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A Basic Definitions for the Tied Weight Case

Recall, from the main paper, that the stability of a NAIS-Net block with fully connected or convolu-
tional architecture can be analyzed by means of the following vectorised representation:

x(k + 1) = f(x(k), u) = x(k) + hσ

(
Ax(k) +Bu+ b

)
, (1)

where k is the unroll index for the considered block. Since the blocks are cascaded, stability of each
block implies stability of the full network. Hence, this supplementary material focuses on theoretical
results for a single block.

A.1 Relevant Sets and Operators

A.1.1 Notation

Denote the slope of the activation function vector, σ(∆x(k)), as the diagonal matrix, σ
′
(∆x(k)),

with entries:

σ
′

ii(∆x(k)) =
∂σi(∆x(k))

∂∆xi(k)
. (2)

The following definitions will be use to obtain the stability results, where 0 < σ � 1:

Pi = {(x, u) ∈ Rn × Rm : σ
′

ii(x, u) ≥ σ},

P = {(x, u) ∈ Rn × Rm : σ
′

ii(x, u) ≥ σ,∀i},

Ni = P ∪ {(x, u) ∈ Rn × Rm : σ
′

ii(x, u) ∈ [0, σ)},

N = {(x, u) ∈ Rn × Rm : σ
′

ii(x, u) ∈ [0, σ),∀i},

(3)

In particular, the set P is such that the activation function is not saturated as its derivative has a
non-zero lower bound.
∗The authors equally contributed.
†The author derived the mathematical results.
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A.1.2 Linear Algebra Elements

The notation, ‖ · ‖ is used to denote a suitable matrix norm. This norm will be characterized
specifically on a case by case basis. The same norm will be used consistently throughout definitions,
assumptions and proofs.

We will often use the following:

Lemma 1. (Eigenvalue shift)

Consider two matrices A ∈ Cn×n, and C = cI + A with c being a complex scalar. If λ is an
eigenvalue of A then c+ λ is an eigenvalue of C.

Proof. Given any eigenvalues λ of A with corresponding eigenvector v we have that:

λv = Av ⇔ (λ+ c)v = λv + cv = Av + cv = Av + cIv = (A+ cI)v = Cv (4)

Throughout the material, the notation Ai• is used to denote the i-th row of a matrix A.

A.1.3 Non-autonomuous Behaviour Set

The following set will be consider throughout the paper:

Definition A.1. (Non-autonomous behaviour set) The set P is referred to as the set of fully non-
autonomous behaviour in the extended state-input space, and its set-projection over x, namely,

πx(P) = {x ∈ Rn : ∃u ∈ Rm, (x, u) ∈ P}, (5)

is the set of fully non-autonomous behaviour in the state space. This is the only set in which every
output dimension of the ResNet with input skip connection can be directly influenced by the input,
given a non-zero3 matrix B.

Note that, for a tanh activation, then we simply have that P ⊆ Rn+m (with P → Rn+m for σ̄
′ → 0).

For a ReLU activation, on the other hand, for each layer k we have:

P = P(k) = {(x, u) ∈ Rn × Rm : A(k)x+B(k)u+ b(k) > 0}. (6)

A.2 Stability Definitions for Tied Weights

This section provides a summary of definitions borrowed from control theory that are used to describe
and derive our main result. The following definitions have been adapted from [2] and refer to the
general dynamical system:

x+ = f(x, u). (7)

Since we are dealing with a cascade of dynamical systems (see Figure 1 in (main paper)), then
stability of the entire network can be enforced by having stable blocks [4]. In the remainder of this
material, we will therefore address a single unroll. We will cover both the tied and untied weight
case, starting from the latter as it is the most general.

A.2.1 Describing Functions

The following functions are instrumental to describe the desired behaviour of the network output at
each layer or time step.

Definition A.2. (K-function) A continuous function α : R≥0 → R≥0 is said to be a K-function
(α ∈ K) if it is strictly increasing, with α(0) = 0.

Definition A.3. (K∞-function) A continuous function α : R≥0 → R≥0 is said to be a K∞-function
(α ∈ K∞) if it is a K-function and if it is radially unbounded, that is α(r)→∞ as r →∞.

3The concept of controllability is not introduced here. In the case of deep networks we just need B to be
non-zero to provide input skip connections. For the general case of time-series identification and control, please
refer to the definitions in [6].
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Definition A.4. (KL-function) A continuous function β : R2
≥0 → R≥0 is said to be a KL-function

(β ∈ KL) if it is a K-function in its first argument, it is positive definite and non- increasing in the
second argument, and if β(r, t)→ 0 as t→∞.

The following definitions are given for time-invariant RNNs, namely DNN with tied weights. They
can also be generalised to the case of untied weights DNN and time-varying RNNs by considering
worst case conditions over the layer (time) index k. In this case the properties are said to hold
uniformly for all k ≥ 0. This is done in Section B. The tied-weight case follows.

A.2.2 Invariance, Stability and Robustness

Definition A.5. (Positively Invariant Set) A set X ⊆ Rn is said to be positively invariant (PI) for a
dynamical system under an input u ∈ U ⊆ Rn if

f(x, u) ∈ X , ∀x ∈ X . (8)

Definition A.6. (Robustly Positively Invariant Set) The set X ⊆ Rn is said to be robustly positively
invariant (RPI) to additive input perturbations w ∈ W if X is PI for any input ũ = u + w, u ∈
U ,∀w ∈ W .
Definition A.7. (Asymptotic Stability) The system Eq. (7) is called Globally Asymptotically Stable
around its equilibrium point x̄ if it satisfies the following two conditions:

1. Stability. Given any ε > 0, ∃δ1 > 0 such that if ‖x(t0) − x̄‖ < δ1, then ‖x(t) − x̄‖ <
ε,∀t > t0.

2. Attractivity. ∃δ2 > 0 such that if ‖x(t0)− x̄‖ < δ2, then x(t)→ x̄ as t→∞.

If only the first condition is satisfied, then the system is globally stable. If both conditions are satisfied
only for some ε(x(0)) > 0 then the stability properties hold only locally and the system is said to be
locally asymptotically stable.

Local stability in a PI set X is equivalent to the existence of a KL-function β and a finite constant
δ ≥ 0 such that:

‖x(k)− x̄‖ ≤ β(‖x(0)− x̄‖, k) + δ, ∀x(0) ∈ X , k ≥ 0. (9)

If δ = 0 then the system is asymptotically stable. If the positively-invariant set is X = Rn then
stability holds globally.

Define the system output as y(k) = ψ(x(k)), where ψ is a continuous, Lipschitz function. Input-to-
Output stability provides a natural extension of asymptotic stability to systems with inputs or additive
uncertainty4.
Definition A.8. (Input-Output (practical) Stability) Given an RPI set X , a constant nominal input ū
and a nominal steady state x̄(ū) ∈ X such that ȳ = ψ(x̄), the system Eq. (7) is said to be input-output
(practically) stable to bounded additive input perturbations (IOpS) in X if there exists a KL-function
β and a K∞ function γ and a constant ζ > 0:

‖y(k)− ȳ‖ ≤ β(‖y(0)− ȳ‖, k) + γ(‖w‖) + ζ, ∀x(0) ∈ X , (10)
u = ū+ w, ū ∈ U , ∀w ∈ W, ∀k ≥ 0.

Definition A.9. (Input-Output (Robust) Stability) Given an RPI set X , a constant nominal input ū
and a nominal steady state x̄(ū) ∈ X such that ȳ = ψ(x̄), the system Eq. (7) is said to be input-output
(robustly) stable to bounded additive input perturbations (IOS) in X if there exists a KL-function β
and a K∞ function γ such that:

‖y(k)− ȳ‖ ≤ β(‖y(0)− ȳ‖, k) + γ(‖w‖), ∀x(0) ∈ X , (11)
u = ū+ w, ū ∈ U , ∀w ∈ W, ∀k ≥ 0.

4Here we will consider only the simple case of y(k) = x(k), therefore we can simply use notions of
Input-to-State Stability (ISS).
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A.3 Jacobian Condition for Stability

The 1-step state transfer Jacobian for tied weights is:

J(x(k), u) =
∂f(x(k), u)

∂x(k)
= I + h

∂σ(∆x(k))

∂∆x(k)
A = I + hσ

′
(∆x(k))A. (12)

Recall, from the main paper, that the following stability condition is introduced:
Condition 1. (Condition 1 from main paper)

For any σ > 0, the Jacobian satisfies:
ρ̄ = sup

(x,u)∈P
ρ(J(x, u)) < 1, (13)

where ρ(·) is the spectral radius.

