Supplementary Document

Non-Ergodic Alternating Proximal Augmented Lagrangian
Algorithms with Optimal Rates

A Properties of Augmented Lagrangian Function and Optimality Bounds
In this section, we investigate some properties of the augmented Lagrangian function £, in (5).
1.1 Properties of the augmented Lagrangian function

Let us recall the augmented Lagrangian function £, in (3) associated with problem (I). To investigate
its properties, we define the following two functions:

B, A) = llul2 = (), and (2, A) = ¢hp(Az + By — c, ). (12)
Since V9, (u, A A) pU —\is p-Lipschitz continuous in v for any given A € R™, it is obvious that
Dol A) < U, A) + (Vutp(u, A)y uy =) + § g — ul?

A (13)
%(UJ”)\) pr(% ) (V ud}p(uw )>u+_u> ngvu%(qu )_ U¢P( )||27

for any u4,u € R", see, e.g., [18].
Given 21 .= (zF+1 §%) € dom(F) and \F € R™, we also define the following linear function:

C(2) = dp (M NF) + (Vo (BT NF) o — 2T 4 (Vy0, (rgr, AF)y — F). (14)

If we define s* := Az* + By" — cand 8" := Az**! 4+ BjF — ¢, then using the definition of /%
and ¢,, we can easﬂy show that

05(2) = dp(2, A") = §llA(x — ") + By — §")|?, ¥z € dom(F),

(15)
h(2*) = =582 and £5(2%) = ¢, (5, AF) — §||sk — &MH1|12,
where z* € Z* is any solution of ().
For any matrix B := [B1, -, By concatenated from m matrices B; fori = 1,--- ,m, we define
Lp :=|B||*and Lp := m-max {||B;||* | 1 <i < m}, where || B| and || B;| is the operator norms
of B and B;, respectively. For any d = [dy,--- ,d,,] € RP, we can easily show that
IBdI* = || Y Bidil® < | BI|dlI* < m Y 1Bil*llds]|* < Ly dlf*. (16)

i—1 i=1
By the definition of ¢, using (14), (15), and (16), for any (z,y) € dom(F), § € dom(g), and
= R™, we can derive

~ R “ P N
¢ (l' Y, ) ¢p( ) - <vy¢p(x7ya A)vy - y> = §||B(y - y)||2
Hence, by (16), we can show that

Q L
0p(@,9,3) = Gy 5, X) = (Vy (.9, 0,y = ) < By —9l” < B2y — g% ()

1.2 The proof of Lemma Approximate optimal solutions of
For any z € dom(F'), we have F* = L(z*,A\*) < L(z,\*) = F(z) — (A\*, Az + By — ¢). Using
the definition of .S, (-), we obtain

S,(2,A) + (A, Az + By — ¢) — g||Ax—|— By —c|? = F(z) — F(2*) > (\*, Az + By — ¢). (18)

This inequality implies

§llAz + By — ¢l — [Ix = M| Az + By — c| = S,(2,A) 0, (19)
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which leads to
2pS,(2,A) + A= X[? > p?||Az + By — cf]* — 2p[|]A = M|[[| Az + By — ¢|| + |A — X*|?
= [pll Az + By — c|| — ||]x = X*[]* > 0.

From from (19), we also have ||Az + By — ¢|| < % [||)\ =2+ VA= M2 +2pS, (2, )\)} by
solving a quadratic inequation. This is the second inequality of (6).
Next, from (18), we have

F(z) = F* < 8,(2,\) - §]| Az + By — c|? + |\ Az + By — |

2 2
< Sp(z )~ § [z + By - of = BI]" 4 130
< S (2 \) 4 1212
= p(za )"‘ 2p "

Using the Cauchy-Schwarz inequality, it follows from F* < F(z) — (A\*, Az + By — c¢) that
—|IX*||||Az + By — ¢|| < F(z) — F*. Combining these two inequalities and the second estimate of
(6), we obtain the first estimate of (6). O
B Convergence analysis of Algorithm
Lemma [B.T and Lemma[B.2 below are key to analyze the convergence of Algorithm [I]
Lemma B.1. Assume that L, is defined by (3), and f’;k is defined by (14). Let 2** be computed by
Algorithm Then, for any z € dom(F'), we have

‘Cﬂk (Zk+17 5‘k) < F(Z) + gl;k (Z) + ’Vk<xk+1 - ‘%kwr - i'k> - 'Vkak—H - i'kHz

) (20)
+ Byt — gy — gF) — Clampela) |kt gk 2,

Proof. Using with p = py, (z,y) = (a1, ) = 2840 (2, 9) = (%1, g%) = 2FF1 and
A = A\*, we have

Bpi (ZFTLAR) < @, (BFTLAR) (Vg (M NE), i1 — k) - LiZB b2 — g2 (21)

Next, using again ¢, from (12}, we can write down the optimality condition of the z-subproblem at
Step[5|and the y;-subproblem at Step [6]of Algorithm [T]as follows:

{ 0 = VI + Ve (M) et =38, VfE) €0f (@),
0 = Vgt + Yy, GFHLA) + Bu(yit —98),  Vailyl™) € 0gi(yf™).
Using the convexity of f and g, for any € dom(f) and y € dom(g), we have

S S @)+ (VA ), VEE corht),

g < gy) + (Ve ), " —y),  Vg(yFth) € dg(ytT).

