ‖
2
] /

E
[
‖g(t)

O ‖
2
]
. (6)

Above, g(t)
U is the stochastic gradient defined by uniform sampling. O-SGD adapts the learning rate

so that according to (3), one O-SGD iteration results in as much progress as r(t)O U-SGD iterations.
Defining the edge case r(0)O = 1, this learning rate depends on the “effective iteration number”

t̂
(t)
O =

∑t
t′=1 r

(t′−1)
O .

Since the gain ratio exceeds 1, we have t̂(t)O ≥ t for all t. O-SGD defines the learning rate as

η
(t)
O = r

(t)
O lr_sched(t̂

(t)
O ) .

We justify this choice of learning rate schedule with the following proposition:

Proposition 3.2 (Equivalence of gain ratio and expected speed-up). Given w(t), define E∆
(t)
U as the

expected progress from iteration t of U-SGD with learning rate η(t)U = lr_sched (t). For comparison,
define E∆

(t)
O as the expected progress from iteration t of O-SGD with learning rate η(t)O = r

(t)
O η

(t)
U .

Then E∆
(t)
O = r

(t)
O E∆

(t)
U . Relative to U-SGD, O-SGD multiplies the expected progress by r(t)O .

Proof. Using (3), we have

E∆
(t)
U = 2η

(t)
U 〈∇F (w(t)),w(t) −w?〉 − [η

(t)
U ]2E

[
‖g(t)

U ‖
2
]
.
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For O-SGD, we expect progress

E∆
(t)
O = 2η

(t)
O 〈∇F (w(t)),w(t) −w?〉 − [η

(t)
O ]2E

[
‖g(t)

O ‖
2
]

= 2r
(t)
O η

(t)
U 〈∇F (w(t)),w(t) −w?〉 − r(t)O [η

(t)
U ]2E

[
‖g(t)

U ‖
2
]

= r
(t)
O E∆

(t)
U .

We remark that the purpose of this learning rate adjustment is not necessarily to speed up training—
whether the adjustment results in speed-up depends greatly on the original learning rate schedule.
Instead, the purpose of this rescaling is to make O-SGD (and hence RAIS-SGD) suitable as a drop-in
replacement for U-SGD. We show empirically that this is the case in §6.

4 Robust approximate importance sampling (RAIS)

Determining p(t) and r(t)O in O-SGD depends on knowledge of many gradient norms (
∥∥∇fi(w(t))

∥∥
for all examples,

∥∥∇f̄(w(t))
∥∥, and

∥∥∇F (w(t))
∥∥). Computing these norms requires a time-

consuming pass over the data. To make importance sampling practical, we propose RAIS-SGD.

4.1 Determining a robust sampling distribution

Like O-SGD, RAIS selects the tth minibatch by sampling indices from a discrete distribution p(t).
We denote the stochastic gradient by g

(t)
R , which takes the same form as g(t)

O in (4).

Let v∗i = ‖∇fi(w(t))‖ and v∗ = [v∗1 , v
∗
2 , . . . , v

∗
n]T . RAIS defines p(t) by approximating v∗. Naïve

algorithms approximate v∗ using a point estimate v̂. The sampling distribution becomes a multiple
of v̂. [3], [4], and [6] propose algorithms based on similar point estimation strategies.

The drawback of the point estimation approach is extreme sensitivity to differences between v̂ and v∗.
For this reason, [3, 4, 6] incorporate additive smoothing. They introduce a hyperparameter, which we
denote by δ, and sample example iwith probability proportional to v̂i+δ. This approach to robustness
is unconvincing, however, since performance becomes critically dependent on a hyperparameter. Too
small a δ risks divergence, while too large a value greatly limits the benefit of importance sampling.