A.4 Stability Result for Tied Weights

Stability of NAIS-Net is described in Theorem 1 from the main paper. For the sake of completeness,
a longer version of this theorem is introduced here and will be proven in Section C. Note that proving
the following result is equivalent to proving Theorem 1 in the main paper.
Theorem 1. (Asymptotic stability for shared weights)

If Condition 1 holds, then NAIS-Net with ReLU or tanh activations is Asymptotically Stable with
respect to input dependent equilibrium points. More formally:

x(k)→ x̄ ∈ Rn, ∀x(0) ∈ X ⊆ Rn, u ∈ Rm. (14)
The trajectory is described by:

‖x(k)− x̄‖ ≤ ρ̄k‖x(0)− x̄‖ (15)
where ‖ · ‖ is a suitable matrix norm and ρ̄ < 1 is given in Eq. (13).

In particular:

1. With tanh activation, the steady state is independent of the initial state, namely, x(k) →
x̄ ∈ Rn, ∀x(0) ∈ Rn. The steady state is given by:

x̄ = −A−1(Bu+ b).

The network is Globally Asymptotically Stable with respect to x̄.

2. If the activation is tanh then the network is Globally Input-Output (robustly) Stable for any
input perturbation w ∈ Rm. The trajectory is described by:

‖x(k)− x̄‖ ≤ ρ̄k‖x(0)− x̄‖+ γ(‖w‖), (16)
with input-output gain

γ(‖w‖) = h
‖B‖

(1− ρ̄)
‖w‖. (17)

If ‖w‖ ≤ µ, then the following set is robustly positively invariant:
X = {x ∈ Rn : ‖x− x̄‖ ≤ γ(µ)} . (18)

In other words:
x(0) ∈ X ⇒ x(k) ∈ X , ∀k > 0. (19)

3. In the case of ReLU activation, the network admits multiple equilibria, x̄, and is Locally
Asymptotically Stable with respect to each x̄. In other words

x(k)→ x̄ ∈ X̄ ⊂ Rn, ∀x(0) ∈ Rn.

The steady state x̄ is determined by a continuous piece-wise linear function of the input and
the of initial condition. All network steady states are also contained in the set:

X̄ = {x̄ ∈ Rn : Ax̄+Bu+ b ≤ 0}. (20)
Moreover, if Ai•x + Bi•u + bi < 0 is verified for some i and for a finite unroll length,
k̄i ≥ 0, then we have that:

xi(k̄i + t) = xi(k̄i) = x̄i, ∀t ≥ 0. (21)
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4. If the activation is ReLU, then the network is Globally Input-Output practically Stable. The
trajectory is described by:

‖x(k)− x̄‖ ≤ ρ̄k‖x(0)− x̄‖+ γ(‖w‖) + ζ. (22)

The input-output gain is given by Eq. (17), and the constant ζ > 0 is the norm ball radius
for the initial condition, namely,

X = {x ∈ Rn : ‖x− x̄‖ ≤ ζ}.

If the additive input perturbation satisfies ‖w‖ ≤ µ, then the state converges to the ultimate
bound:

X̃ = {x ∈ Rn : ‖x− x̄‖ ≤ ζ + γ(µ)} . (23)
In other words:

∃X̃ , X ⊂ X̃ ⊂ Rn : x(0) ∈ X ⇒ x(k)→ X̃ , (24)
for any input perturbations, w. The perturbed steady state for a constant w depends also on
the initial condition and it is a point in the set:

X̃w = {x̃ ∈ Rn : Ax̃+B(ū+ w) + b ≤ 0}, (25)

where u = ū+ w and ū is the nominal input.

B NAIS-Net with Untied Weights

B.1 Proposed Network with Untied Weights

The proposed network architecture with skip connections and our robust stability results can be
extended to the untied weight case. In particular, a single NAIS-Net block is analysed, where the
weights are not shared throughout the unroll.

B.1.1 Fully Connected Layers

Consider in the following Deep ResNet with input skip connections and untied weights:

x(k + 1) = f(x(k), u, k) = x(k) + hσ

(
A(k)x(k) +B(k)u+ b(k)

)
, (26)

where k indicates the layer, u is the input data, h > 0, and f is a continuous, differentiable function
with bounded slope. The activation operator σ is a vector of (element-wise) instances of a non-linear
activation function. In the case of tied weights, the DNN Eq. (26) can be seen as a finite unroll of
an RNN, where the layer index k becomes a time index and the input is passed through the RNN
at each time steps. This is fundamentally a linear difference equation also known as a discrete time
dynamic system. The same can be said for the untied case with the difference that here the weights of
the RNN will be time varying (this is a time varying dynamical system).

B.1.2 Convolutional Layers

For convolutional networks, the proposed layer architecture can be extended as:

X(k + 1) = F (X(k), U, k)

= X(k) + hσ

(
C(k) ∗ (k) +D(k) ∗ U + E(k)

)
,

(27)

where X(i)(k), is the layer state matrix for channel i, while U (j), is the layer input data matrix
for channel j (where an appropriate zero padding has been applied) at layer k. An equivalent
representation to Eq. (27), for a given layer k, can be computed in a similar way as done for the
tied weight case in Appendix D.2. In particular, denote the matrix entries for the filter tensors C(k)

and D(k) and E(k) as follows: C(c)
(i) (k) as the state convolution filter from state channel i to state

channel c, and D(c)
(j)(k) is the input convolution filter from input channel j to state channel c, and

E(c)(k) is a bias matrix for the state channel c.
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Once again, convolutional layers can be analysed in a similar way to fully connected layers, by means
of the following vectorised representation:

x(k + 1) = x(k) + hσ
(
A(k)x(k) +B(k)u+ b(k)

)
. (28)

By means of the vectorised representation Eq. (28), the theoretical results proposed in this section
will hold for both fully connected and convolutional layers.

B.2 Non-autonomous set

Recall that, for a tanh activation, for each layer k we have a different set P(k) ⊆ Rn+m (with
P(k) = Rn+m for ε→ 0). For ReLU activation, we have instead:

P = P(k) = {(x, u) ∈ Rn × Rm : A(k)x+B(k)u+ b(k) > 0}. (29)

B.3 Stability Definitions for Untied Weights

For the case of untied weights, let us consider the origin as a reference point (x̄ = 0, ū = 0) as no
other steady state is possible without assuming convergence for A(k), B(k). This is true if u = 0
and if b(k) = 0,∀k ≥ k̄ ≥ 0. The following definition is given for stability that is verified uniformly
with respect to the changing weights:
Definition B.1. (Uniform Stability and Uniform Robustness) Consider x̄ = 0 and ū = 0. The
network origin is said to be uniformly asymptotically or simply uniformly stable and, respectively,
uniformly practically stable (IOpS) or uniformly Input-Output Stable (IOS) if, respectively, Defini-
tion A.7, A.8 and A.9 hold with a unique set of describing functions, β, γ, ζ for all possible values
of the layer specific weights, A(k), B(k), b(k), ∀k ≥ 0.

B.4 Jacobian Condition for Stability

The state transfer Jacobian for untied weights is:

J(x(k), u, k) =
∂f(x(k), u, k)

∂x(k)
= I + hσ

′
(∆x(k))A(k). (30)

The following assumption extends our results to the untied weight case:

Condition 2. For any σ̄
′
> 0, the Jacobian satisfies:

ρ̄ = sup
(x,u)∈P

sup
k
ρ (J(x(k), u, k)) < 1, (31)

where ρ(·) is the spectral radius.

Condition Eq. (31) can be enforced during training for each layer using the procedures presented in
the paper.

B.5 Stability Result for Untied Weights

Recall that we have taken the origin as the reference equilibrium point, namely, x̄ = 0 is a steady
state if ū = 0 and if b(k) = 0,∀k ≥ k̄ ≥ 0. Without loss of generality, we will assume b(k) = 0,∀k
and treat u as a disturbance, u = w, for the robust case. The following result is obtained:
Theorem 2. (Main result for untied weights)

If Condition 2 holds, then NAIS–net with untied weights and with ReLU or tanh activations is
Globally Uniformly Stable. In other words there is a set X̄ that is an ultimate bound, namely:

x(k)→ X̄ ⊆ Rn, ∀x(0) ∈ X ⊆ Rn. (32)

The describing functions are:

β(‖x‖, k) = ρ̄k‖x‖, γ(‖w‖) = h
‖B̄‖

(1− ρ̄)
‖w‖,

B̄ = sup
k
‖B(k)‖, ρ̄ < 1,

(33)
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where ‖ · ‖ is the matrix norm providing the tightest bound to the left-hand side of Eq. (31), where ρ̄
is defined.