Combining (1)), (22), and (23), and then using the definition (3)) of £, for any z = (z,y) € dom(F),
we can derive that

Lo (PN = f(aP41) + g(yF+Y) + by (2FF1, NF)

@é@ f(@) + (V) 2F T —2) + g(y) + (Vg ),y —y)

+ G (FFFLANF) 4 (W, (FFF1AF) yh L — ) 4 LB ||yl g2
@ F(Z) + ¢Pk (ékJrl’ 5\k) + <v$¢ﬂk (2k+1’ ;\k)v T — xk+1> + <vy¢pk (2k+17 j‘k)’ Yy — yk>
4 ’Yk<§?k _ mk+1,xk+1 _ .7;> + Bk@k _ yk-‘rl’ yk+1 _ y> + %Hyk-&-l _ ngQ
T F(a) 4 05 () + lahtl — 35— 30) — |t — 302
+ Byt — gy — gty — Clmplal b gk,
which is exactly (20). O
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Lemma B.2. Ler (25, \F, 2F+1 Zk+1Y be generated by Algorithm |Z Then, for any A € R", if
0 < 20 < pTk, then one has

2
Loy (N < (1= 1)Ly, (25, 0) + 7 F(2%) + B [||75 — 272 — @+ — 27||?]
+ETE [k — |2 — g — y*||2] S [IAF = A2 = A=A 29

—2px L ~
s Pl — P = S5 [okn — k(1 — )] [15*P,

where 1y, € [0, 1], and py, Bk, Vi, and ny, are positive parameters, and sk = Axk + Byk —c

Proof. Using with z = 2 and 2 = 2*, respectively, and then using (13)), we obtain
. (T3) “ R . .
L) 2 L (6830 = Bk — S (o — o = i)

~ ~ ~ .—prL ~
_,kamk—&-l _ $k||2 + 5k<yk+1 _ yk7yk _ yk> _ Mnyk-ﬁ-l _ kaQ7

N LE
Lo (F1,08) 2 F(%) = 8 [P gt — ¥, — 38) ot — 4P
~L ~ —pr L ~
B (YT = gty — gF) - BRpEn) it g2,

Here, s* := Ax* 4+ By* — cand §*! := A2z**! + Bj* — c. Multiplying the first inequality by
(1 = 7) € [0,1] and the second one by 73, € [0, 1] and summing up the results, and then using the

fact that £,,, (25, \F) = £, | (2%, \F) 4 L£=Pio1) ) k)12 e can estimate
k+1 3k k 1- o Tepi || ok
Lo (LAY < (1= 7o) L (27, AF) 4 mi (%) — U8 |[sh — ght 2 — Tape | ghtt 2
R A i ) B T [ A e VAN AR A e

~ L ~
= Byt = g - Ry — g

_ (1 _ Tk)ﬁpk,l(zk,j\k) + TkF(Z ) o ’Y?k”kakli i’k||2 M”ﬁﬁrl ~lc||2

2 2
42 (13— 2 — 85—t 7] + 2 (17 — o I — 15 ]
_ (1—Tk)mc Hsk _ Ak+1H2 Tkpk I Ak+1||2 + (1*%)(%*%—1) Hsk||2 (25)
Here, we use 7,2F = x (1 —m)zk, gk = 9F — (1 — 7)Yk, Tk( kL gk = ghtl gk,
(G — %) = y*+1 — g, and an elementary expression 2(a, b) — |ja||> = [ja — b]|% — ||b]|.
Now, let §¥1/2 := Az*+1 4 Bj¥ — c. Then, it is trivial to estimate the quantity 7 below
T = (I1—7&)pw ||5k . §k+1”2 + Tlcpk ||§k+1||2 (A=) (pr—pr-1) ||5kH2
: 2 2
= &Hékﬂ — (1 —7)s||? + 0 7 (o1 = pre(1 = 7)] || 5% (26)

~ (1-
= PR32 2 4 ) [y — i1 = )] "2

Here, we use the fact that ghtl — (1 — Tk)S = Az** + Bjk —c— (1 — ) (A2* + By* —¢) =
Te(AZFHY 4+ Bk — ¢) = 7,58 1/2,

Using the relation £,(z, \) = £,(z, A)+ (A=A, Az+ By —c) from @), 21 — (1—7,)2F = 7, 2511,
and (26), we can further derive from for any A € R” that

Lo (N < (1= 70) Loy (25, 0) + 7o F(2%) — S5 [y — pi(1 — 7)) 18712
+2TE |13 — a2 — | — *||2]+’3“k (5% = y*11% = 13 — v*)1?]

k41 k2 Bu—peLlB)TE 1 ~k+1 _ ~k||2 @D
— Lokt k|2 CrmphER)T gkl gk

~ 2
+Tk<>\k _ )\,Axk"'l + Byk+1 _ c> _ ka'rk ||Sk+1/2||2.