Instead of a point estimate, RAIS approximates v∗ with an uncertainty set U (t) ⊂ Rn≥0, which we
expect contains (or nearly contains) v∗. Given U (t), RAIS defines p(t) by minimizing the worst-case
value of E[‖g(t)

R ‖2] over all gradient norm possibilities in U (t). Noting E[‖g(t)
R ‖2] ∝

∑
i

1

p
(t)
i

(v∗i )2+c

for some c ∈ R (according to (5)), RAIS defines p(t) as the solution to the following problem:

p(t) = arginf
{

max
{∑n

i=1
1
pi
v2i | v ∈ U (t)

} ∣∣p ∈ Rn>0,
∑n
i=1 pi = 1

}
. (PRC)

Such robust optimization problems are common for making decisions with data uncertainty [7].

It turns out (PRC) is straightforward to solve because the minimax theorem applies to (PRC) (we
prove this in Appendix D.1, assuming our definition of U (t) in §4.2). We first minimize over p by
defining pi = vi(

∑n
j=1 vj)

−1. Plugging this into (PRC)’s objective leads to the simplified problem

v(t) = argmax
{

(
∑n
i=1 vi)

2 | v ∈ U (t)
}
. (PRC’)

During each iteration t, RAIS solves (PRC’). After doing so, RAIS recovers the minimax optimal
sampling distribution by defining p(t)i ∝ v

(t)
i for all training examples.

4.2 Modeling the uncertainty set

To define U (t), RAIS uses features of SGD’s state that are predictive of the true gradient norms. For
each example i, we define a feature vector s(t)i ∈ RdR≥0. A useful feature for s(t)i is the gradient norm
‖∇fi(w(t′))‖, where t′ is the most recent iteration for which i ∈M(t′). Since RAIS-SGD computes
∇fi(w(t′)) during iteration t′, constructing this feature during iteration t should add little overhead.
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Given s
(t)
i for all examples, RAIS defines the uncertainty set as an axis-aligned ellipsoid. Since

v∗ ≥ 0, RAIS also intersects this ellipsoid with the positive orthant. RAIS parameterizes this
uncertainty set with two vectors, c ∈ RdR≥0 and d ∈ RdR≥0. These vectors map features s

(t)
1:n to

parameters of the ellipsoid. Specifically, RAIS defines the uncertainty set as

U (t)
cd =

{
v ∈ Rn≥0

∣∣ 1
n

∑n
i=1Qcd(s

(t)
i , vi) ≤ 1

}
, where Qcd(s, v) = (〈c,s〉−v)2

〈d,s〉 .

Here we denote the uncertainty set by U (t)
cd to emphasize the dependence of U (t) on c and d. With

this definition of U (t)
cd , (PRC’) has a simple closed-form solution (proven in Appendix B):

Proposition 4.1 (Solution to robust counterpart). For all i, the solution to (PRC’) satisfies

v
(t)
i = 〈c, s(t)i 〉+ k〈d, s(t)i 〉 , where k =

√
n
/∑n

j=1〈d, s
(t)
j 〉 .

If we consider 〈c, s(t)i 〉 an estimate of v∗i and 〈d, s(t)i 〉 a measure of uncertainty in this estimate,
then Proposition 4.1 is quite interpretable. RAIS samples example i with probability proportional to
〈c, s(t)i 〉+ k〈d, s(t)i 〉. The first term is the v∗i estimate, and the second term adds robustness to error.

4.3 Learning the uncertainty set

The uncertainty set parameters, c and d, greatly influence the performance of RAIS. If U (t)
cd is a small

region near v∗, then RAIS’s sampling distribution is similar to O-SGD’s sampling distribution. If
U (t)
cd is less representative of v∗, the variance of the stochastic gradient could become much larger.

In order to make E[‖g(t)
R ‖2] small but still ensure v∗ likely lies in U (t)

cd , RAIS adaptively defines c
and d. To do so, RAIS minimizes the size of U (t)

cd subject to a constraint that encourages v∗ ∈ U (t)
cd :

c,d = arginf
{∑n

i=1〈d, s
(t)
i 〉
∣∣ c,d ∈ RdR≥0,

1
|D|
∑|D|
i=1 w̃iQcd(s̃i, ṽi) ≤ 1

}
. (PT)

Here we have defined U (t)
cd ’s “size” as the sum of 〈d, s(t)i 〉 values. The constraint that encourages

v∗ ∈ U (t) assumes weighted training data, (w̃i, s̃i, ṽi)
|D|
i=1. RAIS must define this training set so that

1
|D|
∑|D|
i=1 w̃iQcd(s̃i, ṽi) ≈ 1

n

∑n
i=1Qcd(s

(t)
i , ‖∇fi(w(t))‖) .

