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1 Calculation of the natural gradient

In this section we calculate exactly the natural gradient in a deep linear network with Gaussian noise.
We show that the natural gradient is not unique, but the dynamics of the loss function does not depend
on its choice: all possible natural gradients lead to exponentially fast minimization of the loss. We
show that one specific choice of the natural gradient is equivalent to the rule studied in the main text,
Eq.(10) and Eq.(16).

1.1 Standard gradient

Here we summarized the main assumptions of the model and calculate the gradient of the loss
function. The output y of the deep network is specified by the distribution qθ(y|x), conditioned on
the input x, a Gaussian with mean xL and covariance Σ̃, where xL is the output of the last layer of
the deep network, which depends on the parameters θ (all synaptic weights in this section). In a deep
linear network, xL is equal to

xL = Wx (1)
where W is the total weight matrix product across layers, given by

W = WL · · ·W1 (2)

and L is the total number of layers. The number of neurons in layer i is ni, and the number of
components of the input is n0; The matrixWi has size ni×ni−1. The log-likelihood of the conditional
mean xL, given the observed data (x, y), is equal to

`(xL|x, y) = log qθ (y|x) + const = −1

2
(y − xL)

T
Σ̃−1 (y − xL) + const (3)

Note that the log-likelihood depends on the parametersW through the conditional mean xL. Constant
terms do not depend on xL and therefore on W . The loss function is defined as minus the log-
likelihood (only the relevant term) averaged over the true distribution p?(x, y), namely

L(W ) = 〈−`(xL|x, y)〉p? =
1

2

〈
(y −Wx)

T
Σ̃−1 (y −Wx)

〉
p?

(4)
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The goal is to minimize this loss function with respect to the parameters W1, . . . ,WL. For con-
venience of notation, we define the product of weight matrices ahead of a given layer i, equal
to

W a
i = WL · · ·Wi+1 (5)

and the product of weight matrices behind a given layer i, equal to

W b
i = Wi−1 · · ·W1 (6)

Such that the total weight matrix product is rewritten as W = W a
i WiW

b
i for any layer i = 1, . . . , L.

Using all definitions above, we calculate the gradient of the log likelihood with respect to weight
matrix Wi in layer i, which is equal to

∂`

∂Wi
= eix

T
i−1 = W a

i
T ∂`

∂xL
xTW b

i

T
(7)

where the backward error and forward activity are equal to

ei = W a
i
T ∂`

∂xL
xi−1 = W b

i x (8)

respectively a vector of ni and ni−1 components, and the gradient is a matrix of size ni × ni−1. The
gradient of the log likelihood with respect to the network output, for a Gaussian distribution, is equal
to the error weighted by the (inverse) conditional covariance, namely

∂`

∂xL
= Σ̃−1 (y − xL) (9)

Standard gradient descent corresponds to updating the weights according to minus the gradient of the
loss function, or plus the gradient of the averaged log-likelihood, namely

dWi

dt
∝ − ∂L

∂Wi
=

〈
∂`

∂Wi

〉
p?

=
〈
eix

T
i−1

〉
p?

(10)

1.2 Exact Fisher information matrix

The natural gradient is obtained by calculating and inverting the Fisher information matrix, and then
multiplying the result by the gradient, as described by Eq.(4). Note that the gradient for layer i,
Eq.(7), is a matrix of size ni × ni−1; In order to calculate the Fisher information matrix, we need
to express the gradient in vectorized form, where the columns of the matrix are piled up in a single
column vector of nini−1 components. Using Eq.(7), the vectorized form of the gradient for layer i is
equal to

∂`

∂Vec (Wi)
= Vec

(
W a
i
T ∂`

∂xL
xTW b

i

T
)

= (11)

=
(
W b
i ⊗W a

i
T
)

Vec
(
∂`

∂xL
xT
)

=
(
W b
i x
)
⊗
(
W a
i
T ∂`

∂xL

)
(12)

where we used the definition of the Kronecker product⊗. The Fisher information matrix F is given by
Eq.(5); The outer products of gradients is calculated by noting that the vector of all parameters θ piles
up the elements of all weight matrices, and is written in vectorized form as θ = Vec (W1, . . . ,WL).
Therefore, the Fisher information matrix is equal to

F =

〈
∂`

∂Vec (W1, . . . ,WL)
· ∂`

∂Vec (W1, . . . ,WL)

T
〉
pθ

(13)

where all columns of all matrices are piled up in a single vector with P =
∑L
i=1 nini−1 components,

which represents the total number of parameters, and the Fisher matrix has size P × P . In order
to simplify the notation, we consider different blocks of this matrix, each block corresponding to a
different pair of weight matrices (a different pair of layers). The (i, j)-block of the Fisher matrix F is
given by