Let 571 := AZ+*+1 4 BjF+1 — ¢. From the update rule \¥+1 := A} — 5 (AZF 1 4+ Bght! —¢) =
AP — e 381 if we define My := 7 (A\F — A, AZF+1 + By*F+! — ¢), then we can estimate M}, as

A R e R Y R P G P e &
I8 = A2 = A = A7) + s 2

(28)
- 27]k [
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Substituting into (27) we obtain
Loo(#N) < (U= 1)Ly, (2, 0) + e F (%) + 25 [|7F — 2|2 — |55+ — 2|

72 ~ ~ T
+ 2 [l1g% =y 1 = 15+ — g*112] + 52 [|AF = A2 = A+ = A1) 29
T, T2 |~ Lp)t2 | ~ ~
4 M k||sk+1H2 Pk PET ||5k+1/2||2 (Br— Pk B)T 15 k+1 ka2
=05 g = pr(1 = )] [|s*]|2.

Finally, by using ||u||? — 2||v[|? < 2||u — v||?, it is straightforward to show that if 2n; < pxT, then

~ ~ L ~ ~
77k27'k H5k+1”2 Pka H k+1/2||2 BPka ” k+1 yk||2.
Therefore, substituting this estimate into (29)), we obtain (24)). O

From Lemma we need to derive rules for updating the parameters 7, px, Yk, Ok, and 1. These
updates are guided by the following lemma, which is shown in Algorithm|[I]

Lemma B.3. If the parameters Ty, px, Yk, Bk, and ny are updated as
{ Th = 151> Pk=po(k+1), B = 2Lppo(k + 1),

=1, and 0 <y < (FE)w

(30)

then the sequence {(z*,7%)} satisfies

%S, (5, A0)+ -

m||53k—x*||2—|—2p0LB||g]k—y*||2 < olla® —2**+2p0 L5y ~y*II*, G1)

where S, (2* A0 =L, (25, \0) — F*, and py > 0 and ~o > 0 are given.
Proof. First, we choose to update 74, as 74, = -7 +1 Then, 7y = 1. From the last term of (24)), we

impose pr—1 — pr(1 — 7) = 0. This suggests us to update p, as pr, = po(k + 1).

We also choose By := 2Lppy and 1y = ”’“% to guarantee By — 2ppLp > 0 and 21, < pg7k,
respectively. Using the update of 7, and pj, we can easily show that 5, = 2Lgpo(k + 1) and
Ny, := £ as shown in (30).

Using the update (30) and ) := A into with Sy, == L, _, (2, A\%) — F*, we have

FIZ5F — ¥ [ + po Lp ||+ — y*||* < kSi

(k+1)Sk41 + p%HS\kH - X2+

+ D
+ LN = A0 4 s 12— 2|12+ poLpll§F - v
We also choose 1’121 < 114]-91 Hence, by induction, the last inequality leads to
kSk+ L[N = X0)1° + g 18 — 2% 2+ po Ls||7* —v*[I* < (170 —2*|* + poLs1§° —v*|I*.
Since 7% = z° and §° = y°, by ignoring the term _- ||>\k A||2, the last inequality leads to (31)).
Finally, the condition 7;_&1 < k“g’jl holds if 0 < fyk_H < ( : _H)yk O

The proof of Theorem[3.1] Let R3 := 70\\x — 2*||2 + 2poLs|ly° — y*||*>. From (BI), we have

Spe (28 A0) = L, (2 )\0) F* < 22, Moreover, p,_1 = pok. Substituting these two expres-
sions into (6), we obtaln O

C Lower bound on convergence rates of Algorithm

In order to show that the convergence rate of Algorithm [T is optimal, we consider the following
example studied in [28]:

min {F(2):= f(@) + g(y) | & —y = 0}, (32)

Z:=[7;7y]
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which is a split reformulation of an additive composite objective function F(x) = f(z) + g(x).
Algorithm|T]for solving can be cast as a special case of the following generic scheme:

(9%, \F) are linear combinations of previous iterates

k+1

x = proxwf(fnk — ’yk_lj\k)

- Q . . . 33
(zF*+1 A*+1)  are linear combinations of computed iterates (33)

~ —13
k+1 = proxﬁk_g(xk"'1 - By )\k+1).

Y

Then, there exist f and g defined on {z € RS | ||z|| < B} which are convex and L-Lipschitz
continuous such that the general primal-dual scheme exhibits a lower bound:

LB
F ok > f ,
@) 2 s+
where a”ck.:: Z§=1 ozj:?j. + Zle oy for any «; agd o; with 5,1 = 1,--- k. This example can
be found in [14] Proposition 5]. Consequently, Algorithm[T has a lower bound convergence rate of
O (). Hence, the O () convergence rate stated in Theoremis optimal within a constant factor.