In particular, we have:

1. If the activation is tanh then the network is Globally Uniformly Input-Output robustly
Stable for any input perturbation w ∈ W = Rm. Under no input actions, namely if u = 0,
then the origin is Globally Asymptotically Stable. If u = w ∈ W whereW is the norm ball
of radius µ, then the following set is RPI:

X =

{
x ∈ Rn : ‖x‖ ≤ r̄ =

h‖B̄‖
1− ρ̄

µ

}
. (34)

2. If the activation is ReLu then the network with zero nominal input is Globally Uniformly
Input-Output practically Stable for input perturbations in a compact W ⊂ Rm. The
describing function are given by Eq. (33) and the constant term is ζ = r̄, where r̄ is the
norm ball radius for the initial condition, namely,

X = {x ∈ Rn : ‖x(0)‖ ≤ r̄}. (35)

This set is PI under no input action.

If u = w ∈ W where W is the norm ball of radius µ, then the state converges to the
following ultimate bound:

X̄ =

{
x ∈ Rn : ‖x‖ ≤ r̄ + h

‖B̄‖µ
(1− ρ̄)

}
. (36)

Note that, if the network consists of a combination of fully connected and convolutional layers, then
a single norm inequality with corresponding β and γ can be obtained by means of matrix norm
identities. For instance, since for any norm we have that ‖ · ‖q ≤ α‖ · ‖p, with α > 0, one could
consider the global describing function β(·, ·) = αβp(·, ·). Similarly for γ.

C Stability Proofs

Stability of a system can then be assessed for instance by use of the so-called Lyapunov indirect
method [7], [4], [6]. Namely, if the linearised system around an equilibrium is stable then the original
system is also stable. This also applies for linearisations around all possible trajectories if there is a
single equilibrium point, as in our case. In the following, the bias term is sometimes omitted without
loss of generality (one can add it to the input). Note that the proofs are also valid for RNNs with
varying input sequences u(k), with asymptotic results for converging input sequences, u(k) → ū.
Recall that y(k) = x(k) by definition and let’s consider the case of b(k) = 0, ∀k, without loss of
generality as this can be also assumed as part of the input.

The untied case is covered first. The proposed results make use of the 1-step state transfer Jacobian
Eq. (30). Note that this is not the same as the full input-to-output Jacobian, for instance as the one
defined in [1]. The full Jacobian will also contain the input to state map, given by Eq. (39), which
does not affect stability. The input to state map will be used later on to investigate robustness as well
as the asymptotic network behaviour. First, we will focus on stability, which is determined by the
1-step state transfer map. For the sake of brevity, denote the layer t state Jacobian from Eq. (30) as:

J(t) = I + hσ
′
(∆x(t))A(t), ∀t ≥ 0.

Define the discrete time convolution sum as:

yu(k) =

k−1∑
t=0

H(k − t)u(t), k > 0, yu(0) = 0.

The above represent the forced response of a linear time invariant (LTI) system, namely the response
to an input from a zero initial condition, where H is the (in the LTI case stationary) impulse response.
Conversely, the free response of an autonomous system from a non-zero initial condition is given by:

yx0
(k) =

(
k−1∏
t=0

J(t)

)
x(0).
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The free response tends to zero for an asymptotically stable system. Considering linearised dynamics
allows us to use superposition, in other words, the linearised system response can be analysed as the
sum of the free and forced response:

y(k) = yx0(k) + yu(k).

Note that this is not true for the original network, just for its linearisation.

For the considered network, the forced response of the linearised (time varying) system to an impulse
at time t, evaluated at time k, is given by:

H(k, t) = hσ
′
(∆x(t))B(t), if k = t+ 1, (37)

H(k, t) =

(
k−2∏
l=t

J(l + 1)

)
hσ

′
(∆x(t))B(t), ∀k ≥ t+ 2. (38)

Therefore, the forced response of the linearised system is:

yu(k) = hσ
′
(x(k − 1), u(k − 1))B(k − 1)u(k − 1)

+

k−2∑
t=0

(
k−2∏
l=t

J(l + 1)

)
hσ

′
(∆x(t))B(t)u(t)

=

k−1∑
t=0

H(k, t)u(t). (39)

Note that:

‖H(k, t)‖ ≤ h sup
(x,u)∈P, j

‖J(x, u, j)‖(k−t−1)‖B(j)‖, ∀k, t ≥ 0

since ‖σ′‖ ≤ 1.

To prove our results, we will use the fact that the network with tanh or ReLU activation is globally
Lipschitz, and that the activation functions have Lipschitz constant M = 1 with respect to any norm.
This follows from the fact that:

sup
∆x∈Rn

max
i
|σ

′

ii(∆x)| = 1.

This means that the trajectory norm can be upper bounded inside P ⊆ Rn × Rm by means of:

‖f(x, u, k)‖ ≤ sup
(x,u)∈P

sup
k
‖J(x, u, k)‖‖x‖+ sup

(x,u)∈P
sup
k

k−1∑
t=0

‖H(k, t)‖‖u‖ (40)

For a non-zero steady state x̄ we can define the error function:

e(k) = x(k)− x̄, (41)

From the fact that the network equation is globally Lipschitz and that f(x̄, ū) = x̄, we can show that
the function that maps e(k) into e(k + 1) is also Lipschitz for all k. In particular, denoting e(k + 1)
as simply e+ and dropping the index k for the sake of notation, we have the following:

‖e+‖ = ‖f(x, ū)− x̄‖ = ‖f(x, ū)− f(x̄, ū)‖
= ‖x+ hσ(Ax+Bū+ b)− x̄− hσ(Ax̄+Bū+ b)‖

≤ sup
(x,u)∈P

sup
t

(
‖I + hσ

′
(∆x(t))A‖‖x− x̄‖

)
+ h‖Bū−Bū+ b− b‖

= sup
(x,u)∈P

sup
t

(
‖I + hσ

′
(∆x(t))A‖

)
‖x− x̄‖.

(42)
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Note that, at the next step, we also have:

‖f(f(x, ū), ū)− x̄‖ = ‖f(f(x, ū), ū)− f(f(x̄, ū), ū)‖

≤ sup
(x,u)∈P

sup
t

(
‖I + hσ

′
(∆x(t))A‖

)
‖f(x, ū)− f(x̄, ū)‖

+h‖Bū−Bū+ b− b‖

= sup
(x,u)∈P

sup
t

(
‖I + hσ

′
(∆x(t))A‖

)
‖f(x, ū)− f(x̄, ū)‖

= sup
(x,u)∈P

sup
t

(
‖I + hσ

′
(∆x(t))A‖

)
‖f(x, ū)− x̄‖

≤ sup
(x,u)∈P

sup
t

(
‖I + hσ

′
(∆x(t))A‖2

)
‖x− x̄‖. (43)

and therefore, by induction it also follows that the trajectory at time k satisfies:

‖ ◦kt=0 f(x, ū)− x̄‖ = ‖f ◦ f ◦ . . . f (f(x, ū))− x̄‖

≤

(
sup

(x,u)∈P
sup
t
‖I + hσ

′
(∆x(t))A‖

)k

‖x− x̄‖ = ρ̄k‖x− x̄‖ (44)

By definition of P , from the above we have that, for tanh activation, the network trajectory with
respect to an equilibrium point x̄, can be upper bounded in norm by the trajectory of the linearization
while in P . In the limit case of σ̄

′ → 0 the bound becomes global as P → Rn × Rm. On the other
hand, for ReLU activation the upper bounds are valid only locally, in P iself. These considerations
will be used to prove our main results.

Proof. (Proof of Theorem 2: Main result for untied weights) In the untied weight case the network
does not admit non-zero steady states, as the matrices A(k) and B(k) are not assumed to converge
with increasing k. Let us therefore consider the origin as our reference point, namely, (x̄ = 0, ū = 0).
Therefore, for the robust results we will consider the input u = w. The proof can now proceed
by norm bounding the superposition of the free and forced response. Recall that y(k) = x(k)
by definition and consider b(k) = 0, ∀k, without loss of generality. Now, if (x, u) ∈ P , for the
linearised system we have the following:

‖x(k)− x̄‖ = ‖e(k)‖

≤ sup
(x,u)∈P

sup
j
‖J(x, u, j)‖k‖e(0)‖+

k−1∑
t=0

‖H(k, t)‖ ‖w(t)‖

≤ ρ̄k‖e(0)‖+ h

k−1∑
t=0

ρ̄k−t−1 sup
j
‖B(j)‖‖w‖

≤ β(‖e(0)‖, k) + γ(‖w‖).

