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1 CelebA, LSUN, MNIST images generated by DCGANs trained via
different methods

Figures 1, 2, and 3 show the CelebA, LSUN, and MNIST samples generated by the vanilla DCGAN
trained via the methods described in the main text. Observe that applying Lipschitz regularization and
adversarial training results in significantly higher quality generated samples. We note that tight SN in
these figures refers to [1]’s spectral normalization scheme for convolutional layers, which precisely
normalizes a conv layer’s spectral norm and hence guarantees the 1-Lipschitzness of a discriminator
convolutional neural net. Note that for non-tight SN we use the approximate scheme for normalizing
a convolutional layer’s operator norm introduced in [2].

Figure 1: Samples generated by DCGAN trained over CelebA samples
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Figure 2: Samples generated by DCGAN trained over LSUN-bedroom samples

Figure 3: Samples generated by DCGAN trained over MNIST samples
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2 Proof of Theorem 1

Theorem 1 and Corollary 1 directly result from the following two lemmas.
Lemma 1. Suppose divergence d(P,Q) is non-negative, lower semicontinuous and convex in distri-
bution Q. Consider a convex subset of continuous functions F and assume support set X is compact.
Then, the following duality holds for any pair of distributions P1, P2:

max
D∈F

EP2 [D(X)]− d∗P1
(D) = min

Q

{
d(P1, Q) + max

D∈F
{EP2 [D(X)]− EQ[D(X)] }

}
. (1)

Proof. Note that

min
Q

{
d(P1, Q) + max

D∈F
{EP2 [D(X)]− EQ[D(X)] }

}
= min

Q
max
D∈F

{
d(P1, Q) + EP2

[D(X)]− EQ[D(X)]
}

(a)
= max

D∈F
min
Q

{
d(P1, Q) + EP2

[D(X)]− EQ[D(X)]
}

(2)

= max
D∈F

{
EP2

[D(X)] + min
Q
{d(P1, Q)− EQ[D(X)] }

}
= max

D∈F

{
EP2

[D(X)]−max
Q
{EQ[D(X)]− d(P1, Q) }

}
(b)
= max

D∈F
EP2 [D(X)]− d∗P1

(D).

Here (a) is a consequence of the generalized Sion’s minimax theorem [3], because the space of
probability measures on compact X is convex and weakly compact [4], F is assumed to be convex,
the minimiax objective is lower semicontinuous and convex in Q and linear in D. (b) holds according
to the conjugate d∗P ’s definition.

Lemma 2. Assume divergence d(P,Q) is non-negative, lower semicontinuous and convex in dis-
tribution Q over compact X . Consider a linear space subset of continuous functions F . Then, the
following duality holds for any pair of distributions P1, P2:

min
Q∈PF (P2)

d(P1, Q) = max
D∈F

EP2
[D(X)]− d∗P1

(D). (3)

Proof. This lemma is a consequence of Lemma 1. Note that a linear space F is a convex set.
Therefore, Lemma 1 applies to F . However, since F is a linear space i.e. for any D ∈ F and λ ∈ R
it includes λD we have

max
D∈F

{EP2
[D(X)]− EQ[D(X)] } =

{
0 if Q ∈ PF (P2)

+∞ otherwise.
(4)

As a result, the minimizing Q∗ precisely matches the moments over F to P2’s moments, which
completes the proof.

3 Proof of Theorem 2

We first prove the following lemma.
Lemma 3. Consider f-divergence df corresponding to function f which has a non-decreasing
convex-conjugate f∗. Then, for any continuous D

df
∗
P (D) = EP

[
f∗
(
D(X) + λ0

)]
− λ0 (5)

where λ0 ∈ R satisfies EP
[
f∗′
(
D(X) + λ0

)]
= 1. Here f∗′ stands for the derivative of conjugate

function f∗ which is supposed to be non-negative everywhere.