That is, for any c and d, the mean of Qcd(s̃, ṽi) over the weighted training set should approximately
equal the mean of Qcd(s

(t)
i , v∗i ), which depends on current (unknown) gradient norms.

To achieve this, RAIS uses gradients from recent minibatches. For entry j of the RAIS train-
ing set, RAIS considers an i and t′ for which i ∈ M(t′) and t′ < t. RAIS defines s̃j = s

(t′)
i ,

ṽj = ‖∇fi(w(t′))‖, and w̃j = (np
(t′)
i )−1. The justification for this choice is that the mean of

Qcd(s
(t)
i , ‖∇fi(w(t))‖) over training examples tends to change gradually with t. Thus, the weighted

mean over the RAIS training set approximates the mean of current Qcd(s
(t)
i ,
∥∥∇fi(w(t))

∥∥) values.

4.4 Approximating the gain ratio

In addition to the sampling distribution, RAIS must approximate the gain ratio in O-SGD. Define
g
(t)
R1 as a stochastic gradient of the form (4) using minibatch size 1 and RAIS sampling. Define g

(t)
U1

in the same way but with uniform sampling. From (5), we can work out that the gain ratio satisfies

E
[
‖g(t)

U ‖
2
]/

E
[
‖g(t)

R ‖
2
]

= 1 + 1
|M|

(
E[‖g(t)

U1‖
2]− E[‖g(t)

R1‖
2]
)/

E[‖g(t)
R ‖

2] . (7)

To approximate the gain ratio, RAIS estimates the three moments on the right side of this equation.
RAIS estimates E[‖g(t)

R ‖2] using an exponential moving average of ‖g(t)
R ‖2 from recent iterations:

E[‖g(t)
R ‖2] ≈ α

[
‖g(t)

R ‖2 + (1− α)‖g(t−1)
R ‖2 + (1− α)2‖g(t−2)

R ‖2 + . . .
]
.
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Algorithm 4.1 RAIS-SGD

input objective function F , minibatch size |M|, learning rate schedule lr_sched(·)
input RAIS training set size |D|, exponential smoothing parameter α for gain estimate
initialize w(1) ∈ Rd, c,d ∈ RdR≥0; t̂(1) ← 1; r_estimator← GainEstimator(α)
for t = 1, 2, . . . , T do

v(t) ← argmax
{

(
∑n
i=1 vi)

2 | v ∈ U (t)
cd

}
# see Proposition 4.1 for closed-form solution

p(t) ← v(t)/‖v(t)‖1
M(t) ← sample_indices_from_distribution(p(t), size = |M|)
g
(t)
R ←

1
|M|

∑
i∈M(t)

1

np
(t)
i

∇fi(w(t)) + λw(t)

r_estimator.record_gradient_norms(‖g(t)
R ‖, (‖∇fi(w(t))‖, p(t)i )i∈M(t))

r̂(t) ← r_estimator.estimate_gain_ratio() # see §4.4
η(t) ← r̂(t) · lr_sched(t̂(t))

w(t+1) ← w(t) − η(t)g(t)
R

t̂(t+1) ← t̂(t) + r̂(t)

if mod(t, d|D|/|M|e) = 0 and t ≥ (n+ |D|)/|M| then
c,d← train_uncertainty_model() # see §4.2

return w(T+1)

RAIS approximates E[‖g(t)
R1‖2] and E[‖g(t)

U1‖2] in a similar way. After computing gradients for
minibatch t, RAIS estimates E[‖g(t)

R1‖2] and E[‖g(t)
U1‖2] using appropriately weighted averages of

‖∇fi(w(t))‖2 for each i ∈M(t) (for E[‖g(t)
R1‖2], RAIS weights terms by (np

(t)
i )−2; for E[‖g(t)

U1‖2],
RAIS weights terms by (np

(t)
i )−1). Using the same exponential averaging parameter α, RAIS

averages these estimates from minibatch t with estimates from prior iterations.