Fij =

〈
∂`

∂Vec (Wi)
· ∂`

∂Vec (Wj)

T
〉
pθ

(14)
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This block has size nini−1×njnj−1. Using Eq.(12) and the mixed product property of the Kronecker
product, this is equal to

Fij =

〈(
W b
i xx

TW b
j

T
)
⊗

(
W a
i
T ∂`

∂xL

∂`

∂xL

T

W a
j

)〉
pθ

= (15)

=
(
W b
i ⊗W a

i
T
)〈

xxT ⊗ ∂`

∂xL

∂`

∂xL

T
〉
pθ

(
W b
j ⊗W a

j
T
)T

(16)

Again, this expression is averaged over the model distribution pθ(x, y) = qθ(y|x)q?(x). Since the
conditional distribution qθ(y|x) is assumed Gaussian, the two factors inside angular brackets can be
averaged separately; The left factor xxT does not depend on y, thus the right factor can be separately
averaged over qθ(y|x). Once averaged, the right factor gives the inverse conditional covariance (see
Eq.(9)), which does not depend on x for a Gaussian distribution, and the left factor can be then
averaged separately over x. Specifically, we have that〈

xxT ⊗ ∂`

∂xL

∂`

∂xL

T
〉
pθ

=

〈
xxT ⊗

〈
∂`

∂xL

∂`

∂xL

T
〉
qθ

〉
q?

=
〈
xxT

〉
q?
⊗ Σ̃−1 = Σ⊗ Σ̃−1 (17)

where we defined Σ =
〈
xxT

〉
as the covariance of the input (assumed centered - zero mean), and we

used the fact that qθ is Gaussian. Therefore, the (i, j)-block of the Fisher matrix is equal to

Fij =
(
W b
i ⊗W a

i
T
)(

Σ⊗ Σ̃−1
)(

W b
j ⊗W a

j
T
)T

(18)

By the mixed product property of the Kronecker product, this can be rewritten as

Fij =
(
W b
i ΣW b

j

T
)
⊗
(
W a
i
T Σ̃−1W a

j

)
=
〈
xi−1x

T
j−1

〉
pθ
⊗
〈
eie

T
j

〉
pθ

(19)

where we used the definition of backward error and forward activity, Eq.(8). This expression is exact
in the linear Gaussian case studied here, and was derived previously as an approximation of the
nonlinear case [Heskes, 2000, Povey et al., 2014, Desjardins et al., 2015, Martens and Grosse, 2015,
Grosse and Martens, 2016, Ba et al., 2016]).

1.3 Generalized inverse Fisher matrix

In order to calculate the natural gradient, the full Fisher matrix needs to be inverted, including all
blocks. For convenience of notation, we define the following matrix

A =

((
W b

1 ⊗W a
1
T
)T

, . . . ,
(
W b
L ⊗W a

L
T
)T)T

(20)

Note that this matrix has size P × n0nL, and it represents the Jacobian of the function W =
WL · · ·W1. We also define the following matrix, which corresponds to the Fisher information for a
neural network with a single layer

B =
(

Σ⊗ Σ̃−1
)

(21)

which is square, positive definite and invertible, by the assumption that input and output are full rank,
and has size n0nL×n0nL. Then, putting together all blocks of Eq.(18), the full P ×P Fisher matrix
is equal to

F = ABAT (22)
By looking at the size of matrices A and B, it is clear that the Fisher matrix has at most rank n0nL
and is not invertible. This is not surprising: since the feedforward network is linear, only n0nL
parameters are independent, representing the product of the input and output components. However,
we consider the generalized inverse of the Fisher matrix, and we ignore all directions in parameters
space for which no information can be obtained.

We assume that A has maximum rank (it has independent columns), then it has a left inverse Al,
defined by AlA = 1 (identity matrix). This holds typically when all weight matrices are full rank and
the network does not have any bottleneck. Then, the generalized inverse of the Fisher matrix is

Fg = Al
T
B−1Al (23)

Note that the left inverse of A is non-unique, therefore the generalized inverse of the Fisher matrix
is non-unique. However, we show below that the loss decays exponentially towards its minimum,
regardless of the choice of Al.
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1.4 All natural gradients imply exponential decay for the loss

We seek to update the weights according to the natural gradient Eq.(4), which is given by the
generalized inverse, Eq.(23), multiplied by the gradient across all weight matrices. Note that the
vector of all parameters θ, piling up the elements of all weight matrices, is written in vectorized form
as θ = Vec (W1, . . . ,WL), and the update takes a similar vectorized form. Therefore, the natural
gradient updates can be written as

Vec
(
dW1

dt
, . . . ,

dWL

dt

)
∝ AlTB−1Al

〈
∂`

∂Vec (W1, . . . ,WL)

〉
p?