Proof. Note that

df
∗
P (D)

(a)
= sup

Q
EQ[D(X)]− df (P,Q)

(b)
= sup

Q
EQ[D(X)]− EP

[
f
(q(X)

p(X)

)]
3



(c)
= max

q(x)≥0,
∫
q(x) dx=1

∫
q(x)D(x) dx−EP

[
f
(q(X)

p(X)

) ]
(d)
= min

λ∈R
−λ+ max

q(x)≥0

∫
q(x)

(
D(x) + λ

)
dx−EP

[
f
(q(X)

p(X)

) ]
(e)
= min

λ∈R
−λ+ max

r(x)≥0
EP
[
r(X)

(
D(X) + λ

)
− f(r(X))

]
(f)
= min

λ∈R
−λ+ EP

[
max
r(X)≥0

r(X)
(
D(X) + λ

)
− f(r(X))

]
(g)
= min

λ∈R
−λ+ EP

[
f∗
(
D(X) + λ

) ]
= −max

λ∈R
λ− EP

[
f∗
(
D(X) + λ

) ]
(6)

(h)
= −λ0 + EP

[
f∗
(
D(X) + λ0

) ]
. (7)

Here (a) and (b) follow from the conjugate d∗P and f-divergence df definitions. (c) rewrites the
optimization problem in terms of the density function q corresponding to distribution Q. (d) uses the
strong convex duality to move the density constraint

∫
q(x) dx = 1 to the objective. Note that strong

duality holds, since we have a convex optimization problem with affine constraints. (e) rewrites the
problem after a change of variable r(x) = q(x)/p(x). (f) holds since f and D are assumed to be
continuous. (g) follows from the assumption that the derivative of f∗ takes non-negative values,
and hence the minimizing r(x) ≥ 0 also minimizes the unconstrained optimization for the convex
conjugate f∗

f∗
(
D(X) + λ

)
:= max

r(X)
r(X)

(
D(X) + λ

)
− f(r(X)).

Taking the derivative of the concave objective, the λ value maximizing the objective solves the
equation EP

[
f∗′
(
D(X) + λ

)]
= 1 which is assumed to be λ0. Therefore, (h) holds and the proof

is complete.

Now we prove Theorem 2 which can be broken into two parts as follows.

Theorem (Theorem 2). Consider f-divergence df where f has a non-decreasing conjugate f∗.
(a) Suppose F is a convex set closed to a constant addition, i.e. for any D ∈ F , λ ∈ R we have
D + λ ∈ F . Then,

min
PG(Z)∈PG

min
QX

df (PG(Z), Q) + max
D∈F

{
EPX

[D(X)]− EQ[D(X)]
}

= min
G∈G

max
D∈F

EPX
[D(X)]− E

[
f∗
(
D(G(Z))

)]
. (8)

(b) Suppose F is a linear space including the constant function D0(x) = 1. Then,

min
PG(Z)∈PG

min
QX∈PF (PX)

df (PG(Z), Q) = min
G∈G

max
D∈F

EPX
[D(X)]− E

[
f∗
(
D(G(Z))

)]
. (9)

Proof. This theorem is an application of Theorem 1 and Corollary 1. For part (a) we have

min
PG(Z)∈PG

min
QX

df (PG(Z), Q) + max
D∈F

{
EPX

[D(X)]− EQ[D(X)]
}

(c)
= min

G∈G
max
D∈F

EPX
[D(X)]− df ∗PG(Z)

(D)

(d)
= min

G∈G
max
D∈F

EPX
[D(X)] + max

λ∈R
λ− E

[
f∗
(
D(G(Z)) + λ

)]
= min

G∈G
max

D∈F,λ∈R
EPX

[D(X) + λ]− E
[
f∗
(
D(G(Z)) + λ

)]
(e)
= min

G∈G
max
D∈F

EPX
[D(X)]− E

[
f∗
(
D(G(Z))

)]
.