(45)

In the above, we have defined:
β(‖e‖, k) = ρ̄k‖e‖,

γ(‖w‖) = h
‖B̄‖

(1− ρ̄)
‖w‖,

B̄ = sup
j
‖B(j)‖, ρ̄ < 1.

(46)

In Eq. (45), we have used the fact that if ρ(J) < 1 then there exist a suitable matrix norm ‖ · ‖
and a constant ρ̄ < 1 such that ‖J‖ ≤ ρ̄. This stems directly from Theorem 5.6.12, page 298
of [3]. In our case, ρ̄ < 1 is verified when (x, u) ∈ P since, from Condition 2, we have that
sup(x,u)∈P supj ρ (J(x, u, j)) < 1. Outside the region P , however, we need to consider the specific
activation functions: for tanh, the region P can be taken to be any subset of the reals, therefore being
outside this set as P → Rn×m contradicts asymptotic stability. 5 For ReLU activation, being outside

5Note that, when using tanh, in the limit case of σ̄
′

= 0, P = Rn+m the system becomes simply stable.
This is a small subtlety in our result for tanh, which could be defined as almost global or more formally valid in
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P means that (at least part of) the system is autonomous and therefore the network is simply stable
and Input-Output practically stable.

Theorem statements are proven as follows:

1. Global Stability follows from point 2 by taking x̄ = 0 and δ = γ(‖u‖).

2. Note that, the condition (x(t), u) 6∈ P is only possible for ReLU activations, since for
tanh activation we have that P → Rn+m for σ̄

′ → 0 and this would contradict stability
result Eq. (45) inside the set. This means that Eq. (45) holds globally and therefore the
considered network with tanh activations is Input-Output stable for a real-valued input u.
Same considerations apply for the robust case with an additive perturbation w ∈ Rm.

In order to show the existence of a robust positively invariant set, consider the candidate set:

X =

{
x ∈ Rn : ‖e‖ = ‖x− x̄‖ ≤ r̄ =

r

1− ρ̄

}
, (47)

and the disturbance set:
W = {w ∈ Rm : ‖w‖ ≤ µ}. (48)

Then from the IOS inequality we have that, if x(0) ∈ X and w ∈ W , the bound µ can be
computed so that X is RPI. To construct the bound, it is sufficient to have the following
condition to hold ∀k ≥ 0:

‖e(k)‖ ≤ ρ̄k‖e(0)‖+
h‖B‖

(1− ρ̄)
‖w‖ ≤ r̄, ∀w : ‖w‖ ≤ µ. (49)

The above is verified ∀k ≥ 0 if the bound µ satisfies by the following sufficient condition
when ‖e(0)‖ ≥ r̄:

‖e(k)‖ ≤ ρ̄k−1‖e(0)‖+ ρ̄k−1(ρ̄− 1)‖e(0)‖+
h‖B̄‖

(1− ρ̄)
‖w‖

≤ ρ̄k−1‖e(0)‖+ (ρ̄− 1)‖e(0)‖ sup
j

j∑
t=0

ρ̄j−1 +
h‖B̄‖

(1− ρ̄)
‖w‖

= ρ̄k−1‖e(0)‖ − (1− ρ̄)

(1− ρ̄)
‖e(0)‖+

h‖B̄‖
(1− ρ̄)

‖w‖

≤ ρ̄k−1‖e(0)‖ ≤ ‖e(0)‖
≤ ρ̄k−1r̄ ≤ r̄, IF ‖e(0)‖ = r̄

⇐ h‖B̄‖
(1− ρ̄)

‖w‖ ≤ ‖e(0)‖ ≥ r̄

⇐ r

(1− ρ̄)
≥ h‖B̄|2

(1− ρ̄)
‖u‖

⇔ r ≥ h‖B̄‖‖w‖

⇐ ‖w‖ ≤ r

h‖B̄‖
= µ.

(50)

This will not necessarily hold in the interior of the set but it will hold outside and on the
boundary of this compact set. Therefore the set X is invariant under u = ū + w, with
w ∈ W , namely, no solution starting inside X can pass its boundary under any w ∈ W .
Note that, for tanh activations, this result holds globally. Conversely, given a bound µ for
W , we can compute r̄ such that there is a set X that is RPI, namely:

X =

{
x ∈ Rn : ‖x‖ ≤ r̄ =

h‖B̄‖
1− ρ̄

µ

}
. (51)

every bounded subset of reals. However, from the steady state analysis (to follow) and the contraction result we
can see that σ

′
= 0 is highly unlikely to happen in practise.
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3. Global Stability follows from point 4 by taking x̄ = 0 and δ = γ(‖u‖) + ζ.

4. For ReLU activations, the set P(k) does not cover the entire Rn. This complicates the
analysis further as the output i of the network layer k becomes autonomous when (x(k), u) 6∈
Pi(k). In particular, if at any k = t we have (x(t), u) 6∈ Pi(t) then we also have that:

xi(t+ 1) = xi(t)⇒ ‖e(t+ 1)‖ ≤ β(‖e(0)‖, t) + γ(‖w‖)
≤ β(‖e(0)‖, t+ 1) + γ(‖w‖) + ζt, (52)

where:

ζt = sup
x(0)∈X

(
β(‖e(0)‖, t)− β(‖e(0)‖, t+ 1)

)
= sup

x(0)∈X
ρ̄t(1− ρ̄)‖e(0)‖. (53)

Where X = {x ∈ Rn : ‖x− x̄‖ ≤ r̄} is a bounded set of initial states. From the last two
equations we can satisfy the IOpS condition, with:

‖e(k)‖ ≤ β(‖e(0)‖, k) + γ(‖w‖) + ζ, (54)

ζ = sup
k

k∑
j=0

ζj =
(1− ρ̄)

(1− ρ̄)
r̄ = r̄. (55)

From the above we can notice that the set X is positively invariant if u = ū. If instead
u = ū + w with w ∈ W = {w ∈ Rm : ‖w‖ ≤ µ} then, by taking the sup over this set
of the gain γ, and over k of the IOpS inequality Eq. (54), we have the ultimate bound X̄
defined by:

X̄ =

{
x ∈ Rn : ‖x− x̄‖ ≤ r̄ + h

‖B̄‖µ
(1− ρ̄)

}
, (56)

such that x(0) ∈ X ⊂ X̄ ⇒ x(k) → X̄ as k → ∞. Therefore, since x̄ = 0, for ReLU
activations in the untied case we have global uniform Input-Output practical stability around
the origin.

We are now ready to prove Theorem 1 and its shorter version from the main paper.

Proof. (Proof of Theorem 1: Asymptotic stability for shared weights)

1. Recall that we have assumed that, for a tanh activation function, the network dynamics can
be globally approximated by its linearisation. In the case of tied weights we have, for tanh
activation, the steady state condition:

x̄ = x̄+ h tanh(Ax̄+Bu+ b)⇔ Ax̄+Bu+ b = 0. (57)

The network has a unique input-dependant steady state x̄ with steady state gain G :
‖H(k)‖ → G, given by, respectively6:

x̄ = −A−1(Bu+ b), (58)

G =

∥∥∥∥∂x̄∂u
∥∥∥∥ =

‖B‖
‖A‖

. (59)

From this point and the above considerations in the proof of Theorem 2 we will now prove
that in the case of tied weights, the network with tanh activation is Globally Asymptotically
Stable with equilibrium x̄ given by Eq. (58). In order to do this we will again use the
linearized system and apply superposition of the free response with the forced response. In
particular, from the proof of Theorem 2 part 1 and from Eq. (44) we that the free response
of x(k)− x̄, for any steady state x̄, is norm bounded by:

β(‖e(k)‖) = ρ̄k‖x(0)− x̄‖,
6Note that the matrix A is invertible by construction.
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which vanishes asymptotically. Conversely, recall that the forced response (of the linearised
system) to the input u is given by the discrete convolution Eq. (39). This convolution
converges for any chosen linearisation point as ρ̄ < 1. Therefore, by linearising around any
x̄, we have:

x(k)→ (I − J(x̄, u))−1hσ
′
(x̄, u)(Bu+ b) = −A−1(Bu+ b),

thus providing the desired Global Asymptotic Stability result.

2. From the fact that the network function is Lipschitz, the network is also Globally Input-
Output Robustly Stable, as shown for the case of untied weights in the proof of Theorem
2, part 2. Moreover, from Eq. (44) we have that the IOS property holds also around any
nominal equilibrium point x̄.

