
Appendix

A Proof of Theorem 1

We analyze the convergence of ADAM for general minibatch size here. Theorem 1 is obtained by
setting b = 1. Recall that the update of ADAM is the following

xt+1,i = xt,i − ηt
gt,i√
vt,i + ε

,

for all i ∈ [d]. Since the function f is L-smooth, we have the following:

f(xt+1) ≤ f(xt) + 〈∇f(xt), xt+1 − xt〉+
L

2
‖xt+1 − xt‖2

= f(xt)− ηt
d∑
i=1

(
[∇f(xt)]i ×

gt,i√
vt,i + ε

)
+
Lη2t

2

d∑
i=1

g2t,i
(
√
vt,i + ε)2

(2)

The second step follows simply from ADAM’s update. We take the expectation of f(xt+1) in the
above inequality:

Et[f(xt+1)] ≤ f(xt)− ηt
d∑
i=1

(
[∇f(xt)]i × Et

[
gt,i√
vt,i + ε

])
+
Lη2t

2

d∑
i=1

Et

[
g2t,i

(
√
vt,i + ε)2

]

= f(xt)− ηt
d∑
i=1

(
[∇f(xt)]i × Et

[
gt,i√
vt,i + ε

− gt,i√
β2vt−1,i + ε

+
gt,i√

β2vt−1,i + ε

])

+
Lη2t

2

d∑
i=1

Et

[
g2t,i

(
√
vt,i + ε)2

]

= f(xt)− ηt
d∑
i=1

(
[∇f(xt)]i ×

[
[∇f(xt)]i√
β2vt−1,i + ε

+ Et

[
gt,i√
vt,i + ε

− gt,i√
β2vt−1,i + ε

]])

+
Lη2t

2

d∑
i=1

Et

[
g2t,i

(
√
vt,i + ε)2

]

≤ f(xt)− ηt
d∑
i=1

[∇f(xt)]
2
i√

β2vt−1,i + ε
+ ηt

d∑
i=1

|[∇f(xt)]i|

∣∣∣∣∣Et
[

gt,i√
vt,i + ε

− gt,i√
β2vt−1,i + ε

]
︸ ︷︷ ︸

T1

∣∣∣∣∣
+
Lη2t

2

d∑
i=1

Et

[
g2t,i

(
√
vt,i + ε)2

]
(3)

The second equality follows from the fact that gt is an unbiased estimate of ∇f(xt) i.e., E[gt] =
∇f(xt). This is possible because vt−1,i is independent of St sampled at time step t. The terms T1
in the above inequality needs to be bounded in order to show convergence. We obtain the following
bound on the term T1:

T1 =
gt,i√
vt,i + ε

− gt,i√
β2vt−1,i + ε

≤ |gt,i| ×

∣∣∣∣∣ 1
√
vt,i + ε

− 1√
β2vt−1,i + ε

∣∣∣∣∣
=

|gt,i|
(
√
vt,i + ε)(

√
β2vt−1,i + ε)

×

∣∣∣∣∣ vt,i − β2vt−1,i
√
vt,i +

√
β2vt−1,i

∣∣∣∣∣
=

|gt,i|
(
√
vt,i + ε)(

√
β2vt−1,i + ε)

×
(1− β2)g2t,i

√
vt,i +

√
β2vt−1,i
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The third equality is due to the definition of vt−1,i and vt,i in ADAM i.e., vt,i = β2vt−1,i+(1−β2)g2t,i.
We further bound T1 in the following manner:

T1 ≤
|gt,i|

(
√
vt,i + ε)(

√
β2vt−1,i + ε)

×
(1− β2)g2t,i√

β2vt−1,i + (1− β2)g2t,i +
√
β2vt−1,i

≤ 1

(
√
vt,i + ε)(

√
β2vt−1,i + ε)

×
√

1− β2g2t,i

≤
√

1− β2g2t,i
(
√
β2vt−1,i + ε)ε

.

Here, the third inequality is obtained by dropping vt,i from the denominator to obtain an upper bound.
The second inequality is due to the fact that

|gt,i|√
β2vt−1,i + (1− β2)g2t,i

≤ 1√
1− β2

.