RAIS approximates the gain ratio by plugging these moment estimates into (7). We denote the result
by r̂(t). Analogous to O-SGD, RAIS uses learning rate η(t) = r̂(t)lr_sched

(
t̂(t)
)
, where t̂(t) is the

effective iteration number: t̂(t) =
∑t
t′=1 r̂

(t′−1). Here we also define the edge case r̂(0) = 1.

4.5 Practical considerations

Algorithm 4.1 summarizes our RAIS-SGD algorithm. We next discuss important practical details.

Solving (PT) While computing p(t) requires a small number of length n operations (see Proposi-
tion 4.1), learning the uncertainty set parameters requires more computation. For this reason, RAIS
should not solve (PT) during every iteration. Our implementation solves (PT) asynchronously after
every d|D|/|M|e minibatches, with updates to w(t) continuing during the process. We describe
our algorithm for solving (PT) in Appendix D.2. Since our features s(t)1:n depend on past minibatch
updates, we do not use RAIS for the first epoch of training—instead we sample examples sequentially.

Compatibility with common tricks RAIS combines nicely with standard training tricks for deep
learning. With no change, we find RAIS works well with momentum [8, 9]. Incorporating data
augmentation, dropout [10], or batch normalization [11] adds variance to the model’s outputs and
gradient norms. RAIS elegantly compensates for such inconsistency by learning a larger uncertainty
set. Since the importance sampling distribution changes over time, we find it important to compute
weighted batch statistics when using RAIS with batch normalization. That is, when computing
normalization statistics during training, we weight contributions from each example by (np

(t)
i )−1.

Protecting against outliers In some cases—typically when the gain ratio is very large—we find
Qcd(s

(t)
i , v∗i ) can be quite small for most examples yet large for a small set of outliers. Typically

we find RAIS does not require special treatment of such outliers. Even so, it is reasonable to protect
against outliers, so that an example with extremely large Qcd(s

(t)
i , v∗i ) cannot greatly increase the

stochastic gradient’s variance. To achieve this, we use gradient clipping, and RAIS provides a natural
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Figure 2: Supplemental plots. Left: Visualization of top-layer gradient norm approximation. The
model is an 18 layer ResNet after 30 epochs of training on CIFAR-10. Middle: Oracle importance
sampling results for MNIST and LeNet model. Right: RAIS time overhead for rot-MNIST.

way of doing so. We define an “outlier” as any example for which Qcd(s
(t)
i , v∗i ) exceeds a threshold

τ . For each outlier i, we temporarily scale fi during iteration t until Qcd(s
(t)
i ,
∥∥∇fi(w(t))

∥∥) = τ .
In practice, we use τ = 100; the fraction of outliers is often zero and rarely exceeds 0.1%.

Approximating per-example gradient norms To train the uncertainty set, RAIS computes
‖∇fi(w(t))‖ for each example in each minibatch. Unfortunately, existing software tools do not pro-
vide efficient access to per-example gradient norms. Instead, libraries are optimized for aggregating
gradients over minibatches. Thus, to make RAIS practical, we must approximate the gradient norms.
We do so by replacing ‖∇fi(w(t))‖ with the norm of only the loss layer’s gradient (with respect to
this layer’s inputs). These values correlate strongly, since the loss layer begins the backpropagation
chain for computing∇fi(w(t)). We show this empirically in Figure 2(left), and we include additional
plots in Appendix E.1. We note this approximation may not work well for all models.