Here (c) is a direct result of Theorem 1. (d) uses the simplified version (6) for df ∗P . (e) follows from
the assumption that F is closed to constant additions.
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For part (b) note that since F is a linear space and includes D0(x) = 1, it is closed to constant
additions. Hence, an application of Corollary 1 reveals

min
PG(Z)∈PG

min
QX∈PF (PX)

df (PG(Z), Q) = min
G∈G

max
D∈F

EPX
[D(X)]− df ∗PG(Z)

(D)

= min
G∈G

max
D∈F

EPX
[D(X)] + max

λ∈R
λ− E

[
f∗
(
D(G(Z)) + λ

)]
= min

G∈G
max

D∈F,λ∈R
EPX

[D(X) + λ]− E
[
f∗
(
D(G(Z)) + λ

)]
= min

G∈G
max
D∈F

EPX
[D(X)]− E

[
f∗
(
D(G(Z))

)]
,

which makes the proof complete.

4 Proof of Theorem 3

Theorem 3 is a direct application of the following lemma to Theorem 1 and Corollary 1.
Lemma 4. Let c be a lower semicontinuous non-negative cost function. Considering the c-transform
operation Dc defined in the text, the following holds for any continuous D

Wc
∗
P (D) = EP [Dc(X) ]. (10)

Proof. We have

Wc
∗
P (D)

(a)
= sup

Q
EQ[D(X′)]−Wc(P,Q)

(b)
= − inf

Q
inf

M∈Π(P,Q)
EM
[
c(X,X′)−D(X′)

]
= − inf

Q,M∈Π(P,Q)
EM
[
c(X,X′)−D(X′)

]
(c)

≥ −EP
[

inf
x′

c(X,x′)−D(x′)
]

= EP
[

sup
x′

D(x′)− c(X,x′)
]

(d)
= EP [Dc(X)].

Here (a), (b), (d) hold according to the definitions. Moreover, we show (c) will hold with equality
under the lemma’s assumptions. c(x,x′) − D(x′) is lower semicontinuous, and hence for every
ε > 0 there exists a measurable function v(x) such that for the coupling M = πX,v(X) the absolute
difference

∣∣EM [ c(X,X′)−D(X′)
]
−EP

[
infx′ c(X,x′)−D(x′)

]∣∣ < ε is ε-bounded. Therefore,
(c) holds with equality and the proof is complete.

5 Proof of Theorem 4

Consider a convex combination of functions from Fnn as fα(x) =
∫
α(w)fw(x) dw where α can

be considered as a probability density function over feasible setW . Consider m samples (Wi)
m
i=1

taken i.i.d. from α. Since any fw is M -bounded, according to Hoeffding’s inequality for a fixed x
we have

Pr

( ∣∣∣∣ 1

m

m∑
i=1

fWi(x) − EW∼α
[
fW(x)

]∣∣∣∣ ≥ ε

2

)
≤ 2 exp

(
− mε

2

8M2

)
. (11)

Next we consider a δ-covering for the ball {x : ||x||2 ≤ R}, where we choose δ = ε
4L . We know a

δ-covering {xj : 1 ≤ j ≤ N} exists with a bounded size N ≤ (12LR/ε)k [5]. Then, an application
of the union bound implies

Pr

(
max

1≤j≤N

∣∣∣∣ 1

m

m∑
i=1

fWi
(xj)− EW∼α

[
fW(xj)

]∣∣∣∣ ≥ ε

2

)
≤ 2N exp

(
− mε

2

8M2

)
≤ exp

(
− mε

2

8M2
+ k log

(12LR

ε

)
+ log 2

)
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Hence if we have − mε2

8M2 + k log( 12LR
ε ) + log 2 < 0 the above upper-bound is strictly less than 1,

showing there exists at least one outcome (wi)
m
i=1 satisfying

max
1≤j≤N

∣∣∣∣ 1

m

m∑
i=1

fwi
(xj)− EW∼α

[
fW(xj)

]∣∣∣∣ < ε

2
. (12)

Then, we claim the following holds over the norm-bounded {x : ||x||2 ≤ R}:

sup
||x||2≤R

∣∣∣∣ 1

m

m∑
i=1

fwi
(xj)− EW∼α

[
fW(xj)