Note that the bound of coordinates of gradient of ` automatically provides a bound on [∇f(xt)]i i.e.,
|[∇f(xt)]i| ≤ G for all i ∈ [d] . Substituting the above bound on T1 in Equation (3) and using the
bound on [∇f(xt)]i, we have the following:

Et[f(xt+1)] ≤ f(xt)− ηt
d∑
i=1

[∇f(xt)]
2
i√

β2vt−1,i + ε
+
ηtG
√

1− β2
ε

d∑
i=1

Et

[
g2t,i√

β2vt−1,i + ε

]

+
Lη2t
2ε

d∑
i=1

Et

[
g2t,i√
vt,i + ε

]

≤ f(xt)− ηt
d∑
i=1

[∇f(xt)]
2
i√

β2vt−1,i + ε
+
ηtG
√

1− β2
ε

d∑
i=1

Et

[
g2t,i√

β2vt−1,i + ε

]

+
Lη2t
2ε

d∑
i=1

Et

[
g2t,i√

β2vt−1,i + ε

]

≤ f(xt)−
(
ηt −

ηtG
√

1− β2
ε

− Lη2t
2ε

) d∑
i=1

[∇f(xt)]
2
i√

β2vt−1,i + ε

+

(
ηtG
√

1− β2
ε

+
Lη2t
2ε

) d∑
i=1

σ2
i

b
√
β2vt−1,i + ε

.

The first inequality follows from the fact that |[∇f(xt)]i| ≤ G. The third inequality follows from
Lemma 1. The application of Lemma 1 is possible because vt−1,i is independent of random variables
in |St|. The second inequality is due to the following inequality : vt,i ≥ β2vt−1,i. This is obtained
from the definition of vt,i in ADAM i.e., vt,i = β2vt−1,i + (1− β2)g2t,i. From the parameters ηt, ε
and β2 stated in our theorem, we see that the following conditions hold: Lηt2ε ≤

1
4 and

G
√

1− β2
ε

≤ 1

4
.

Using these inequalities in Equation (3), we obtain

Et[f(xt+1)] ≤ f(xt)−
ηt
2

d∑
i=1

[∇f(xt)]
2
i√

β2vt−1,i + ε
+

(
ηtG
√

1− β2
ε

+
Lη2t
2ε

) d∑
i=1

σ2
i

b(
√
β2vt−1,i + ε)

≤ f(xt)−
ηt

2(
√
β2G+ ε)

‖∇f(xt)‖2 +

(
ηtG
√

1− β2
ε2

+
Lη2t
2ε2

)
σ2

b

The second inequality follows from the fact that 0 ≤ vt−1,i ≤ G2. Using telescoping sum and
rearranging the inequality, we obtain

η

2(
√
β2G+ ε)

T∑
t=1

E‖∇f(xt)‖2 ≤ f(x1)− E[f(xT+1)] +

(
ηG
√

1− β2
ε2

+
Lη2

2ε2

)
Tσ2

b
. (4)
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Multiplying with 2(
√
β2G+ε)
Tη on both sides and using the fact that f(x∗) ≤ f(xt+1), we obtain the

following:

1

T

T∑
t=1

E‖∇f(xt)‖2 ≤ 2(
√
β2G+ ε)×

[
f(x1)− f(x∗)

ηT
+

(
G
√

1− β2
ε2

+
Lη

2ε2

)
σ2

b

]
,

which gives us the desired result.

B Proof of Theorem 2

The proof follows along similar lines as Theorem 1 with some important differences. We, again,
analyze the convergence of YOGI for general minibatch size here. Theorem 2 is obtained by setting
b = 1. We start with the following observation:

f(xt+1) ≤ f(xt) + 〈∇f(xt), xt+1 − xt〉+
L

2
‖xt+1 − xt‖2

= f(xt)− ηt
d∑
i=1

(
[∇f(xt)]i ×

gt,i√
vt,i + ε

)
+
Lη2t

2

d∑
i=1

g2t,i
(
√
vt,i + ε)2

(5)

The first step follows from the L-smoothness of the function f . The second step follows from the
definition of YOGI update step i.e.,

xt+1,i = xt,i − ηt
gt,i√
vt,i + ε

,

for all i ∈ [d]. Taking the expectation at time step t in Equation (2), we get the following:

Et[f(xt+1)] ≤ f(xt)− ηt
d∑
i=1

(
[∇f(xt)]i × Et

[
gt,i√
vt,i + ε

])
+
Lη2t

2

d∑
i=1

Et

[
g2t,i

(
√
vt,i + ε)2

]

= f(xt)− ηt
d∑
i=1

(
[∇f(xt)]i × Et

[
gt,i√
vt,i + ε

− gt,i√
vt−1,i + ε

+
gt,i√

vt−1,i + ε

])

+
Lη2t

2

d∑
i=1

Et

[
g2t,i

(
√
vt,i + ε)2

]

≤ f(xt)− ηt
d∑
i=1

[∇f(xt)]
2
i√

vt−1,i + ε
+ ηt

d∑
i=1

|[∇f(xt)]i|

∣∣∣∣∣Et
[

gt,i√
vt,i + ε

− gt,i√
vt−1,i + ε

]
︸ ︷︷ ︸

T1

∣∣∣∣∣
+
Lη2t

2

d∑
i=1

Et

[
g2t,i

(
√
vt,i + ε)2

]
︸ ︷︷ ︸

T2

. (6)