5 Relation to prior work

Prior strategies also consider importance sampling for speeding up deep learning. [3] proposes
distributing the computation of sampling probabilities. In parallel with regular training, [4] trains a
miniature neural network to predict importance values. [5] approximates importance values using
additional forward passes. [12] and [13] apply importance sampling to deep reinforcement learning.
With the exception of [5] (which requires considerable time to compute importance values), these prior
algorithms are sensitive to errors in importance value estimates. For this reason, all require critical
smoothing hyperparameters to converge. In contrast, RAIS elegantly compensates for approximation
error by choosing a sampling distribution that is minimax optimal with respect to an uncertainty set.
Since RAIS adaptively trains this uncertainty set, RAIS does not require hyperparameter tuning.

Researchers have also considered other ways to prioritize training examples for deep learning. [14]
considers examples in order of increasing difficulty. Other researchers prioritize challenging training
examples [15, 16]. And yet others prioritize examples closest to the model’s decision boundary [17].
Unlike RAIS, the primary goal of these approaches is improved model performance, not optimization
efficiency. Importance sampling may work well in conjunction with these strategies.

There also exist ideas for sampling minibatches non-uniformly outside the context of deep learning.
[18, 19] consider sampling diverse minibatches via repulsive point processes. Another strategy
uses side information, such as class labels, for approximate importance sampling [6]. By choosing
appropriate features for the uncertainty set, RAIS can use side information in the same way.

In the convex setting, there are several importance sampling strategies for SGD with theoretical guar-
antees. This includes [1] and [2], which sample training examples proportional to Lipschitz constants.
Leverage score sampling uses a closely related concept for matrix approximation algorithms [20, 21].
For more general convex problems, some adaptive sampling strategies include [22] and [23].

6 Empirical comparisons

In this section, we demonstrate how RAIS performs in practice. We consider the very popular task of
training a convolutional neural network to classify images.
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Figure 3: Learning curve comparison. RAIS consistently outperforms SGD with uniform sam-
pling, both in terms of objective value and generalization performance. Curves show the mean of five
trials with varying random seeds. Filled areas signify ±1.96 times standard error of the mean.

We first train a LeNet-5 model [24] on the MNIST digits dataset. The model’s small size makes
it possible to compare with O-SGD. We use learning rate η(t) = 3.4/

√
100 + t, L2 penalty λ =

2.5× 10−4, and batch size 32—the parameters are chosen so that SGD performs well. We do not use
momentum or data augmentation. Figure 2(middle) includes the results of this experiment. Oracle
sampling significantly outperforms RAIS, and RAIS significantly outperforms uniform sampling.

For our remaining comparisons, we consider street view house numbers [25], rotated MNIST [26],
and CIFAR tiny image [27] datasets. For rot-MNIST, we train a 7 layer CNN with 20 channels per
layer—a strong baseline from [28]. Otherwise, we train an 18 layer ResNet preactivation model
[29]. CIFAR-100 contains 100 classes, while the other problems contain 10. The number of training
examples is 6.0× 105 for SVHN, 1.2× 104 for rot-MNIST, and 5.0× 104 for the CIFAR problems.

We follow standard training procedures to attain good generalization performance. We use batch
normalization and standard momentum of 0.9. For rot-MNIST, we follow [28], augmenting data with
random rotations and training with dropout. For the CIFAR problems, we augment the training set
with random horizontal reflections and random crops (pad to 40x40 pixels; crop to 32x32).

We train the SVHN model with batch size 64 and the remaining models with |M| = 128. For
each problem, we approximately optimize λ and the learning rate schedule in order to achieve
good validation performance with SGD at the end of training. The learning rate schedule decreases
by a fixed fraction after each epoch (n/|M| iterations). This fraction is 0.8 for SVHN, 0.972 for
rot-MNIST, 0.96 for CIFAR-10, and 0.96 for CIFAR-100. The initial learning rates are 0.15, 0.09,
0.08, and 0.1, respectively. We use λ = 3× 10−3 for rot-MNIST and λ = 5× 10−4 otherwise.