]∣∣∣∣ < ε. (13)

This is because due to the definition of a δ-covering for any ||x||2 ≤ R there exists xj for which
||xj − x|| ≤ ε

4L . Then, since any fw is supposed to be L-Lipschitz we have∣∣∣∣ 1

m

m∑
i=1

fwi(xj)−
1

m

m∑
i=1

fwi(x)

∣∣∣∣ ≤ ε

4
,

∣∣∣∣EW∼α
[
fW(xj)

]
− EW∼α

[
fW(x)

]∣∣∣∣ ≤ ε

4
(14)

which together with (12) shows (13). Hence, if we choose

m =
8M2

ε2
(
k log(12LR/ε) + log 2

)
= O

(M2k log(LR/ε)

ε2
)

(15)

there will be some weight assignments (wi)
m
i=1 such that their uniform combination 1

m

∑m
i=1 fwi(x)

ε-approximates the convex combination fα uniformly over {x : ||x||2 ≤ R}.

6 Proof of Theorem 5

We show that for any distributions P0, P1, P2 the following holds∣∣df,W1
(P0, P2)− df,W1

(P1, P2)
∣∣ ≤W1(P0, P1). (16)

The above inequality holds since if Q0 and Q1 solve the minimum sum optimization problems for
df,W1

(P0, P2), df,W1
(P1, P2), we have

df,W1(P0, P2)− df,W1(P1, P2) ≤W1(P0, Q1)−W1(P1, Q1) ≤W1(P0, P1),

df,W1(P1, P2)− df,W1(P0, P2) ≤W1(P1, Q0)−W1(P0, Q0) ≤W1(P0, P1)

where the second inequalities in both these lines follow from the symmetricity and triangle inequality
property of the W1-distance. Therefore, the following holds for any Q:∣∣df,W1

(PGθ(Z), Q)− df,W1
(PGθ′ (Z), Q)

∣∣ ≤W1(PGθ(Z), PGθ′ (Z)).

Hence, we only need to show W1(PGθ(Z), Q) is changing continuously with θ and is almost every-
where differentiable. We prove these things using a similar proof to [6]’s proof for the continuity of
the first-order Wasserstein distance.

Consider two functions Gθ, Gθ′ . The joint distribution M for (Gθ(Z), Gθ′(Z)) is contained in
Π(PGθ(Z), PGθ′ (Z))), which results in

W1

(
PGθ(Z) , PGθ′ (Z)

)
≤ EM [‖X−X′‖]
= E

[∥∥Gθ(Z) − Gθ′(Z)
∥∥]. (17)

If we let θ′ → θ then Gθ(z)→ Gθ′(z) and hence ‖Gθ′(z)−Gθ(z) ‖ → 0 hold pointwise. Since
X is assumed to be compact, there exists some finite R for which 0 ≤ ‖x− x′‖ ≤ R holds over the
compact X ×X . Then the bounded convergence theorem implies E

[ ∥∥Gθ(Z)−Gθ′(Z)
∥∥ ] converges

to 0 as θ′ → θ. Then, since W1-distance always takes non-negative values

W1

(
PGθ(Z) , PGθ′ (Z)

) θ′→θ−−−→ 0.

Thus, W1 satisfies the discussed continuity property and as a result df,W1
(PGθ(Z), Q) changes con-

tinuously with θ. Furthermore, if Gθ is locally-Lipschitz and its Lipschitz constant w.r.t. parameters
θ is bounded above by L,

df,W1

(
PGθ(Z) , PGθ′ (Z)

)
≤W1

(
PGθ(Z) , PGθ′ (Z)

)
≤ E

[∥∥Gθ(Z) − Gθ′(Z)
∥∥]

≤ L‖θ − θ′‖, (18)
which implies both W1(PGθ(Z), Q) and df,W1

(PGθ(Z), Q) are everywhere continuous and almost
everywhere differentiable w.r.t. θ.
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7 Proof of Theorem 6