D Convergence analysis of Algorithm
Lemmas D.T]and [D.2] provide key estimates to prove the convergence of Algorithm 2]

Lemma D.1. Assume that L, is defined by (3), and K’; is defined by (14). Let Q’; be defined as
O, (1) = b (LA (Vo (BFTH AF),y — ) + 2252 |y — 97|, (34)
Then, ¢,, (z*+1,y, AR < Q’;k (y) for any y € RP,

Let (zF+1, 2541 28 \F) be computed by Algorithm and §**1 = (1 — 7)y* + 7 g* L. Then, for
any z € dom(F), we have

Lpft o= fa™) + g(" ) + O, (1) < (1= ) [F(F) + 65, (z7)]
720~ 720 ~ . A
+ 7 [F(2) + 05, (2)] + 255 (|28 — of|? = P75 @5 — |2 — B2 — 2] (35)

2 2 B — oL 2 _
+ ﬂk;k ||yk: _ y||2 _ Bka;‘Mng ||yk+1 . y||2 _ (B Pl; B)T ||yk+1 _ y”“||2

Proof. Since 2% = (1 —714)2% + 7. 2%, we have (1 — 73,)2% + 7,71 — 2%+ = 0 and g*+ — g% =
Te(§* T — §*). Using these expressions, 37"+, é’;k_ in (14), and Q’;k in (34), we can derive
Qb (7™1) = ¢ (BF T AF) 4 (U (BF T, AF), gFF1 — ) 4 2o | gt — g2

= (1=7) [ B (B2 A) (Va8 (2011, 3F), b = ab1) (9, (2841, 30), = )|
T [¢pk(2k—0—1, :\k) n <Vx¢pk(2k+1, ;\k)7i,k+1_mk+1> + (Voo (5P 5\1«)’ gk+1_gk>}
+ (Vabp (541, 89), (1= m)ak 4+ mh+! — oh41) 4 emhe giat _ ghy2

© (1m0t () + il (541)  27EEE g g2, (36)

By the convexity of f and ¢t — (1 — 7)2* = 7,1, for any € dom(f) and V f(zF*+1) €
Of (z**+1), we can estimate that
F@Mh) < f((1 = m)a? + mew) + (V) 2" — (1 = 7)a® — )
< (L= mi) f(a®) + i f @) + T (V (2", 78 —a),
Since y**! := (1 — 7,)y* + gttt
dg(F**1), we have

v ~L Te(1—Tr ) ~
g < (1= 7)g(yk) + meg(htt) — TS gkt 1 k2
< (1= 71)9(W") + Teg(y) + Te(Vg(gF ), gh Tt — ) — R |G+t — y|2.

(37)

, by pg-convexity of g, for any y € dom(g) and Vg(g**1) €

(38)
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Next, note that
gk ( k+1) :¢pk(£,k+175\k)+<vx¢ (Ak+1 Xk) i‘k+1—xk+1>+<v ¢p ( k1 /\k) ~k+1 g >
Gpi (BFNE) (Vi (2P, AF) 0 — M) 4 (V asp (M, A8),y — 9F)

(39)
+ <v$¢Pk (2k+17 /\k)v'ik—i_l - .’17> + <v (bpk (2k+17 )‘k) y - y>
= 05, () + (Vady, (BFHAR), B4 — 2) + (V6 (2571, AF), g4 — ).
Combining (36), (37), (38)), and (39, for any z := (z,y) € dom(F’), we can derive
Lt D ) + ) + QF, (74
GD.68).69
< (1—75) [F(zk) + E’;k(zk)] + T [F(z) + E’;k(z)] (40)

+Tk<Vf($k+1)+V ¢pk(Ak+1 5\19) ffk+1—$>+Tk<vg@kﬂ)+vy¢pk (2k+1,5\k)7gk+1_y>

o Tk:u'g ” ~k+1 yH2 + PkaLB ” ~f+1 ngQ

Next, from the optimality condition of the 2- and y;-subproblems in Algorithm 2] we can show that

{ vf(karl) + Vadp, (2k+1’5\k) _ ,yk(@k _ xk+1) vf(karl) c af(mlwrl)’ an
V() + Vydy (LAY =B (5F - g, V(R € ag(ghth).
Moreover, we also have
T B e { i g ek L
2(g* — z]’““,zj’““ - y) = 19" =yl = g5 =yl = [lg"" = g*|1>.

Using (1) and @2)) into (40), we can further derive

Lyt 2 (1= 7) [F(z%) + 65, (M)] + 700 [F(2) + 6, (2)] = P52 1§ — gl
T2 ~ ~
T (EF — 2R B — ) 4 r2 By (F — g, Y — ) + TR || — g2

@ (1—7%) [F(zk) + é’;k(zk)] + T [F(z) + é’;k(z)]

2 2
_|_Wk,2‘fk ka _ 93||2 _ 'Yk27—k ka+1 _ 1,”2 _ %Hxlwrl _ kaZ

BeTi+ . —prLp)T2 | ~ .
(sz”g"'k)||yk+1 (Br—p B)‘rkHylc-~-1_kaQ7

7-2 ~
+ 27 gyl — B
which is exactly (33). O
Lemma D.2. Let {(z*, 2%, % \F)} be the sequence generated by Algorithm Then