3. For ReLU activations, the network dynamics is piece-wise linear, and sub-differentiable. In
particular, the network has 2n possible 1-step transitions, namely 2 possible ones for each
dimension. We will proceed by enumeration of all possible dynamics transitions. First of
all, we have that:

P = {(x, u) ∈ Rn × Rm : Ax+Bu+ b > 0}, (60)
Pi = {(x, u) ∈ Rn × Rm : Ai•x+Bi•u+ bi > 0}. (61)

The network state at the next step is then given by:

x+
i =

{
xi + h(Ai•x+Bi•u+ bi) IF −Ai•x ≤ (Bi•u+ bi),
xi IF −Ai•x > (Bi•u+ bi).

(62)

The activation slope for the i-th coordinate is the set valued:

σ
′

ii(∆x) ∈

{ {1}, IF −Ai•x < (Bi•u+ bi)
{0}, IF −Ai•x > (Bi•u+ bi)
[0, 1], IF −Ai•x = (Bi•u+ bi)

(63)

The Jacobian is again given by:

J(x, u) = I + σ
′
(∆x)A. (64)

Clearly, if (x(k), u) ∈ P, ∀k then the system is linear and time invariant. In this region the
system is linear and it has a unique, input-dependant steady state, given by:

x̄ = −A−1(Bu+ b), (65)

which is a point on the the boundary of P for the limit case of σ̄ = 0.

In general, we cannot expect (x(k), u) ∈ P, ∀k. We can instead expect that the network
steady state will be either on the boundary ofP or outside the set. In particular, if (x(k), u) 6∈
P for some k then ∃ i : xi(k + t) = xi(k), ∀t ≥ 0 and therefore part of the network states
will become autonomous from layer k, making the network simply stable (not asymptotically
stable). Consider the case in which, at some time k, we have (x(k), u) 6∈ Pi (for example
in Ni). In this case we have that xi(k + t) = xi(k), ∀t ≥ 0 and the network state will
be free to change in its remaining dimensions with the i-th one being in steady state. For
the remaining dimensions, we can take out xi and consider its effect as an additional bias
element. This will result in a smaller state space x̃ = [xj , . . . , xn]T except for xi, with state
transfer matrix I + hÃ, where Ã consists of all elements of A, without the i-th row and
column. Same for B̃ having the elements of B except the i-th row. Note that Ã still has
eigenvalues in the same region as A and is therefore negative definite and invertible. For
this new system we have two possibilities: in the first case the trajectory stays in Ni all the
time and the steady states for all dimensions except i are given by:

¯̃x = Ã−1(B̃u+ b̃+ J̄ x̄i) (66)

where J̄ is a diagonal matrix containing the i-th column of J except for the i-th element. The
other possibility is that at some point we also have that (x(k), u) 6∈ Pj for some other j (they
also can be more than one at the time) in which case one can reduce the state space again
and repeat as above. We have therefore shown that the system is Asymptotically Stable and
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the trajectory tends to a point belonging to the set X = {(x, u) ∈ Rn+m, Ax+Bu+ b ≤
0}. Note that the network trajectory depends on the initial condition, and the fact that
(x(k), u) ∈ Pi at time k is also dependent on x(0). Therefore the steady-state will also
depend on the initial condition7, namely, x̄ and the network is Locally Asymptotically stable
with respect to the specific x̄. Now, the set of x(0) mapping into x̄ given u for which the
system is either stable or autonomous is the full set of reals. Therefore the network is stable
everywhere. Finally, since the network dynamics are continuous and piece-wise affine over a
partition of adjacent polyhedra, the function determining the steady states is also continuous
and piece-wise affine.

4. To prove Input-Output practical Stability, note that each combination of different vector
fields that make up f(x, u) provides a vector field that is Input-Output Stable. Moreover, f
is continuous and so is the map between (x(0), u) and the steady state x̄. We can therefore
fix the steady state and take the worst case IOpS gain for each value of the vector field to
provide suitable upper bounds for the IOpS definition to be satisfied8 as in proof of Theorem
2, part 4.

Note that the gain γ(·) can be used, for instance, as a regularizer to reduce the effect of input
perturbations on the output of the network.

D Proof of Constraint Implementation

In this section, the proposed implementation for fully connected and convolutional layers is shown to
be sufficient to fulfil the stability constraint on the Jacobian spectral radius.

D.1 Proof of Fully Connected Implementation

Recall Algorithm 1 from the main paper. The following result is obtained:

Lemma 2. The Jacobian stability condition, ρ(J(x, u)) < 1, is satisfied ∀(x, u) ∈ P for the fully
connected layer if h ≤ 1 and Algorithm 1 is used.

Since Lemma 2 is equivalent to Theorem 2 from the main paper, the former will be proven next.

Proof. (Proof of Lemma 2)

Recall that Algorithm 1 results in the following operation being performed after each training epoch:

R̃←


√
δ

R√
‖RTR‖F

IF ‖RTR‖F > δ

R, Otherwise,
(67)

with δ = 1− 2ε ∈ (0, 1). Recall that

A = −RTR− εI. (68)

Then, Eq. (67) is equivalent to the update:

Ã←

− R̃T R̃− εI = −(1− 2ε)
RTR

‖RTR‖F
− εI, IF ‖RTR‖F > 1− 2ε

A, Otherwise
(69)

7Note that the union of all regions of initial conditions converging to a steady state is however the full Rn.
Note also that in our application the initial condition is always set to zero as done in the common RNN setting,
however, this is not necessary for stability or any other properties.

8This follows from the fact that there is a region of the state-input space where the system becomes
autonomous, namely, the (constant) input cannot affect the output any longer.
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Eq. (67) guarantees that ‖RTR‖F ≤ (1 − 2ε). From the fact that the Frobenius norm is an upper
bound of the spectral norm and because of symmetry we have that:

ρ(RTR) = ‖RTR‖2 ≤ ‖RTR‖F ≤ 1− 2ε. (70)
Recall that, from Eq. (68), A is negative definite and it only has real negative real eigenvalues. Recall
also Lemma 1. Therefore, by applying the definition in Eq. (68) we have that R = 0⇒ A = −εI ,
then the eigenvalues of hA are always located within the interval [−h(1− ε),−hε]. This means that:

ρ(hA) ≤ hmax {ε, 1− ε}. (71)

To complete the proof, recall that the network Jacobian is:

J(x, u) = I + hσ
′
(∆x)A.

We will now look at the specific activation functions:

1. For ReLU activation, we simply have that J(x, u) = I + hA in the set P . Lemma 1 implies
that I +hA has only positive real eigenvalues located in [1−h(1− ε), 1−hε] which, when
h ∈ (0, 1], implies that:

ρ̄ ≤ max {1− h(1− ε), 1− hε} < 1. (72)

2. For tanh activations, since the matrix

Ā =
1

2

(
σ

′
(∆x)A+AT

(
σ

′
(∆x)

)T)
(73)

is symmetric, A is negative definite and σ
′
(·) is diagonal with entries σ

′

ii(·) ∈ [σ, 1] with
0 < σ � 1 when (x, u) ∈ P , then Ā is also negative definite in this set. Therefore, in virtue
of the observations at page 399-400 of [3], we have that the real part of the eigenvalues of
σ

′
(∆x)A is always less than zero in P . Namely,

RE(eig(σ
′
(∆x)A)) < 0. (74)

At the same time, by construction of A and again thanks to σ
′

ii(·) ∈ [σ, 1] and σ
′

ij(·) = 0 if
i 6= j, we have that:

ρ(σ
′
(∆x)A) ≤ ‖σ

′
(∆x)A‖2 ≤ ‖σ

′
(∆x)‖2‖A‖2 ≤ ‖A‖2 ≤ 1− ε (75)

From the above considerations the real part of the eigenvalues of hσ
′
(∆x)A is in the interval

[−h(1− ε),−hσε]. Assume h ≤ 1.

Finally, we show that the Jacobian has only positive real eigenvalues. From Theorem 2.2 in
[8], we know that σ

′
(∆x)A is similar to:

σ
′
(∆x)−1/2σ

′
(∆x)Aσ

′
(∆x)1/2 = σ

′
(∆x)1/2Aσ

′
(∆x)1/2 (76)

= σ
′
(∆x)1/2A(σ

′
(∆x)1/2)

T
(77)

which is symmetric, negative definite and therefore has only negative real eigenvalues,
provided that (x, u) ∈ P . Since similarity implies eigenvalue equivalence, then σ

′
(∆x)A

has only negative real eigenvalues. Then, from Lemma 1, and from Eq. (74) and Eq. (75) we
have that the eigenvalues of J(x, u) are positive real and contained in [1−h(1−ε), 1−hσε].
Therefore we have that ρ̄ ≤ max {1− h(1− ε), 1− hσε}, which is less than 1 as σ > 0 by
definition.