We first generalize the definition of the hybrid divergence to a general minimum-sum hybrid of
an f-divergence and an optimal transport cost. For f-divergence df and optimal transport cost Wc

corresponding to convex function f and cost c respectively, we define the following hybrid df,c of
the two divergence measures:

df,c(P1, P2) := inf
Q
Wc(P1, Q) + df (Q,P2). (19)

Lemma 5. Given a symmetric f-divergence df with convex lower semicontinuous f and a non-
negative lower semicontinuous c, df,c(P1, P2) will be a convex function of P1 and P2, and further
satisfies the following generalization of the Kantorovich duality [7]:

df,c(P1, P2) = sup
D c-concave

EP1 [D(X)]− EP2 [f∗(Dc(X))]. (20)

Proof. According to the Kantorovich duality [7] we have

df,c(P1, P2)
(a)
= inf

Q
Wc(P1, Q) + df (Q,P2)

(b)
= inf

Q
sup

D c-concave
EP1

[D(X)]− EQ[Dc(X)] + df (Q,P2)

(c)
= inf

Q
sup

D c-concave
EP1

[D(X)]− EQ[Dc(X)] + df (P2, Q)

(d)
= sup

D c-concave
inf
Q

EP1
[D(X)]− EQ[Dc(X)] + df (P2, Q)

= sup
D c-concave

EP1 [D(X)] + inf
Q

df (P2, Q)− EQ[Dc(X)]

(e)
= sup

D c-concave
EP1

[D(X)]− df
∗
P2

(Dc)

(f)
= sup

D c-concave
EP1

[D(X)] + max
λ∈R

λ− EP2
[f∗(Dc(X) + λ)]

= sup
D c-concave, λ∈R

EP1 [D(X) + λ]− EP2 [f∗(Dc(X) + λ)].

= sup
D c-concave

EP1 [D(X)]− EP2 [f∗(Dc(X))].

Here (a) holds according to the definition. (b) is a consequence of the Kantorovich duality ([7],
Theorem 5.10). (c) holds becuase df is assumed to be symmetric. (d) holds due to the generalized
minimax theorem [3], since the space of distributions over compact X is convex and weakly compact,
the set of c-concave functions is convex, the minimax objective is concave in D and convex in Q. (e)
holds according to the conjugate d∗P ’s definition, and (f) is based on our earlier result in (6). Note that
the final expression is maximizing an objective linear in P2, which is convex in P2. The last equality
holds since for any constant λ ∈ R if Dc is the c-transform of D, Dc + λ will be the c-transform of
D + λ. Finally, note that df,c(P1, P2) is the supremum of some linear functions of P1 and P2 with
compact support sets. Hence df,c will be a convex function of P1 and P2.

Now we prove the following generalization of Theorem 6, which directly results in Theorem 6 for the
difference norm cost c1(x,x′) = ‖x−x′‖. Here note that for cost c1 the c-transform of a 1-Lipschitz
function D will be D itself, which implies if f∗ ◦D is 1-Lipschitz then

−f∗(D(G(Z))) = inf
x′
−f∗(D(x′)) + c1

(
G(Z) , x′

)
.

Theorem (Generalization of Theorem 6). Assume df is a symmetric f-divergence, i.e. df (P,Q) =
df (Q,P ), satisfying the assumptions in Lemma 2. Suppose F is a convex set of continuous functions
closed to constant additions and cost function c is non-negative and continuous. Then, the minimax
problem in Theorem 1 and Corollary 1 for the mixed divergence df,c reduces to

min
G∈G

max
D∈F

EPX
[D(X)] + E

[
inf
x′
−f∗(D(x′)) + c

(
G(Z) , x′

) ]
. (21)
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Proof. Accoriding to Lemma 5, df,c(P,Q) satisfies the convexity property in Q. Hence, the as-
sumptions of Theorem 1 and Corollary 1 hold and we only need to plug in the conjugate df,c∗P1

into
Corollary 1. According to the definition,

df,c
∗
P1

(D) = sup
P2

EP2
[D(X)]− df,c(P1, P2)