L (PN < (1= 1)L, (28 0F) + 1 F (2%) — U5 (g — pi(1 — 7)) ]|5¥]|
T2\ ~ * T, ~ * A
Jr’Yka”xkix ”2 Yk k” k+1 _ ||27’)’27k||xk+17xk||2

(43)

T2~ - —pLB)T2 | ~ -
+ ﬂk;’k Hyk . y*||2 . (Bkﬂc;ﬂgﬂc) ||yk+1 (B Pl; B)Th Hy’“*l _ ka2

—y*? -
~ A 2
S = 3O B = i) - ey 2 - ey,

where i, B, and py, are positive parameters T € [0,1], s¥ = AzF + By* — ¢, ghH1/2 =
AP+ Bik — ¢ and *t = (1 — ) y" + Tt L

Proof. Using with z = z*, and then combining the result with (I3)), we obtain
A N * 1—m, N 'y A
LhFY < (1= )Ly, (28 AF) 4 P (24) — Ggelie|ghe! — b2 — e jgba 2

2 2
+'Yk27'k ij _ x*HQ _ ’Yk27'k- ij-i-l _ x*HQ _ %”xk-i-l _ .kaQ

2 2 B o L 2 B
+ ﬁszk Hyk _ y||2 _ (Bka;‘Hng) ||yk+1 . y||2 Bk l); B)Th Hyk-i-l . kaQ.
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Next, using £, (25, \F) = £, , (2%, \F) 4 2=Pe=1) || k(|2 i the last inequality, and then combin-
ing the result with (26)), we obtain

A N * 1—7g 11— 1— 72~
El;;rl <(1- Tk)ﬁpk,l(zk,)\k) + 7 F(2%) — (1—7%)(Px 12 Pk ( k))”Sk:”Z _ Pka”SkJrl/QHz

+vk27,f 7% — z*|2 — ’chQTf |ZE L — 2|2 — %ka—ﬁ—l — k2 (44)

2 2 —
+5k27k Hgk _ y*Hz . (ﬂm;um) Hgk+1 (Br P;LB T ”ykﬂ

—y*? - 71
Now, we consider two cases corresponding to the two options at Step [TT]of Algorithm 2}
Option 1: If y**1 = y*+1 then we have

Loy (ZFHLNF) = f(@PH1) + g(yF ) + @ (2P, AF)
FE@FFL) g L) + @y, (ZFHLNF) + (Vg (2L, NF), g +L — gk
+ | - g

_ f(l.k+1) +g(27k+1)+ Qk (vk+1)
— [k+1
Pk

INS

o ~ ~ . L .
— El;:rl _ <>\k _ /\07B(yk+1 _ yk+1)> _ Pk2 B ||yk+1 _ yk+1||2.

Here, the last relation follows from the fact that (\F — A0, B(y*+1 —gk+1)) 4 exlo ot ght1)2 =
0 since y**! = y**1. Combining the last estimate and (#4), we obtain the key estimate (@3).

BT (pkr 5\0)), then we write it as

Option 2: If we choose ka = PrOXg, /(p,Ly) (gjf PkLB

yf—i_l = argnéin {gi(yl) + <vy7¢ﬂk (2k+17 j‘o)ayi - yAz > + %”yl - yz || } foralli = 17 e, M
From the optimality condition of these y;-subproblems, one can easily show that

. 2 R N R

GYFT) + (Vyp, (BFTLN0) gL — gk  LezB ||ghtl gk 2
v v ~ L ) ~ L v

< g + (Vyp, (BFF1,A0) i+t — k) 4 el gkl gh|2 _ orln gkl _ ghit)2,

Using ¢, (zF 41, g1 k) < QF (y**1) from Lemma and the last inequality, we can derive
Lo (AR = f@F ) 4 g(yF ) + ¢, (AR

D {1 g + Bpr (FFFLAR) 4 (Vy (BFFL AR, 1 — )

+ LB ||yt k)2

=f(x’“+ ) + Gy (ZEF,AR) — (BT (AF — X0), b1 — )

+ gyt ) + < ybpi (BFFL,A0), it A’“>+ ERLE ||yktT k|2

S f($k+1) (Zk'H, /\k) <BT()\k ) yk+1 _ Qk> _ %”yk+l _ ?jk+1||2
+ (") + < yGpi (BFFLN0), Rt — k) 4 pels || ghtd gk 2

< I 5 . 5
< ﬁl;jl _ sz B ||yk+1 _ yk+1||2 _ <>\k o )\O,B(ykJrl _ yk+1)>.
Combining this estimate and (44), we obtain the key estimate (43). O

Our next step is to show how to choose the parameters 7, Sk, pk, and 7 € [0, 1] such that we can
obtain a convergence property of £,, (-).