The second equality follows from the fact that gt is an unbiased estimate of ∇f(xt) i.e., E[gt] =
∇f(xt). The key difference here in comparison to proof of Theorem 1 is that the deviation to bound
in T1 is from gt,i√

vt−1,i+ε
as opposed to gt,i√

β2vt−1,i+ε
in proof of ADAM. Our aim is to bound the terms

T1 and T2 in the above inequality. We bound the term T1 in the following manner:

T1 ≤ |gt,i|
∣∣∣∣ 1
√
vt,i + ε

− 1
√
vt−1,i + ε

∣∣∣∣
=

|gt,i|
(
√
vt,i + ε)(

√
vt−1,i + ε)

∣∣∣∣ vt,i − vt−1,i√
vt,i +

√
vt−1,i

∣∣∣∣
=

|gt,i|
(
√
vt,i + ε)(

√
vt−1,i + ε)

×
(1− β2)g2t,i√
vt,i +

√
vt−1,i

≤
√

1− β2g2t,i
(
√
vt−1,i + ε)ε

.
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The second equality is from the update rule of YOGI which is vt,i = vt−1,i − (1− β2)sign(vt−1,i −
g2t,i)g

2
t,i. The last inequality is due to the fact that

|gt,i|√
vt,i +

√
vt−1,i

≤ 1√
1− β2

.

The above inequality in turn follows from the fact that either |gt,i|√
vt−1,i

≤ 1 when vt−1,i ≥ g2t,i or
|gt,i|√
vt,i
≤ 1√

1−β2
when vt−1,i < g2t,i. We next bound the term T2 as follows:

T2 =
Lη2t

2

d∑
i=1

Et

[
g2t,i

(
√
vt,i + ε)2

]
≤ Lη2t

2ε
√
β2

d∑
i=1

Et

[
g2t,i√

vt−1,i + ε

]
.

The inequality is due to the following : vt,i ≥ β2vt−1,i. To see this, first note that vt,i = vt−1,i −
(1− β2)sign(vt−1,i − g2t,i)g2t,i. If vt−1,i ≤ g2t,i, then it is easy to see that vt,i ≥ vt−1,i. Consider the
case where vt−1,i > g2t,i, then we have

vt,i = vt−1,i − (1− β2)g2t,i ≥ β2vt−1,i.

Therefore, vt,i ≥ β2vt−1,i. Substituting the above bounds on T1 and T2 in Equation (6), we obtain
the following bound:

Et[f(xt+1)] ≤ f(xt)− ηt
d∑
i=1

[∇f(xt)]
2
i√

vt−1,i + ε
+
ηtG
√

1− β2
ε

d∑
i=1

Et

[
g2t,i√

vt−1,i + ε

]

+
Lη2t

2ε
√
β2

d∑
i=1

Et

[
g2t,i√

vt−1,i + ε

]

≤ f(xt)−
(
ηt −

ηtG
√

1− β2
ε

− Lη2t
2ε
√
β2

) d∑
i=1

[∇f(xt)]
2
i√

vt−1,i + ε

+

(
ηtG

2(1− β2)

2ε
+

Lη2t
2ε
√
β2

) d∑
i=1

σ2
i

b
√
vt−1,i + ε

.

The first inequality follows from the fact that |[∇f(xt)]i| ≤ G. The second inequality follows from
Lemma 1. Now, from our theorem result, we observe that,

G
√

1− β2
ε

≤ 1

4
,

Lηt

2ε
√
β2
≤ 1

4
.

Using these inequalities in Equation (6), we obtain

Et[f(xt+1)] ≤ f(xt)−
ηt
2

d∑
i=1

[∇f(xt)]
2
i√

vt−1,i + ε
+

(
ηtG
√

1− β2
ε

+
Lη2t

2ε
√
β2

) d∑
i=1

σ2
i

b
√
vt−1,i + ε

≤ f(xt)−
ηt

2(
√

2G+ ε)
‖∇f(xt)‖2 +

(
ηtG
√

1− β2
ε2

+
Lη2t

2ε2
√
β2

)
σ2

b

The second inequality follows from the fact that 0 ≤ vt−1,i ≤ 2G2. Using telescoping sum and
rearranging the inequality, we obtain

η

2(
√

2G+ ε)

T∑
t=1

E‖∇f(xt)‖2 ≤ f(x1)− E[f(xT+1)] +

(
ηG
√

1− β2
ε2

+
Lη2

2ε2
√
β2

)
Tσ2

b
. (7)

Multiplying with 2(
√
2G+ε)
η on both sides and using the fact that f(x∗) ≤ f(xt+1) gives us the

desired result.
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C Auxiliary Lemma

The following result is useful for bounding the variance of the updates of the algorithms in this paper.
Lemma 1. For the iterates xt where t ∈ [T ] in Algorithm 1 and 2, the following inequality holds:

Et[‖gt,i‖2] ≤ σ2
i

b
+ [∇f(xt)]

2
i ,

for all i ∈ [d].