The less restrictive bound δ = 2(1− ε) with h ≤ 1 is also sufficient for stability but it can result in
trajectories that oscillate since it it does not constrain the eigenvalues to be positive real. Practically
speaking the bound δ = 2(1 − ε) has has proven sufficient for our MNIST experiments to be
successful, however, we believe it is important to stress the difference between this and our proposed
bound. In particular, our solution for fully connected layers leads to a critically damped system, i.e.
to a monotonic trajectory for the 1D case. This means that we can expect the activations to behave
monotonically both in time and in space. This behaviour is demonstrated in Section E. The additional
regularity of the resulting function acts as a stronger regularisation on the network.

Note also that in the above proof we have shown that, in the case of ReLU, the 2-norm is suitable to
prove stability. Moreover, if h = 1 and ε ≤ 0.5 then we have ρ̄ = 1− ε.
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D.2 Derivation of Convolutional Layer Implementation

D.2.1 Mathematical derivation of the proposed algorithm

Denote the convolution operator in NAIS-Net, for each latent map c, as the following:

X(c)(k + 1) = X(c)(k) + hσ
(

∆X(c)(k)
)
, (78)

where:
∆X(c)(k) =

∑
i

C
(c)
(i) ∗X

(i)(k) +
∑
j

D
(c)
(j) ∗ U

(j) + E(c), (79)

and where X(i)(k), is the layer state matrix for channel i, U (j), is the layer input data matrix for
channel j (where an appropriate zero padding has been applied) at layer k. The activation function, σ,
is again applied element-wise. Recall also Algorithm 2 from the main paper. The following Lemma
is obtained (equivalent to Theorem 3 from the main paper):

Lemma 3. If Algorithm 2 is used, then the Jacobian stability condition, ρ(J(x, u)) < 1, is satisfied
∀(x, u) ∈ P for the convolutional layer with h ≤ 1.

The first step to obtain the result is to prove that the convolutional layer can be expressed as a suitable
fully connected layer as in Lemma 1 from the main paper. This is shown next.

Proof. (Proof of Lemma 1 from the main paper)

For layer k, define X(k) as a tall matrix containing all the state channel matrices X(c)(k) stacked
vertically, namely:

X =


X(1)

X(2)

...
X(Nc)

 . (80)

Similar considerations apply to the input matrix U and the bias matrix E. Then, convolutional layers
can be analysed in a similar way to fully connected layers, by means of the following vectorised
representation:

x(k + 1) = x(k) + hσ
(
Ax(k) +Bu+ b

)
, (81)

where x(k) ∈ Rn2
X ·Nc , u = Rn2

U ·Nc , where Nc is the number of channels, nX is the size of the latent
space matrix for a single channel, while nU is the size of the input data matrix for a single channel.
In eq. (81), the matrices A and B are made of blocks containing the convolution filters elements in
a particular structure, to be characterised next. First, in order to preserve dimensionality of x, the
convolution for x will have a fixed stride of 1, a filter size nC and a zero padding of p ∈ N, such that
nC = 2p + 1. If a greater stride is used, then the state space can be extended with an appropriate
number of constant zero entries (not connected). Let’s then consider, without loss of generality, a
unitary stride. The matrix A is all we need to define in order to prove the Lemma.

In eq. (81), the vector x is chosen to be the vectorised version of X . In particular,

x =


x(1)

x(2)

...
x(Nc)

 , (82)

where x(c) is the vectorised version of X(c). More specifically, these objects are defined as:

X(c) =


X

(c)
1,1 X

(c)
1,2 · · · X

(c)
1,n

X
(c)
2,1 X

(c)
2,2 · · · X

(c)
2,n

...
...

. . .
...

X
(c)
n,1 X

(c)
n,2 · · · X

(c)
n,n

 ∈ RnX×nX , (83)
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and

x(c) =


X

(c)
1,1

X
(c)
1,2
...

X
(c)
n,n

 ∈ Rn2
X . (84)

Similar considerations apply to u. The matrix A in Eq. (81) has the following structure:

A =


A

(1)
(1) A

(1)
(2) . . . A

(1)
(Nc)

A
(2)
(1) A

(2)
(2) . . . A

(2)
(Nc)

...
...

. . .
...

A
(Nc)
(1) A

(Nc)
(2) . . . A

(Nc)
(Nc)

 ∈ R(n2·Nc)×(n2·Nc), (85)

where Nc is the number of channels and A(c)
(i) corresponds to the filter C(c)

(i) . In particular, each row of

A contains in fact the elements of the filter C(c)
(i) , plus some zero elements, with the central element of

the filter C(c)
(i) on the diagonal. The latter point is instrumental to the proof and can be demonstrated

as follows. Define the single channel filters as:

C
(c)
(i) =


C

(c)
(i) 1,1

C
(c)
(i) 1,2

· · · C
(c)
(i) 1,nC

C
(c)
(i) 2,1

C
(c)
(i) 2,2

· · · C
(c)
(i) 2,nC

...
...

. . .
...

C
(c)
(i) nC ,1

C
(c)
(i) nC ,2

· · · C
(c)
(i) nC ,nC

 . (86)

Consider now the output of the single channel convolution Z(c)
(i) = C

(c)
(i) ∗X

(i) with the discussed

padding and stride. The first element of the resulting matrix, Z(c)
(i) 1,1

is determined by applying the

filter to the first patch of X(i), suitably padded. For instance, for a 3-by-3 filter (p = 1), we have:

patch1,1

(
X(i)

)
=



0 0 0 0 · · · 0

0 X
(c)
1,1 X

(c)
1,2 · · · X

(c)
1,n 0

0 X
(c)
2,1 X

(c)
2,2 · · · X

(c)
2,n 0

...
...

...
. . .

...
...

0 X
(c)
n,1 X

(c)
n,2 · · · X

(c)
n,n 0

 . (87)

The first element of Z(c)
(i) is therefore given by:

Z
(c)
(i) 1,1

= X
(i)
1,1 C

(c)
(i) icentre,icentre

+X
(i)
1,2 C

(c)
(i) icentre,icentre+1

+ · · ·+X
(i)
nC−p,nC−p C

(c)
(i) nC ,nC

, (88)

where icentre denotes the central row (and column) of the filter.

The second element of the first row can be computed by means of the following patch (again when
p = 1, for illustration):

patch1,2

(
X(i)

)
=



0 0 0 0 · · · 0

0 X
(c)
1,1 X

(c)
1,2 · · · X

(c)
1,n 0

0 X
(c)
2,1 X

(c)
2,2 · · · X

(c)
2,n 0

...
...

...
. . .

...
...

0 X
(c)
n,1 X

(c)
n,2 · · · X

(c)
n,n 0

 . (89)

The element is therefore given by:

Z
(c)
(i) 1,2

= X
(i)
1,1 C

(c)
(i) icentre,icentre−1

+X
(i)
1,2 C

(c)
(i) icentre,icentre

+ · · ·+X
(i)
nC−p,nC

C
(c)
(i) nC ,nC

. (90)
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The remaining elements of Z(c)
(i) will follow a similar rule, which will involve (in the worst case) all

of the elements of the filter. In particular, one can notice for Zij the corresponding element of X ,
Xij , is always multiplied by C(c)

(i) icentre,icentre
. In order to produce the matrix A, we can consider the

Jacobian of Z. In particular, for the first two rows of A(c)
(i) we have:

A
(c)
(i) 1,•

=
∂Z

(c)
(i) 1,1

∂X(i)
=
[
C

(c)
(i) icentre,icentre

C
(c)
(i) icentre+1,icentre+1

. . . C
(c)
(i) nC ,nC

0
]
, (91)

where [·] is used to define a row vector, and where A(c)
(i) 1,•

has an appropriate number of zeros at the
end, and

A
(c)
(i) 2,•

=
∂Z

(c)
(i) 1,2

∂X(i)
=
[
C

(c)
(i) icentre,icentre−1

C
(c)
(i) icentre,icentre

. . . C
(c)
(i) nC ,nC

0
]
. (92)

Note that, the vectors defined in eq. (91) and eq. (92), contain several zeros among the non-zero
elements. By applying the filter C(c)

(i) to the remaining patches of X(i) one can inductively construct

the matrix A(c)
(i) . It can also be can noticed that each row A

(c)
(i) j,•

contains at most all of the elements
of the filter, with the central element of the filter in position j. By stacking together the obtained rows
A

(c)
(i) j,•

we obtain a matrix, A(c)
(i) , which has C(c)

(i) icentre,icentre
on the diagonal. Each row of this matrix

contains, in the worst case, all of the elements of C(c)
(i) .