For RAIS-SGD, we use |D| = 2× 104 training examples to learn c and d and α = 0.01 to estimate
r̂(t). The performance of RAIS varies little with these parameters, since they only determine the
number of minibatches to consider when training the uncertainty set and estimating the gain ratio. For
the uncertainty set features, we use simple moving averages of the most recently computed gradient
norms for each example. We use moving averages of different lengths—1, 2, 4, 8, and 16. For lengths
of at least four, we also include the variance and standard deviation of these prior gradient norm
values. We also incorporate a bias feature as well as the magnitude of the random crop offset.

We compare training curves of RAIS-SGD and SGD in Figure 3. Notice that RAIS-SGD consistently
outperforms SGD. The relative speed-up ranges from approximately 20% for the CIFAR-100 problem
to more than 2x for the SVHN problem. Due to varying machine loads, we plot results in terms of
epochs (not wall time), but RAIS introduces very little time overhead. For example, Figure 2(right)
includes time overhead results for the rot-MNIST comparison, which we ran on an isolated machine.

Figure 4 provides additional details of these results. In the figure’s first row, we see the speed-up in
terms of the gain ratio (the blue curve averages the value (r̂(t) − 1) · 100% over consecutive epochs).
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Figure 4: RAIS speed-up and alignment of epochs equivalent. Above: Blue shows increase in
optimization speed due to RAIS, as measured by estimated gain ratio; purple indicates time overhead
due to RAIS. Overhead is small compared to speed-up. Below: Objective value vs. epochs equivalent.
For RAIS, epochs equivalent equals |M|n t̂(t). The closely aligned curves suggest (i) RAIS-SGD is a
suitable drop-in replacement for SGD, and (ii) the gain ratio correctly approximates speed-up.

The gain ratio tends to increase as training progresses, implying RAIS is most useful during later
stages of training. We also plot the relative wall time overhead for RAIS, which again is very small.

In the second row of Figure 4, we compare RAIS-SGD and SGD in terms of epochs equivalent—the
number of epochs measured in terms of effective iterations. Interestingly, the curves align closely.
This alignment confirms that our learning rate adjustment is reasonable, as it results in a suitable
drop-in replacement for SGD. This result contrasts starkly with [3], for example, in which case
generalization performance differs significantly for the importance sampling and standard algorithms.

Table 1 concludes these comparisons with a summary of results:

Table 1: Quantities upon training completion.
Dataset Algorithm F (w(t)) Val. error Val. loss Epochs equivalent

SVHN RAIS-SGD 1.01 0.0201 0.121 114
SGD 1.02 0.0226 0.121 24.0

rot-MNIST RAIS-SGD 0.431 0.0476 0.149 214
SGD 0.460 0.0512 0.161 150.

CIFAR-10 RAIS-SGD 1.08 0.0590 0.256 130.
SGD 1.10 0.0607 0.277 100.

CIFAR-100 RAIS-SGD 1.21 0.236 0.962 138
SGD 1.25 0.236 0.989 100.

7 Discussion

We proposed a relatively simple and very practical importance sampling procedure for speeding up
the training of deep models. By using robust optimization to define the sampling distribution, RAIS
depends minimally on user-specified parameters. Additionally, RAIS introduces little computational
overhead and combines nicely with standard training strategies. All together, RAIS is a promising
approach with minimal downside and potential for large improvements in training speed.
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A Proof of Proposition 3.1

This appendix shows work for deriving (5) and the oracle importance sampling distribution.

A.1 Equation for gradient second moment

To derive (5), first define
∇fM(t)(w(t)) = g

(t)
O − λw

(t) .

We have

E
[
‖g(t)

O ‖
2
]

= E
[
‖g(t)

O −∇f̄(w(t)) +∇f̄(w(t))‖2
]

= E
[
‖∇fM(t)(w(t))− f̄(w(t)) +∇F (w(t))‖2

]
= E

[
‖∇fM(t)(w(t))− f̄(w(t))‖2

]
+ ‖∇F (w(t))‖2 . (8)

Above, we used the fact that E
[
∇fM(t)(w(t))

]
= f̄(w(t)).