Proof. Let us define the following notation for the ease of exposition:

ζt =
1

|St|
∑
s∈St

([∇`(xt, s)]i − [∇f(xt)]i) .

Using this notation, we obtain the following bound:

Et[g2t,i] = Et[‖ζt +∇f(xt)‖2]

= Et[ζ2t ] + [∇f(xt)]
2
i

=
1

b2
Et

(∑
s∈St

([∇`(xt, s)]i − [∇f(xt)]i)

)2
+ [∇f(xt)]

2
i

=
1

b2
Et

[∑
s∈St

([∇`(xt, s)]i − [∇f(xt)]i)
2

]
+ [∇f(xt)]

2
i

≤ σ2
i

b
+ [∇f(xt)]

2
i .

The second equality is due to the fact that ζt is a mean 0 random variable. The third equality follows
from Lemma 2. The last inequality is due to the fact that Es∼P[([∇`(xt, s)]i − [∇f(xt)]i)

2
] ≤ σ2

i

for all x ∈ Rd.

Lemma 2. For random variables z1, . . . , zr are independent and mean 0, we have

E
[
‖z1 + ...+ zr‖2

]
= E

[
‖z1‖2 + ...+ ‖zr‖2

]
.

Proof. We have the following:

E
[
‖z1 + ...+ zr‖2

]
=

r∑
i,j=1

E [zizj ] = E
[
‖z1‖2 + ...+ ‖zr‖2

]
.

The second equality follows from the fact that zi’s are independent and mean 0.
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D More Experiment Results

Table 5: Train and test loss comparison for Deep AutoEncoders. Standard errors with 2σ are shown
over 6 runs are shown. All our experiments were run for 5000 epochs utilizing the ReduceLRonPlateau
schedule with patience of 20 epochs and decay factor of 0.5 with a batch size of 128. Also we report
numbers from prior work for reference, but their experimental setup (batch-size, learning rate, etc)
are different.

Method LR β1 β2 ε
CURVES

Train Loss Test Loss

PT + NCG [20] - - - - 0.74 0.82
RAND+HF [20] - - - - 0.11 0.20
PT + HF [20] - - - - 0.10 0.21
KSD [36] - - - - 0.17 0.25
HF [36] - - - - 0.13 0.19

ADAM (Default) 10−3 0.9 0.999 10−8 0.09± 0.16 0.16± 0.02
ADAM (Modified) 10−3 0.9 0.999 10−3 0.12± 0.17 0.17± 0.01
YOGI (Ours) 10−2 0.9 0.9 10−3 0.11± 0.01 0.15± 0.01
YOGI (Ours) 10−2 0.9 0.999 10−3 0.20± 0.01 0.25± 0.02

Table 6: Test accuracy for DeepSets on ModelNet40. Standard errors with 2σ are shown over 6 runs
are shown. All our experiments were run for 500 epochs utilizing the ReduceLRonPlateau schedule
with patience of 20 epochs and decay factor of 0.5 with a batch size of 128. Also we report numbers
from original paper for reference, which employs a highly tuned learning rate schedule.

Method LR β1 β2 ε Test Accuracy (%)

Adam [39] - - - - 87.0± 1.0

ADAM (Default) 10−3 0.9 0.999 10−8 87.71± 0.25
ADAM (Modified) 10−3 0.9 0.999 10−3 88.41± 0.33
YOGI (Ours) 10−2 0.9 0.999 10−3 87.65± 0.15
YOGI (Ours) 5× 10−3 0.9 0.999 10−3 88.73± 0.28

Table 7: Test F1 score for Named Entity Recognition task using CNN-LSTM-CRF model on BC5CDR
bio-medical dataset. Standard errors with 2σ calculated over 6 runs are shown. All our experiments
were run for 50 epochs utilizing the ReduceLRonPlateau schedule with patience of 10 epochs and
decay factor of 0.5 with a batch size of 2000 words. We also report performance score from one the
best performing approaches for reference, which employs a highly tuned learning rate schedule.

Method LR β1 β2 ε Test F1 (%)

SGD [37] - - - - 88.78

ADAM (Default) 10−3 0.9 0.999 10−8 88.75± 0.23
ADAM (Modified) 10−3 0.9 0.999 10−3 88.86± 0.22
YOGI (Ours) 10−2 0.9 0.999 10−3 89.20± 0.17
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