(24)

Note that the average of the gradient is taken over the true distribution p?(x, y). This expression
can be simplified by noting that the vectorized gradient across all layers, using Eqs.(12,20), can be
written as

∂`

∂Vec (W1, . . . ,WL)
= A Vec

(
∂`

∂xL
xT
)

(25)

Therefore, using the left inverse AlA = 1, the natural gradient update is equal to

Vec
(
dW1

dt
, . . . ,

dWL

dt

)
∝ AlTB−1Vec

〈
∂`

∂xL
xT
〉
p?

(26)

Although we eliminated one of the two left inverses in Eq.(24), an explicit expression for the left
inverse Al is still necessary in order to find a simple formula for the natural gradient. We give such
an expression below, but first we show that the total weight matrix product converges exponentially
to the optimal solution, if and only if it is updated using the natural gradient, for any choice of the left
inverse.

The update for the total weight matrix product is given by
dW

dt
=
∑
i

W a
i

dWi

dt
W b
i (27)

Using again the definition of A, Eq.(20), we rewrite this update in vectorized form

Vec
(
dW

dt

)
= ATVec

(
dW1

dt
, . . . ,

dWL

dt

)
(28)

Substituting Eq.(26) into Eq.(28), and using again the left inverse, ATAlT =
(
AlA

)T
= 1, we find

Vec
(
dW

dt

)
∝ B−1Vec

〈
∂`

∂xL
xT
〉
p?

(29)

Perhaps surprisingly, the update for the total weight matrix product does not depend on the left
inverse Al, and thus it does not depend on the specific choice of the generalized inverse Fisher. Using
Eqs.(9,21), the update of the total weight matrix product is equal to

dW

dt
∝ −W +

〈
yxT

〉
p?

Σ−1 (30)

Therefore, the exact natural gradient dynamics predict exponential convergence towards W =〈
yxT

〉
Σ−1, which is indeed the optimal solution of the linear regression problem, regardless of which

specific generalized inverse is chosen for the Fisher matrix. Furthermore, exponential convergence
holds only if weight matrices are updated following a natural gradient. Instead of the natural gradient
in Eq.(24), we may update the weight matrices according to an arbitrary matrix C of size P × P ,
namely

Vec
(
dW1

dt
, . . . ,

dWL

dt

)
= C

〈
∂`

∂Vec (W1, . . . ,WL)

〉
p?

(31)

Then, using Eqs.(25,28), the update of the total weight matrix product is given by

Vec
(
dW

dt

)
=
(
ATCA

)
Vec

〈
∂`

∂xL
xT
〉
p?

(32)

In order to achieve exponential dynamics for any output y (thus for any matrix
〈
yxT

〉
), we must have

ATCA = B−1. There are infinitely possible matrices C satisfying this expression, and they can be
written as C = Al

T
B−1Al, for all possible left inverses Al, but this is indeed a generalized inverse

of the Fisher matrix, Eq.(23).
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1.5 A simple natural gradient for square matrices

We would like to obtain a simple expression for the natural gradient across the single layer matrices
W1, . . . ,WL, using Eq.(26). We note that, if all weight matrices are square and invertible, one
possible left inverse is given by (cf Eq. 20)

Al =
1

L

((
W b

1

−1 ⊗W a
1
T−1

)
, . . . ,

(
W b
L

−1 ⊗W a
L
T−1

))
(33)

We show that this expression implies exactly the update rule studied in the main text (Eq.10 and
Eq.16 of the main text). Substituting Eqs.(9,21,33) into Eq.(26), we have

Vec
(
dWi

dt

)
=

1

L
Vec

(
W a
i
−1 〈(y − xL)xT

〉
p?

Σ−1W b
i

−1
)

(34)

This expression is equal to Eq.(16) of the main text, thus demonstrating that indeed represents an
instance of the natural gradient.

As mentioned in the main text, this exact expression is proportional to the block-diagonal approxima-
tion of the Fisher matrix, even though the Fisher matrix is not block-diagonal. In order to see this, we
invert the diagonal blocks of Eq.(19) and multiply by the gradient Eqs.(12,9)

(Fii)
−1

〈
∂`

∂Vec (Wi)

〉
p?

= Vec
(
W a
i
−1 〈(y − xL)xT

〉
p?