= sup
P2

sup
Q
−Wc(P1, Q)− df (Q,P2) + EP2

[D(X)]

= sup
Q

sup
P2

−Wc(P1, Q)− df (Q,P2) + EP2
[D(X)]

= sup
Q
−Wc(P1, Q) + sup

P2

EP2 [D(X)]− df (Q,P2)

= sup
Q
−Wc(P1, Q) + df

∗
Q(D)

(g)
= sup

Q
−Wc(P1, Q) + min

λ∈R
−λ+ EQ[f∗(D(X) + λ)]

= sup
Q

min
λ∈R
−Wc(P1, Q)− λ+ EQ[f∗(D(X) + λ)]

(h)
= min

λ∈R
sup
Q
−Wc(P1, Q)− λ+ EQ[f∗(D(X) + λ)]

(i)
= inf

λ∈R
−λ+ EP1

[(
f∗ ◦ (D + λ)

)c
(X)

]
.

Here (g) holds based on our earlier result in (6). (h) is a consequence of the minimax theorem, since
the space of distributions over compact X is convex and compact, and the objective is concave in
λ and lower semicontinuous and convex in Q. (i) is implied by Lemma 3. Therefore, according to
Corollary 1

min
PG(Z)∈PG

min
QX

df,c(PG(Z), Q) + max
D∈F

{
EPX

[D(X)]− EQ[D(X)]
}

= min
G∈G

max
D∈F

EPX
[D(X)]− df,c∗PG(Z)

(D)

= min
G∈G

max
D∈F

EPX
[D(X)] + max

λ∈R
λ− E

[(
f∗ ◦ (D + λ)

)c
(G(Z))

]
= min

G∈G
max

D∈F, λ∈R
EPX

[D(X) + λ]− E
[(
f∗ ◦ (D + λ)

)c
(G(Z))

]
(j)
= min

G∈G
max
D∈F

EPX
[D(X)]− E

[
(f∗ ◦D)c(G(Z))

]
= min

G∈G
max
D∈F

EPX
[D(X)]− E

[
sup
x′

f∗(D(x′))− c
(
G(Z) , x′

) ]
= min

G∈G
max
D∈F

EPX
[D(X)] + E

[
inf
x′
−f∗(D(x′)) + c

(
G(Z) , x′

) ]
.

Here (j) holds sinceF is assumed to be closed to constant additions. Hence, the proof is complete.

8 Proof of Theorem 7

Consider distributions P0, P1, P2. Let Q0, Q1 be the optimal solutions to the minimum sum op-
timization problems for df,W2

(P0, P2) and df,W2
(P1, P2), respectively. Then, according to the

definition

df,W2
(P0, P2)− df,W2

(P1, P2) ≤W 2
2 (P0, Q1)−W 2

2 (P1, Q1),

df,W2(P1, P2)− df,W2(P0, P2) ≤W 2
2 (P1, Q0)−W 2

2 (P0, Q0)

which implies ∣∣ df,W2(P0, P2)− df,W2(P1, P2)
∣∣ ≤ sup

Q

∣∣W 2
2 (P0, Q)−W 2

2 (P1, Q)
∣∣.

Hence, for Gθ, Gθ′ and any distribution P2 we have∣∣ df,W2
(PGθ(Z), P2)− df,W2

(PGθ′ (Z), P2)
∣∣ ≤ sup

Q

∣∣W 2
2 (PGθ(Z), Q)−W 2

2 (PGθ′ (Z), Q)
∣∣. (22)
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Fix a distribution Q over the compact X . Then, for any (Gθ(Z),X′) whose joint distribution is
in Π(PGθ(Z), Q), (Gθ′(Z),X′) has a joint distribution in Π(PGθ′ (Z), Q). Moreover, since X is a
compact set in a Hilbert space, any x ∈ X is norm-bounded for some finite R as ‖x‖ ≤ R, which
implies ∣∣∣∣W 2

2 (PGθ(Z), Q)−W 2
2 (PGθ′ (Z), Q)