Lemma D.3. [f the parameters Ty, pk, Yk, Bk, and ny, are updated as

{ =2 (TR + DY2 — 1), pi Z,(f) 43)
Ye =% =0, Br:=2Lppy, and ny := PE,
with 1g := 1 and py € (O, 4L } then
2
. T2 ~ ~
Ly (25,20 = F(2*) < 2 []|2° — 2% + 2p0 L [17° — v*]1*] - (46)
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Proof. Since L£,(2,\°) = L,(z,\F) + (\¥ — X\, Az + By — c), from (@3), we have
L (MH1,00) < (1= )Ly, (25, 0%) + F (%) = S5 (o s — pi(1 = 7)) 5%
e R R e LS A
+ 2k g — )2 - yIl? -
+ (AP = 2O Aghtl 4 Byktl — ¢ — (1 — 7.)(AzF + ByF —¢))

~ ~ 2
— (\k 30, B(ykH1 — k1)) kaLB [yt — ght|2 — Pk27—k |\5k+1/2\|2~

(5I~Tk+ﬂy"'k)‘|~k+1 (B pkLB i |gF =gk )2 @7

Now, using §**1 — (1 — 7)y* = 7ghtL, 28 — (1 — p)a? = 7@
AL = NP — i (AZFE L+ BgFtl — ) = A — 5,551 we can show that
My = (\F = A0, Agh+l 4 Byl — ¢ — (1 — 7)(Az® + By® — ¢) — B(y*! — 1))

= (\F — X0, Aghtl 4 Bkttt — ¢ — (1 — 7.)(Az® + ByF — ¢))
= 1 (AF = X0, AZFH1 + Bt — )
— %<5\k_5\0,;\k_5\k+1> — ‘)\k )\OHQ_ ‘lj‘k+1_5‘0‘|2] _‘_%Hgk-unzl

Using this estimate of M}, into (47), similar to (29), if 21, < pg7k, then we can show that

Lo (L) < (1= )Ly, (25, 00) + 7 (2%) = L5 (o1 = pi(1 = 7)) | "2

2 2
+ 'YkQTk: H.’ik _ :L'*”Q o ’Yk27'k Hi.k+1 _ :L'*”Q + ﬂk%”g _ y*||2

k+1 and the dual update

277k U

(48)
—g*|?
‘)\k 5\0H2 _ Hj\k-ﬁ-l _ 5\0“2].

y*“Z
L 9
Pk2 B ||yk+1 yk+1||2

_ (ﬂknf;ugm) g4+ (ﬂr2p2kLB)T;f 54+

2771c [|
Let us first update 7y, as Tk =11 (R, +4)1/2 —T—1) With7g = 1, and py, = f asin @) It
is not hard to show that <7 < =

2 — £ k=1 _ . b
k+1 wis and p = =2 Moreover, [[,—, (1 —7;) 7 < (k+1)2_

To guarantee 8 > 2Lppg and 21, < pp 7k, we can update 8y, := 2Lppg and 1, 1= p’“QJ. Therefore,
{@8) can be simplified as

~ ~ 2
Lo (PN < (1= 1) Lo, (25, A°) + 7 F(2%) + 25|25 — 2|
T2 ~ o 2 ~ T2 o ~
_’Yk2 i ka+1 _ '73*”2 + Bszk Hyk _ y*HQ Bk k;—ugm) ||yk+1 _ y*HQ (49)
A YE 3012 _ I \k+1 _ )02
o (A = A1 = [IA A%11%].

Now, let us define

. | RN Ve-1Ti—1 | - (Be—1Tf_1 + HgTh—1)
Ak: = Epk_l(zk’AO)_F*_i_pikH)\k_)\0||2+¢”xk_x*”2+ k— 12 g || —y ||2
Assume that
1 1 B2 ) Yk TE 2
— < — B _ d —E& <~y . 50
=y 1-m Br—1Tj_1 + gTh—1 an [ < Ve—1Ti 1 (50)
Then, (@9) implies Ax+1 < (1 — 7)Ak. By induction, and 7y = 1, we can show that
=
Ae <5 (H(l - Tz‘)) [YollZ° — 2*|1 + Boll7® — v*II%] ,
i=1
Since [[2'(1 — =) = ,f L and By = 2Lppo, the last inequality implies S, (%, \°) :=
Ly, (25,30) = F(z%) < T2 [7]12° — |12 + 200 Lsl|§° — y*|2], which proves (@9).
Since S := 2Lppy, the condition fﬁ:’; < 51@—17';3_1 + f1gTk—1 becomes LBple’sz <

2

= ”“ = 7};_4. the last condition holds if L g pg ™ Th=1 <

Lppi— 1T,€ 1+ —Tk 1. Using p, =
£e Since 1 < T’;—kl <2, LB,ooTkT—k1 S N holds 1f 4Lppo < g This condition leads to pg <

— 4LB.
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Next, the condition {75 < 4,177, shows that we can choose 7, as 7, < 74—1. This condition
holds if we fix vy, := 70 > 0. Now, we find the condition for 7, in (43). Since pj, = 25, the condition
k

L <1 iy is automatically satisfied. O

Pk — Pk—1

The proof of Theorem[3.2] Let R3 := ol|2° — 2*[|? + 2poLp||y° — y*||*. Since #° = 20 and

5 2 N 2R2
7% = 4, from (@6), we have S, ,(zF,\%) =L, ,(2*,\0) — F* <72 |RZ < iz Moreover,

2 ~
Ph—1 = % > % and pr—15,,_, (2%, A\%) < poR3. Substituting these estimates into (6)), we

obtain (9). O

4.1 Lower bound of convergence rate for the semi-strongly convex case

We consider again example (32)), where we assume that g is p4-strongly convex. Algorithmgfor
solving are special cases of if g is strongly convex. Then, by [28| Theorem 2], the lower
bound complexity of to achieve & such that F'() — F* < eis ) (%) Consequently, the rate
of Algorithm 2]stated in Theorem|3.2]is optimal.