Σ−1W b
i

−1
)

(35)

which is equal to Eq.(34), besides a factor L−1. In order to understand this puzzling observation, we
look at the (i, j)-block of the generalized inverse Fisher matrix, using Eqs.(23), and substituting the
left inverse of Eq.(33), that gives

(Fg)ij =
1

L2

(
W b
i

T−1

Σ−1W b
j

−1
)
⊗
(
W a
i
−1Σ̃W a

j
T−1

)
(36)

Comparing this expression with the block-wise Fisher matrix, Eq.(19), we find that the (i, j)-block of
the inverse Fisher is equal to the inverse of the (transposed) (j, i)-block of the Fisher matrix, besides
a factor L−2. Therefore, the Fisher matrix can be inverted by inverting single blocks individually.
Furthermore, each block of the inverse contributes the same amount to the natural gradient, as shown
by multiplying the last expression by the gradient of layer j (Eqs. 12, 9), namely

(Fg)ij

〈
∂`

∂Vec (Wj)

〉
=

1

L2
Vec

(
W a
i
−1 〈(y − xL)xT

〉
p?

Σ−1W b
i

−1
)

(37)

This expression does not depend on j, therefore each block of the inverse Fisher, across columns,
contributes equally to the natural gradient.

1.6 A simple update for rectangular matrices

In this section we show that, even if the weight matrices are not square and not invertible, Eq.(10) of
the main text approximately results in exponential decay towards the minimum loss, provided that
the Moore-Penrose pseudo-inverse is used when inverting covariances (Eqs. 14,15 in the main text).

In order to simplify the notation, we define the following matrices Ei, Xi〈
eie

T
i

〉
p?

= EiE
T
i Ei = (WL · · ·Wi+1)

T
Σ̃−1/2 (38)〈

xi−1x
T
i−1

〉
p?

= XiX
T
i Xi = (Wi−1 · · ·W1) Σ1/2 (39)

Using the properties of the pseudo-inverse of a product, we can compute explicitly the pseudo-inverse
(denoted by the superscript +) of both covariance matrices, equal to〈

eie
T
i

〉+
p?

= E+
i

T
E+
i

〈
xi−1x

T
i−1

〉+
p?

= X+
i

T
X+
i (40)

Using the definitions of Ei and Xi, we note that the gradient Eq.(13) of the main text can be rewritten
as

∂`

∂Wi
= Ei Σ̃−1/2 (y − xL)xTΣ−1/2 XT

i (41)
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We calculate the natural gradient update, Eq.(10) of the main text, with the pseudo-inverse in place of
the inverse. Using Eqs.(40,41), that is equal to

dWi

dt
∝ 1

L
E+
i

T
E+
i Ei Σ̃−1/2

〈
(y − xL)xT

〉
p?

Σ−1/2 XT
i X

+
i

T
X+
i (42)

Using the properties of the pseudo-inverse, we have that E+
i

T
E+
i Ei = E+

i

T
and XT

i X
+
i

T
X+
i =

X+
i . Furthermore, we use xL = Wx, where we rewrite W = Σ̃1/2ETi WiXiΣ

−1/2. Then the
previous expression is rewritten as

dWi

dt
∝ 1

L
E+
i

T
(

Σ̃−1/2
〈
yxT

〉
p?

Σ−1/2 − ETi WiXi

)
X+
i (43)

We would like to obtain an update for the total weight matrix product, similar to Eq.(18). Substituting
Eq.(43) into the product rule Eq.(27), and using again the definitions of E and X , the update for the
total weight matrix product is equal to

dW

dt
∝ 1

L

L∑
i=1

Σ̃1/2ETi E
+
i

T
(

Σ̃−1/2
〈
yxT

〉
p?

Σ−1/2 − ETi WiXi

)
X+
i XiΣ

−1/2 (44)

Using again the properties of the pseudo-inverse, ETi E
+
i

T
ETi = ETi , andXiX

+
i Xi = Xi, we finally

obtain
dW

dt
∝ −W +

1

L

L∑
i=1

P ai
〈
yxT

〉
p?

Σ−1P bi (45)

where P ai and P bi are projection matrices, defined by P ai = Σ̃1/2
(
E+
i Ei

)T
Σ̃−1/2 and P bi =

Σ1/2X+
i XiΣ

−1/2. Therefore, the total product matrix converges exponentially to the optimal
solution (cf Eq.(18) in the main text). The projection operators P ai and P bi depend on the weight
matrices; the optimal solution is projected into a subspace which depends on the specific form of the
deep network (e.g., whether is contracting, expanding, or has a bottleneck). Note that this result was
obtained assuming that covariances in Eq.(10) of the main text are inverted using the Moore-Penrose
pseudoinverse, and may not hold when using a different kind of inverse.
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