Continuing, we have

E
[
‖∇fM(t)(w(t))− f̄(w(t))‖2

]
= E


∥∥∥∥∥∥ 1
|M|

∑
i∈M(t)

1

np
(t)
i

∇fi(w(t))− f̄(w(t))

∥∥∥∥∥∥
2


= 1
|M|2E


∥∥∥∥∥∥
∑

i∈M(t)

(
1

np
(t)
i

∇fi(w(t))− f̄(w(t))

)∥∥∥∥∥∥
2


= 1
|M|E

[∥∥∥∥ 1

np
(t)
i

∇fi(w(t))− f̄(w(t))

∥∥∥∥2
]

= 1
|M|

(
E

[∥∥∥∥ 1

np
(t)
i

∇fi(w(t))

∥∥∥∥2
]
−
∥∥∥f̄(w(t))

∥∥∥2) .

Combining with (8) leads to the result:

E
[
‖g(t)

O ‖
2
]

= 1
|M|n2

n∑
i=1

1

p
(t)
i

∥∥∥∇fi(w(t))
∥∥∥2 − 1

|M|

∥∥∥f̄(w(t))2
∥∥∥+

∥∥∥∇F (w(t))
∥∥∥2 .

A.2 Finding the optimal sampling distribution

We want to find the distribution p that minimizes
∑n
i=1 p

−1
i (v∗i )2, where v∗i =

∥∥∇fi(w(t))
∥∥. From

Jensen’s inequality, it follows that

n∑
i=1

p−1i (v∗i )2 =

n∑
i=1

pi

(
v∗i
pi

)2
≥

(
n∑
i=1

v∗i

)2

.

When pi = v∗i /
∑
j v
∗
j , the inequality is satisfied with equality. Thus, this choice for the sampling

distribution is optimal.
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B Proof of Proposition 4.1

Proof. Since v ≥ 0, minimizing (
∑
i vi)

2 is equivalent to minimizing
∑
i vi. For some ν ≥ 0, the

maximizer of
∑
i vi subject to v ∈ U (t)

cd satisfies

∇
∑
i vi = ν∇ 1

n

∑
iQcd(vi) and ν( 1

n

∑
iQcd(vi)− 1) = 0 .

The solution given by the proposition satisfies these KKT conditions when ν = n
2k .

C Elaboration on (7)

We need to show

E
[
‖g(t)

U ‖
2
]

= E
[
‖g(t)

R ‖
2
]

+ 1
|M|

(
E[‖g(t)

U1‖
2]− E[‖g(t)

R1‖
2]
)
.

This follows algebraically from (5). Let c|M| = ‖∇F (w(t))‖2 − 1
|M|‖∇f̄(w(t))‖2, and let

c1 = ‖∇F (w(t))‖2 − ‖∇f̄(w(t))‖2. From (5), we have

E
[
‖g(t)

U ‖
2
]

= 1
n|M|

n∑
i=1

‖∇fi(w(t))‖2 + c|M|

E
[
‖g(t)

R ‖
2
]

= 1
n2|M|

n∑
i=1

1

p
(t)
i

‖∇fi(w(t))‖2 + c|M|

E
[
‖g(t)

U1‖
2
]

= 1
n

n∑
i=1

‖∇fi(w(t))‖2 + c1

E
[
‖g(t)

R1‖
2
]

= 1
n2

n∑
i=1

1

p
(t)
i

‖∇fi(w(t))‖2 + c1 .

D Details of solving (PRC) and (PT)

This appendix provides details of solving the optimization problems in RIAS—specifically solving
the robust counterpart and training the uncertainty set.

D.1 Justification that the minimax theorem applies to (PRC)

We use the change of variables ui = v2i . Define

Ũ (t) =

{
u ∈ Rn≥0 | 1

n

n∑
i=1

(〈c,s(t)i 〉−
√
ui)

2

〈d,s(t)i 〉
≤ 1

}
.