E Additional numerical experiments
We provide more numerical examples to support our theory presented in the main text.

5.1 The /,-Regularized Least Absolute Derivation (LAD)

We consider the following ¢;-regularized least absolute derivation (LAD) problem widely studied in
the literature:

F* = min {F(y) = By~ cly + syl }. 51)

where B € R™"*? and ¢ € R™ are given, and x > 0 is a regularization parameter. This problem is
completely nonsmooth. If we introduce z := By — ¢, then we can reformulate (51)) into (I)) with two
objective functions f(x) := ||z||; and ¢g(y) := &||y||1 and a linear constraint —x + By = c.

We use problem to verify our theoretical results presented in Theorem and Theorem
[3:2] We implement Algorithm [I (NEAPAL), its parallel scheme (NEAPAL-par), and Algorithm
2 (scvx-NEAPAL). We compare these algorithms with ASGARD [23] and its restarting variant,
Chambolle-Pock’s method [3]], and standard ADMM |[2]. For ADMM, we reformulate into the
following constrained setting:

min { ol + w2l | ~2+By=c¢, y—z=0}
z,Y,z

to avoid expensive subproblems. We solve the subproblem in x using a preconditioned conjugate
gradient method (PCG) with at most 20 iterations or up to 10~ accuracy.

We generate a matrix B using standard Gaussian distribution A(0, 1) without and with correlated
columns, and normalize it to get unit column norms. The observed vector c is generated as ¢ :=
Bab 4+ 6£(0,1), where 27 is a given s-sparse vector drawn from A(0,1), and 6 = 0.01 is the
variance of noise generated from a Laplace distribution £(0, 1). For problems of the size (m,n, s) =
(2000, 700, 100), we tune to get a regularization parameter x = 0.5.

We test these algorithms on two problem instances. The configuration is as follows:

» For NEAPAL and NEAPAL-par, we set pp := 5, which is obtained by upper bounding
m as suggested by the theory. Here, y* and A\* are computed with the best
accuracy using an interior-point algorithm in MOSEK.

* For scvx-NEAPAL we set pg = W by choosing i, = 0.5.

* For Chambolle-Pock’s method, we run two variants. In the first variant, we set step-sizes

T=0= ﬁ, and in the second one we choose 7 = 0.01 and 0 = W as suggested
in [3]], and it works better than 7 = ﬁ We name these variants by CP and CP-0.01,
respectively.

* For ADMM, we tune different penalty parameters and arrive at p = 10 that works best in
this experiment.
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The result of two problem instances are plotted in Figure | Here, ADMM-1 and ADMM-10 stand for
ADMM with p = 1 and p = 10, respectively. CP and CP-0.01 are the first and second variants of
Chambolle-Pock’s method, respectively. ASGARD-rs is a restarting variant of ASGARD, and avg-
stands for the relative objective residuals evaluated at the averaging sequence in Chambolle-Pock’s
method and ADMM. Note that the O (7 )-rate of these two methods is proved for this averaging
sequence.

I _

Ry T

avg-ADMM-
\, **- -ADWI-Tg]

0 500 1000 1500 2000 0 500 1000 1500 2000
Iterations Iterations

Figure 4: Convergence behavior of 9 algorithmic variants on two instances of after 1000 iterations. Left:
Without correlated columns; Right: With 50% correlated columns.

We can observe from Figure [ that scvx-NEAPAL is the best. Both NEAPAL and NEAPAL-par have
the same performance in this example and slightly slower than CP-0.01, ADMM-10 and ASGARD-rs.
Note that ADMM requires to solve a linear system by PCG which is always slower than other
methods including NEAPAL and NEAPAL-par. CP-0.01 works better than CP in late iterations but
is slow in early iterations. ASGARD and ASGARD-rs remain comparable with CP-0.01. Since both
Chambolle-Pock’s method and ADMM have O (%)-convergence rate on the averaging sequence, we
also evaluate the relative objective residuals and plot them in Figure[d] Clearly, this sequence shows
its O (%)—rate but this rate is much slower than the last iterate sequence in all cases. It is also much
slower than NEAPAL and NEAPAL-par, where both schemes have a theoretical guarantee.

5.2 Image compression using compressive sensing

In this last example, we consider the following constrained convex optimization model in compressive
sensing of images:

min (V)= DY |21 | £0) = b}, (52)

Y €RP1 X P2

where D is 2D discrete gradient operator representing a total variation (isotropic) norm, £ : RP1*P2 —
R™ is a linear operator obtained from a subsampled transformation scheme [2]], and b € R" is a
compressive measurement vector [1]. Our goal is to recover a good image Y from a small amount of
measurement b obtained via a model-based measurement operator L. To fit into our template (1)), we
introduce x = DY to obtain two linear constraints £(Y) = b and —z + DY = 0. In this case, the
constrained reformulation of (52)) becomes

P i min {F(2) i= |l | o — DY =0, £(v) = b},

where f(z) = ||z]|2,1, and g(Y') = 0.