Define the vectorised version of Z(c)
(i) as:

z
(c)
(i) =


Z

(c)
(i) 1,1

Z
(c)
(i) 1,2

...
Z

(c)
(i) n,n

 ∈ Rn2

, (93)

which, by linearity, satisfies:
z

(c)
(i) = A

(c)
(i)x

(i). (94)

By summing over the index i we obtain the vectorised output of the convolution C ∗X for the channel
c:

z(c) =

Nc∑
i=1

A
(c)
(i)x

(i) =
[
A

(c)
(1) A

(c)
(2) . . . A

(c)
(Nc)

]
x = A(c)x, (95)

where the matrices A(c)
(i) are stacked horizontally and where we have used the definition of x given in

eq. (82). The full matrix A is therefore given by:

A =


A(1)

A(2)

...
A(Nc)

 =


A

(1)
(1) A

(1)
(2) . . . A

(1)
(Nc)

A
(2)
(1) A

(2)
(2) . . . A

(2)
(Nc)

...
...

. . .
...

A
(Nc)
(1) A

(Nc)
(2) . . . A

(Nc)
(Nc)

 , (96)

where we have conveniently separated the long blocks used to produce the single channels result,
z(c). By defining the vector

z =


z(1)

z(2)

...
z(Nc)

 , (97)

and by means of eq. (95) we have that z = Ax. This is a vectorised representation of C ∗X .
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We are now ready to prove Lemma 3 and consequently Theorem 3 from the main paper.

Proof. (Proof of Lemma 3)

Similar to what done for the fully connected layer, we will first show that the Algorithm 2 places the
eigenvalues of I +A strictly inside the unit circle. Then, we will also show that J(x, u) enjoys the
same property in P .

We will now derive the steps used in Algorithm 2 to enforce that ρ(I +A) ≤ 1− ε. Recall that, from
Lemma 1, we need the eigenvalues A to be lying inside the circle, S , of the complex plane centered
at (−1, 0) with radius 1− ε. More formally:

S = {λ ∈ C : |λ+ 1| ≤ 1− ε}. (98)

The Gershgorin theorem offers a way to locate the eigenvalues of A inside S . Consider the c-th long
long block in eq. (96), A(c). Recall the particular structure of A(c)

(c) as highlighted in eq. (91) and eq.
(92). For each long block A(c) we have that all associated Gershgorin disks must satisfy:∣∣∣λ− C(c)

icentre

∣∣∣ ≤ ∑
i6=icentre

∣∣∣C(c)
i

∣∣∣ , (99)

where λ is any of the corresponding eigenvalues, C(c)
icentre

is the central element of the filter C(c)
(c) ,

namely, C(c)
icentre

= C
(c)
(c) icentre,icentre

, and the sum is performed over all of the remaining elements of C(c)
(c)

plus all the elements of the remaining filters used for, z(c), namely C(c)
(j) , ∀j 6= c. Therefore, one can

act directly on the kernel C without computing A.

By means of Algorithm 2, for each channel c we have that:

C
(c)
icentre

= −1− δc, (100)

and ∑
i 6=icentre

∣∣∣C(c)
i

∣∣∣ ≤ 1− ε− |δc| (101)

where
|δc| < 1− η, 0 < ε < η < 1. (102)

This means that for every c, the c-th block of A has the largest Gershgorin region bounded by a disk,
Sc. This disk is centred at (−1− δc, 0) with radius 1− ε− |δc|. More formally, the disk is defined
as:

Sc = {λ ∈ C : |λ+ 1 + δc| ≤ 1− ε− |δc|}. (103)
Thanks to eq. (102), this region is not empty and its center can be only strictly inside S . Clearly, we
have that, Sc ⊆ S,∀c. This follows from convexity and from the fact that, when |δc| = 1− η, thanks
to eq. (102) we have

Sc = {λ ∈ C : |λ+ 1± (1− η)| ≤ 1− ε− (1− η)} ⊂ S (104)

while on the other hand δc = 0⇒ Sc = S.

We will now show that the eigenvalue condition also applies to the network state Jacobian. From
Algorithm 2 we have that each row j of the matrix J = I +A satisfies (for the corresponding channel
c): ∑

i

∣∣Jji∣∣ ≤ ∣∣∣1 + C
(c)
icentre

∣∣∣+
∑

i 6=icentre

∣∣∣C(c)
i

∣∣∣
≤ |δc|+ 1− ε− |δc| = 1− ε.

(105)

Thus ‖J‖∞ = ‖I + A‖∞ ≤ 1 − ε < 1. 9 Recall that, in the vectorised representation, the state
Jacobian is:

J(x, u) = I + hσ
′
(∆x)A.

9Note that this also implies that ρ(I +A) ≤ 1− ε, by means of the matrix norm identity ρ(·) ≤ ‖ · ‖. This
was however already verified by the Gershgorin Theorem.
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Then, if h ≤ 1, we have that ∀(x, u) ∈ P:

‖J(x, u)‖∞ = max
i
|1− hσ

′

ii(∆x)(1 + δc)|+ hσ
′

ii(∆x)
∑
j 6=i

|Aij |

≤ max
i
{1− hσ

′

ii(∆x) + hσ
′

ii(∆x)|δc|+ hσ
′

ii(∆x)(1− ε)− hσ
′

ii(∆x)|δc|}

= max
i
{1− hσ

′

ii(∆x)ε} < 1− hσε ≤ 1.

(106)

The proof is concluded by means of the identity ρ(·) ≤ ‖ · ‖ .

Note that in the above we have also showed that in the convolutional case the infinity norm is suitable
to prove stability. Moreover, for ReLU we have that ρ̄ ≤ 1− hε.
The above results can directly be extended to the untied weight case providing that the projections
are applied at each stage of the unroll.

In the main paper we have used δc = 0, ∀c (equivalently, η = 1). This means that one filter weight
per latent channel is fixed at −1 which might seem conservative. It is however worth noting that
this choice provides the biggest Gershgorin disk for the matrix A as defined in Eq. (104). Hence
δc = 0, ∀c results in the least restriction for the remaining elements of the filter bank. At the same
time, we have NC less parameters to train. A tradeoff is however possible if one wants to experiment
with different values of η ∈ (ε, 1).

D.2.2 Illustrative Example

Consider, for instance, 3 latent channels X(1), . . . , X(3), which results in 3 blocks of 3 filters, 1 block
per channel X(c)(k + 1). Each filter has the same size nC , which again needs to be chosen such that
the channel dimensionality is preserved. This corresponds to the following matrix:

A =


A

(1)
(1) A

(1)
(2) A

(1)
(3)

A
(2)
(1) A

(2)
(2) A

(2)
(3)

A
(3)
(1) A

(3)
(2) A

(3)
(3)

 =

=



C
(1)
icentre

C
(1)
j C

(1)
nC−1 . . . . . . C

(1)
3·nC−1

...
...

. . . . . . . . .
...

C̃
(2)
1 . . . C

(2)
icentre

. . . . . . C
(2)
3·cC−1

...
...

. . . . . . . . .
...

C̃
(3)
1 . . . . . . . . . C

(3)
icentre

...
...

...
. . . . . . . . .

. . .


,

(107)

where the relevant rows include all elements of the filters (in the worst case) together with a large
number of zeros, the position of which does not matter for our results, and the diagonal elements are
known and non-zero. Therefore, according to eq. (107), we have to repeat Algorithm 2 from main
paper for each of the 3 filter banks.
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E Analysis of 1D Activations

This paper has discussed the formulation and implementation of stability conditions for a non-
autonomous dynamical system, inspired by the ResNet, with the addition of a necessary input skip
connection. This system’s unroll, given a constant input, results in a novel architecture for supervised
learning. In particular, we are interested in using the system’s trajectory in two ways. The first
consists in using the last point of an unroll of fixed length K. The second one uses an unroll of
varying length less or equal to K > 0, which depends on a stopping criterion ‖∆x(x, u)‖ < ε, with
ε > 0. In the former case, this produces an input-output map (a NAIS-Net block) that is Lipschitz
for any K (even infinity) and significantly better behaved than a standard ResNet without the use
regularisation or batch normalisation. The latter case, defines a pattern-dependent processing depth
where the network results instead in a piecewise Lipschitz function for any K > 0 and ε > 0.