∣∣∣∣
≤ sup

MZ,X′∈Π(PZ,Q)

∣∣∣∣EM[ ‖Gθ(Z)−X′ ‖2 − ‖Gθ′(Z)−X′ ‖2
] ∣∣∣∣

≤ sup
MZ,X′∈Π(PZ,Q)

EM
[ ∣∣ ‖Gθ(Z)‖2 − ‖Gθ′(Z)‖2

∣∣+ 2‖X′‖ ‖Gθ′(Z)−Gθ(Z) ‖
]

≤ EPZ

[ ∣∣ ‖Gθ(Z)‖2 − ‖Gθ′(Z)‖2
∣∣+ 2R ‖Gθ′(Z)−Gθ(Z) ‖

]
.

Taking a supremum over Q from both sides of the above inequality shows

sup
Q

∣∣∣∣W 2
2 (PGθ(Z), Q)−W 2

2 (PGθ′ (Z), Q)

∣∣∣∣
≤ EPZ

[ ∣∣ ‖Gθ(Z)‖2 − ‖Gθ′(Z)‖2
∣∣+ 2R ‖Gθ′(Z)−Gθ(Z) ‖

]
. (23)

Since Gθ changes continuously with θ,
∣∣ ‖Gθ(z)‖2−‖Gθ′(z)‖2

∣∣+ 2R ‖Gθ′(z)−Gθ(z) ‖ → 0 as
θ′ → θ holds pointwise. Therefore, sinceX is compact and hence bounded, the bounded convergence
theorem together with (23) implies

sup
Q

∣∣∣∣W 2
2 (PGθ(Z), Q)−W 2

2 (PGθ′ (Z), Q)

∣∣∣∣ θ′→θ−−−→ 0. (24)

Now, combining (22) and (24) shows for any distribution P2∣∣∣∣ df,W2(PGθ(Z), P2)− df,W2(PGθ′ (Z), P2)

∣∣∣∣ θ′→θ−−−→ 0. (25)

Also, if we further assume Gθ is bounded by T locally-Lipschitz w.r.t. θ with Lipschitz constant L,
then

sup
Q

∣∣∣∣W 2
2 (PGθ(Z), Q)−W 2

2 (PGθ′ (Z), Q)

∣∣∣∣
≤ EPZ

[ ∣∣ ‖Gθ(Z)‖2 − ‖Gθ′(Z)‖2
∣∣+ 2R ‖Gθ′(Z)−Gθ(Z) ‖

]
(26)

≤ EPZ

[
| (‖Gθ(Z)‖+ ‖Gθ′(Z)‖) (‖Gθ(Z)‖ − ‖Gθ′(Z)‖) |+ 2R ‖Gθ′(Z)−Gθ(Z) ‖

]
≤ EPZ

[
2T | ‖Gθ(Z)‖ − ‖Gθ′(Z)‖ |+ 2R ‖Gθ′(Z)−Gθ(Z) ‖

]
≤ EPZ

[
2(T +R) ‖Gθ′(Z)−Gθ(Z) ‖

]
≤ 2(T +R)L ‖θ′ − θ ‖,

implying df,W2
(PGθ(Z), Q) is continuous everywhere and differentiable almost everywhere as a

function of θ.

9 Proof of Theorem 8

Note that applying the generalized version of Theorem 6 proved in the Appendix to difference
norm-squared cost c2(x,x′) = ‖x− x′‖2 reveals that for a symmetric f-divergence df and convex
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set F closed to constant additions the minimax problem in Theorem 1 and Corollary 1 for the mixed
divergence df,c2 reduces to

min
G∈G

max
D∈F

EPX
[D(X)] + E

[
min
x′
−f∗(D(x′)) + c2

(
G(Z) , x′

) ]
= min

G∈G
max
D∈F

EPX
[D(X)] + E

[
min
x′
−f∗(D(x′)) +

∥∥G(Z) − x′
∥∥2 ]

(27)

= min
G∈G

max
D∈F

EPX
[D(X)] + E

[
min
u
−f∗

(
D(G(Z) + u )

)
+
∥∥u∥∥2 ]

.