We now apply Algorithm [T (NEAPAL), its parallel variant (NEAPAL-par), and Algorithm [2
(scvx-NEAPAL) to solve this problem and compare them with the CP method in and ADMM
[2]]. We also compare our methods with a line-search variant Ls-CP of CP recently proposed in [3]].

In CP and Ls-CP, we tune the step-size 7 and find that 7 = 0.01 works well. The other parameters
of Ls-CP are set as in the previous examples. For NEAPAL and NEAPAL-par, we use pg := 2| B|%.
We also use pg := 10||B||? and call the variant of AlgorithmEand its parallel scheme NEAPAL-v2
and NEAPAL-par-v2, respectively in this case. We set i, 1= m in scvx-NEAPAL as a guess for
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restricted strong convexity parameter. For the standard ADMM algorithm, we tune its penalty parameter
and find that p := 20 works best.

We test all the algorithms on 4 MRI images: MRI-of -knee, MRI-brain-tumor, MRI-hands, and

MRI—wrist We follow the procedure in [2] to generate the samples using a sample rate of 25%.

Then, the vector of measurements c is computed from c := L(Yh), where Yt is the original image.

Table 2: Performance and results of 8 algorithms on 4 MRI images

Algorithms FYF) W Error PSNR Time[s]| f(Y*) W Error PSNR Timels]
MRI-knee (779 X 693) MRI-brain-tumor (630 X 611)
NEAPAL 24350 263702 4.672¢:02 8393  80.15| 36.101  2.724e-02 6.575¢-02 79.50  53.77
NEAPAL-par 24335  2539e-02 4.676e-02 8393  98.38| 36028  2.738e-02 6.595¢-02 7947 5271
NEAPAL-v2 28.862  7.125¢-05 4.143¢-02 8498  73.56| 39317  5.226e-05 6310e-02 79.85 5297

NEAPAL-par-v2 29.183 7.247e-05 4.007e-02 85.27 95.49| 39.594 5.338e-05 6.258e-02 79.93 51.64
scvx-NEAPAL 24.633 2.295e-02 4.424e-02 84.41 87.96| 36.783 2.184e-02 5.780e-02  80.62 65.12

CP 24.897 2.674e-02 4.629e-02 84.01 101.22| 37.745 3.613e-02 7.896e-02 77.91 63.71

Ls-CP 24.955 2.638e-02 4.659e-02 8396 106.11| 38.139 3.414e-02 7.485e-02 78.37 66.12

ADMM 25.071 2.556e-02 4.654e-02 83.97 902.79| 38.941 2.895e-02 6.135e-02 80.10  655.81
MRI-hands (1024 X 1024) MRI-wrist (1024 x 1024)

NEAPAL 45.207 2.081e-02 2.765e-02 91.37 146.41| 29.459 1.802e-02 3.224e-02 90.04 152.51

NEAPAL-par 45.207 2.081e-02 2.765e-02 91.37 140.41| 29.459 1.802e-02 3.224e-02  90.04 148.12

NEAPAL-v2 48.679 7.336e-05 2.074e-02 93.87 138.65| 30.578 8.516e-05 2.572e-02 92.00 146.05

NEAPAL-parallel-v2 | 48.858 7.483e-05 2.008e-02 94.15 148.79| 30.768 8.766e-05 2.473e-02 9234 146.64
scvx-NEAPAL 45.426 1.820e-02 2.588e-02 91.95 154.35| 29.403 1.647e-02 3.131e-02 90.29 157.35

CP 45.723 2.489e-02 3.895e-02 88.40 159.74| 30.052 2.032e-02 3.661e-02 88.93 165.58
Ls-CP 53.640 2.724e-02 3.924e-02 88.33  162.94| 39.396 2.353e-02 3.856e-02 88.48 168.29
ADMM 45.985 2.034e-02 3.443e-02 89.47 1691.53| 29.922 1.825e-02  3.686e-02 88.88 1503.56

The performance and results of these algorithms are summarized in Table |Z, where f(Y*) :=
IY*—Y¥r
Y3 r
original image Y? to the reconstruction Y'* after k = 300 iterations.

|DY*||2.1 is the objective value, Error := presents the relative error between the

We observe the following facts from the results of Table [2|

* NEAPAL, NEAPAL-par, and scvx-NEAPAL are comparable with CP in terms of computational
time, PSNR, objective values, and solution errors.

* NEAPAL-v2 and NEAPAL-par-v2 give better PSNR and solution errors, but have slightly
worse objective value than the others.

* Ls-CP is slower than our methods due to additional computation.

» ADMM gives similar result in terms of the objective values, solution errors, and PSNR, but it
is much slower than other methods due to the PCG inner loop.
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