Note (i) u ∈ Ũ (t) ⇔ v ∈ U (t), and (ii) Ũ (t) is compact and convex, since 〈c, s(t)i 〉 ≥ 0 and
〈d, s(t)i 〉 > 0 for all i ∈ [n]. Let P = {p ∈ Rn>0 |

∑n
i=1 pi = 1}. The robust counterpart is

inf
p∈P

max
u∈ Ũ(t)

n∑
i=1

1
npi

ui .

This objective is separately concave in u and convex in p. We have shown the conditions for the
minimax theorem. Thus, to solve this problem, we can first optimize over p by setting pi ∝

√
ui.

Afterward, we can optimize over u.
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D.2 Approach to solving (PT)

We need to solve
minimize

c,d≥0

∑n
i=1〈d, s

(t)
i 〉

s.t. 1
|D|
∑|D|
i=1 w̃i

(〈c,s̃i〉−ṽi)2
〈d,s̃i〉 ≤ 1 .

We reduce the problem to the unconstrained problem

minimize
c,d≥0

1
n

n∑
i=1

〈d, s(t)i 〉+ 1
|D|

|D|∑
i=1

w̃i
(〈c,s̃i〉−ṽi)2
〈d,s̃i〉 .

These problems have the same solution up to a scaling of d. After solving the second problem, we can
recover the solution to the first problem by scaling d in order to satisfy the first problem’s constraint
with equality.

We minimize this objective using alternating minimization. Each separate update to c and d is a
Newton step that we compute with a nonnegative least squares solver.

E Additional empirical results

This appendix includes additional empirical results that we did not include in the main text due to
space constraints.

E.1 Empirical justification of gradient norm approximation

Figure 2(left) includes a scatter plot that justifies our approximate measurements of per-example
gradient norms. Here we include additional plots to further support this approximation.

For the following plots, we consider the CIFAR-10 ResNet model after varying amounts of training:
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The next set of plots shows similar results for additional models:

SVHN model rot-MNIST model CIFAR-100 model
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Since only the relative gradient magnitudes matter when determining the importance sampling
distribution, the approximation is quite effective in these cases.

E.2 Validation error vs. epochs equivalent

In Figure 4, we plot training objective vs. epochs equivalent. This empirically justifies our strategy
for adapting the learning rate.
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The following plots show that the curves also align closely when considering validation error:
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E.3 Comparisons using alternative learning rate schedule

In §6, our learning rate schedule decreased η(t) by a multiplicative factor after each epoch. For each
problem, we optimized the learning rate parameters so that SGD performed well.

There is another learning rate schedule that is common for training ResNet models. Following [29],
we can initialize the learning rate at 0.1. We then decrease the learning rate to 0.01 after training is
50% completed. Finally, after training is 75% completed, we drop the learning rate to 0.001.

When using this learning rate schedule, we have the following results for the ResNet models:
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We can also consider the alignment of curves when plotted in terms of epochs equivalent:
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The final set of plots compares the speed-up and time overhead due to RAIS:
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E.4 Importance of rescaling the learning rate

For our final comparison, we show plots that demonstrate the importance of rescaling the learning rate
when using RAIS. We train a LeNet-5 model [24] on the MNIST digit recognition dataset. We use
the learning rate schedule η(t) = η0/

√
100/(100 + t) with regularization penalty λ = 2.5× 10−4.

We do not use momentum or data augmentation.

We compare RAIS-SGD with standard SGD as well as a control RAIS-SGD algorithm for which we
do not adapt the learning rate (i.e., we define r̂(t) = 1 for all t). In the top row, we include results for
η0 = 1.0, which is a large choice of learning rate. (When setting η0 = 1.1, for example, we found
that SGD occasionally did not converge.) In the second row, we include results for η0 = 0.25.
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η0 = 0.25
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In the large learning rate scenario, we see that RAIS improves training times, regardless of whether
we rescale the learning rate. In the small learning rate scenario, however, adapting the learning rate is
crucial for obtaining significant speed-ups.
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