Here the last equality follows the change of variable u = x′ −G(Z). Also, note that df,W2
defined

in the main text is the same as the special case of the generalized hybrid divergence df,c with cost c2.
Hence, the proof is complete.

10 Two additional examples for convex duality framework applied to
Wasserstein distances

10.1 Total variation distance: Energy-based GAN

Consider the total variation distance δ(P,Q) which is defined as

δ(P,Q) := sup
A∈Σ

∣∣P (A)−Q(A)
∣∣, (28)

where Σ is the set all Borel subsets of support set X . More generally we consider δm(P,Q) =
mδ(P,Q) for any positive m > 0. Under mild assumptions, the total variation distance can be cast
as a Wasserstein distance for the indicator cost cm,I(x,x′) = m I(x 6= x′) [7], i.e. δm(P,Q) =
OTcm,I

(P,Q). Note that cm,I is a lower semicontinuous distance function, and hence Lemma 3
applies to cm,I indicating

δm
∗
P (D) = OTcI,m

∗
P

(D)

= EP [DcI,m(X)]

= EP
[
sup
x′

D(x′)−mcI(X,x
′)
]

= EP
[

max
{
D(X) , max

x′
D(x′)−m

} ]
= EP

[
max

{
m+D(X)−max

x′
D(x′) , 0

} ]
+ max

x′
D(x′)−m

Without loss of generality, we can assume that the maximum discriminator output is always 0 which
results in

δm
∗
P (D) = EP

[
max

{
m+D(X) , 0

} ]
−m

Therefore, the minimax problem in Corollaries 1,2 for the total variation distance will be

min
G∈G

max
D∈F

EP [D(X)]− δm∗P (D)

= min
G∈G

max
D∈F

EP [D(X)]− EP
[

max
{
m+D(G(Z)) , 0

} ]
+m

= min
G∈G

max
−D∈F

−EP [D(X)]− EP
[

max
{
m−D(G(Z)) , 0

} ]
+m

= min
G∈G

max
D̃∈F

−EP [D̃(X)]− EP
[

max
{
m− D̃(G(Z)) , 0

} ]
+m

where the last equality follows from the assumption that for any D ∈ F we have −D ∈ F . Since D
is assumed to be non-positive, D̃ takes non-negative values. Note that this problem is equivalent to a
minimax game where discriminator D is minimizing the following cost over F :

LD(G,D) = EP [D(X)] + EP
[

max
{
m−D(G(Z)) , 0

} ]
(29)

which is also the discriminator cost function in the energy-based GAN [8]. Hence, for any fixed
G ∈ G, the optimal discriminator D ∈ F for the total variation’s minimax problem is the same as the
energy-based GAN’s optimal discriminator.
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10.2 Second-order Wasserstein distance: the LQG setting

Consider the second-order Wasserstein distance W2(P,Q), and suppose F is the set of quadratic
functions over X, which is a linear space. Also assume the generator G is a linear function and the
r-dimensional noise Z is Gaussianly-distributed with zero-mean and identity covariance matrix Ir×r.
According to the interpretation provided in Corollary 2, the second-order Wasserstein GAN finds the
multivariate Gaussian distribution with rank r covariance matrix minimizing the W2 distance to the
set of distributions with their second-order moments matched to PX’s moments.

Since the value of E[‖X − G(Z)‖2] depends only on the second-order moments of the vector
[X, G(Z)], we can minimize the W2-distance between the two sets by minimizing this expectation
over Gaussianly-distributed vectors [X, G(Z)] subject to a rank r covariance matrix for [G(Z)] and a
pre-determined covariance matrix for [X]. Hence, the optimal G∗ simply corresponds to the r-PCA
solution for PX.

This example shows Theorem 3 provides another way to recover [9]’s main result under the linear
generator, quadratic discriminator and Gaussianly-distributed data assumptions.
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