In order to clarify further the role of stability, the behaviour of a scalar NAIS-Net block and its
unstable version, non-autonomous ResNet, are compared. Recall that the NAIS-Net block is defined
by the unroll of the dynamical system:

x(k + 1) = x(k) + ∆x(x(k), u(k)) = x(k) + hσ

(
Ax(k) +Bu+ b

)
. (108)

In this Section, since the scalar case is considered, A, B and b are scalar. In particular, we investigate
different values ofA that satisfy or violate our stability conditions, namely ‖I+A‖ < 1, which in this
special case translate into A ∈ (−2, 0). Whenever this condition is violated we denote the resulting
network as non-autonomous ResNet or, equivalently, unstable NAIS-Net. The input parameter B is
set to 1 and the bias b is set to zero for all experiments. Note that, in this setting, varying the input is
equivalent to varying the bias.

E.1 Fixed number of unroll steps

Figure 1 shows a couple of pathological cases in which the unstable non-autonomous ResNet produces
unreliable or uninformative input-output maps. In particular, the top graphs present the case of positive
unstable eigenvalues. The top left figure shows that in this case the tanh activated network presents
bifurcations which can make gradients explode [5]. The slope is nearly infinite around the origin
and finally, for large inputs, the activation collapses into a flat function equal to kA, where k is the
iteration number. The ReLU network (top right) has an exponential gain increase per step k and the
gain for k = 100 reaches 1030 (see red box and pointer). Bottom graphs present the case of large
negative eigenvalues. In the bottom left figure, the tanh activation produces a map that has limited
slope but is also quite irregular, especially around the origin. This can also result into large gradients
during training. The ReLU activated network (bottom right) instead produces an uninformative map,
max(u, 0), which is (locally) independent from the parameter A and the unroll length K.

Figure 2 shows the input-output maps produced by stable NAIS-Net with our proposed reprojection
for fully connected architectures. In particular, the top and bottom graphs present the case of positive
real stable eigenvalues with different magnitude. This means that the resulting trajectories are
critically damped, namely, oscillation-free. The left figures shows that as a result the stable tanh
activated networks have monotonic activations (strictly increasing around the origin) that tend to a
straight line as k →∞. This is confirmed by the theoretical results. Moreover, the map is Lipschitz
with Lipschitz constant equal to the steady state gain presented in the main paper, ‖A−1‖ ‖B‖.
Figures on the right present the ReLU case where the maps remain of the same form but change in
slope until the theoretical gain ‖A−1‖ ‖B‖ is reached. This means that one cannot have an unbounded
slope or the same map for different unroll length. The rate of change of the map as a function of k is
also determined by the parameters but it is always under control. Although this was not proven in
our results, the behaviour of the resulting input-output maps suggests that gradient should be well
behaved during training and not explode nor vanish. Finally, one could make the Lipschitz constant
unitary by multiplying the network output by ‖A|/‖B‖ once the recursion is finished. This could be
used as an alternative to batch normalization and it will be investigated in future.

Figure 3 shows the maps produced by stable NAIS-Net with eigenvalues that are outside the region
of our proposed reprojection for fully connected layers but still inside the one for convolutional
layers. In particular, the top and bottom graphs present the case of negative real stable eigenvalues
with different magnitude. The left figures shows that as a result the stable tanh activated networks
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Figure 1: Single neuron unstable NAIS-Net (non-autonomous ResNet). Input-output map for different
unroll length for tanh (Left) and ReLU (Right) activations. Pathological cases in which the unstable non-
autonomous ResNet produces unreliable or uninformative input-output maps. In particular, the top graphs
present the case of positive unstable eigenvalues. The top left figure shows that in this case the tanh activated
network presents bifurcations which can make gradients explode [5]. The slope is also nearly infinite around the
origin. Elsewhere, the activation collapses into a flat function equal to kA, where k is the iteration number. The
ReLU activations (top right) has an exponential gain increase per step k and the gain for k = 100 reaches 1030

(see red box and pointer). Bottom graphs present the case of large negative eigenvalues. In the bottom left figure,
the tanh activation produces a map that has limited slope but it is quite irregular, especially around the origin.
This can also result large gradients during training. The ReLU activated network (bottom right) instead produces
an uninformative map, max(u, 0), locally independent from A and the unroll length K.

have monotonic activations (not strictly in this case) that still tend to a straight line as expected but
present intermediate decaying oscillations as k →∞. The map is still Lipschitz but the Lipschitz
constant is not always equal to the steady state gain because of the transient oscillations. Figures on
the right present the ReLU case where the maps remain identical independently of the parameter
A. This means that this parameter becomes uninformative and one could argue that in this case
gradients would vanish. Note that our reprojection for convolutional layers can theoretically allow
for this behaviour while the fully connected version does not. Training with Algorithm 2 has been
quite successful on our experiments, however, the above points are of interest and will be further
investigated in follow-up work.

E.2 Pattern-dependent processing depth through a stopping criterion

We investigate the use at test time of a stopping criterion for the network unroll, ‖∆x(x, u)‖ ≤ ε,
where ε is a hyper-parameter. The activations for a 1D network are again considered, where ε is set
to 0.95 for illustrative purpose. The resulting activations are discontinuous but locally preserve the
properties illustrated in the previous Section.

Figure 4 shows the input-output maps produced by stable NAIS-Net with our proposed reprojection
for fully connected architectures. In particular, the top and bottom graphs present the case of positive
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Figure 2: Single neuron NAIS-Net. Input-output map for different unroll length for tanh (Left) and
ReLU (Right) activations. The input-output maps produced by stable NAIS-Net with our proposed reprojection
for fully connected architectures. In particular, the top and bottom graphs present the case of positive stable
eigenvalues with different magnitude. The left figures shows that the stable tanh activated networks have
monotonic activations (strictly increasing around the origin) that tend to a straight line as k → ∞ as in our
theoretical results. Morever, the map is Lipschitz with Lipschitz constant equal to the steady state gain presented
in the main paper, ‖A−1‖ ‖B‖. Figures on the right present the ReLU case where the maps remain of the
changes in slope up to ‖A−1‖ ‖B‖. This means that one cannot have an unbounded slope or the same map
for different unroll length. The rate of change of the map changes as a function of k is also determined by the
parameters.

stable eigenvalues with different magnitude. The left figures shows that the stable tanh activated
networks have piece-wise continuous and locally strictly monotonic activations (strictly increasing
around the origin) that tend to a straight line as k →∞ as in our theoretical results. Moreover, the
map is also piece-wise Lipschitz with Lipschitz constant less than the steady state gain presented
in the main paper, ‖A−1‖ ‖B‖. Figures on the right present the ReLU case where the maps are
piece-wise linear functions with slope that is upper bounded by ‖A−1‖ ‖B‖. This means that one
cannot have an unbounded slope (except for the jumps) or the same map for different unroll length.
The rate of change of the map changes as a function of k is also determined by the parameters. The
jump magnitude and the slopes are also dependant on the choice of threshold for the stopping criteria.
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Figure 3: Single neuron NAIS-Net with less conservative reprojection. Input-output map for different
unroll length for tanh (Left) and ReLU (Right) activations. Input-output maps produced by stable NAIS-Net
with eigenvalues that are outside the region of our proposed reprojection for fully connected layers but still
inside the one for convolutional layers. In particular, the top and bottom graphs present the case of negative
real stable eigenvalues with different magnitude. The left figures shows that as a result the stable tanh activated
networks have monotonic activations (not strictly increasing) that still tend to a straight line as expected but
present intermediate decaying oscillations. As a consequence of this the map is still Lipschitz but the Lipschitz
constant is not equal to the steady state gain for any k. Figures on the right present the ReLU case where the
maps remain identical independently of the parameter A.
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Figure 4: Single neuron NAIS-Net with variation stopping criteria for pattern-dependent processing
depth. Input-output map for different unroll length for tanh (Left) and ReLU (Right) activations. The
input-output maps produced by stable NAIS-Net with our proposed reprojection for fully connected architectures.
In particular, the top and bottom graphs present the case of positive stable eigenvalues with different magnitude.
The left figures shows that the stable tanh activated networks have piece-wise continuous and locally monotonic
activations (strictly increasing around the origin) that tend to a straight line as k → ∞ as in our theoretical
results. Moreover, the map is also piece-wise Lipschitz with Lipschitz constant less than the steady state gain
presented in the main paper, ‖A−1‖ ‖B‖. Figures on the right present the ReLU case where the maps are
piece-wise linear functions with slope that is upper bounded by ‖A−1‖ ‖B‖. This means that one cannot have
an unbounded slope (except for the jumps) or the same map for different unroll length. The rate of change of the
map changes as a function of k is also determined by the parameters. The jump magnitude and the slopes are
also dependant on the choice of threshold for the stopping criteria.
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