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A.1 Proof of Theorem 1

Proof of Theorem 1.

min
P̂ (ŷ|x)

max
P̌ (y̌|x)

EX∼P̃ ;Ŷ|X∼P̂ ;Y̌|X∼P̌

[
loss(Ŷ, Y̌)

]
(11)

subject to: EX∼P̃ ;Y̌|X∼P̌

[
Φ(X, Y̌)

]
= EX,Y∼P̃

[
Φ(X,Y)

]
(a)
= max

P̌ (y̌|x)
min
P̂ (ŷ|x)

EX∼P̃ ;Ŷ|X∼P̂ ;Y̌|X∼P̌

[
loss(Ŷ, Y̌)

]
(12)

subject to: EX∼P̃ ;Y̌|X∼P̌

[
Φ(X, Y̌)

]
= EX,Y∼P̃

[
Φ(X,Y)

]
(b)
= max
P̌ (y̌|x)

min
θ

min
P̂ (ŷ|x)

EX,Y∼P̃ ;Ŷ|X∼P̂ ;Y̌|X∼P̌

[
loss(Ŷ, Y̌) + θT

(
Φ(X, Y̌)− Φ(X,Y)

)]
(13)

(c)
= min

θ
max
P̌ (y̌|x)

min
P̂ (ŷ|x)

EX,Y∼P̃ ;Ŷ|X∼P̂ ;Y̌|X∼P̌

[
loss(Ŷ, Y̌) + θT

(
Φ(X, Y̌)− Φ(X,Y)

)]
(14)

(d)
= min

θ
EX,Y∼P̃ max

P̌ (y̌|x)
min
P̂ (ŷ|x)

EŶ|X∼P̂ ;Y̌|X∼P̌

[
loss(Ŷ, Y̌) + θT

(
Φ(X, Y̌)− Φ(X,Y)

)]
(15)

(e)
= min
θe,θv

EX,Y∼P̃ max
P̌ (y̌|x)

min
P̂ (ŷ|x)

EŶ|X∼P̂ ;Y̌|X∼P̌

[∑n
i loss(Ŷi, Y̌i) (16)

+ θe ·
∑

(i,j)∈E

[
φ(X, Y̌i, Y̌j)− φ(X, Yi, Yj)

]
+ θv ·

∑n
i

[
φ(X, Y̌i)− φ(X, Yi)

] ]
(f)
= min

θe,θv
EX,Y∼P̃ max

P̌ (y̌|x)
min
P̂ (ŷ|x)

∑
ŷ,y̌

P̂ (ŷ|x)P̌ (y̌|x)
[∑n

i loss(ŷi, y̌i) (17)

+ θe ·
∑

(i,j)∈E
[
φ(x, y̌i, y̌j)− φ(x, yi, yj)

]
+ θv ·

∑n
i

[
φ(x, y̌i)− φ(x, yi)

] ]
(g)
= min

θe,θv
EX,Y∼P̃ max

P̌ (y̌|x)
min
P̂ (ŷ|x)

[∑n
i

∑
ŷi,y̌i

P̂ (ŷi|x)P̌ (y̌i|x)loss(ŷi, y̌i) (18)

+
∑

(i,j)∈E
∑
y̌i,y̌j

P̌ (y̌i, y̌j |x)
[
θe · φ(x, y̌i, y̌j)

]
−
∑

(i,j)∈E θe · φ(x, yi, yj)

+
∑n
i

∑
y̌i
P̌ (y̌i|x)

[
θv · φ(x, y̌i)

]
−
∑n
i θv · φ(x, yi)

]
.

The transformation steps above are described as follows:

(a) We flip the min and max order using minimax duality [36]. The domains of P̂ (ŷ|x) and
P̌ (y̌|x) are both compact convex sets and the objective function is bilinear, therefore, strong
duality holds.

(b) We introduce the Lagrange dual variable θ to directly incorporate the equality constraints
into the objective function.

(c) The domain of P̌ (y̌|x) is a compact convex subset of Rn, while the domain of θ is Rm. The
objective is concave on P̌ (y̌|x) for all θ (a non-negative linear combination of minimums
of affine functions is concave), while it is convex on θ for all P̌ (y̌|x). Based on Sion’s
minimax theorem [37], strong duality holds, and thus we can flip the optimization order of
P̌ (y̌|x) and θ.

(d) Since the expression is additive in terms of P̌ (y̌|x) and P̂ (ŷ|x), we can push the expectation
over the empirical distribution X, Y ∼ P̃ outside and independently optimize each P̌ (y̌|x)

and P̂ (ŷ|x).

(e) We apply our description of loss metrics which is additively decomposable into the loss for
each node, and the features that can be decomposed into node and edge features. We also
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separate the notation for the Lagrange dual variable into the variable for the constraints on
node features (θv) and and the variable for the edge features (θe).

(f) We rewrite the expectation over P̂ (ŷ|x) and P̌ (y̌|x) in terms of the probability-weighted
average.

(g) Based on the property of the loss metrics and feature functions, the sum over the exponen-
tially many possibilities of ŷ and y̌ can be simplified into the sum over individual nodes and
edges values, resulting in the optimization over the node and edge marginal distributions.

A.2 Proof of Theorem 2

Proof of Theorem 2.

max
Q∈∆

min
p∈∆

n∑
i

[
piLi(Q

T
pt(i);i1) +

〈
Qpt(i);i,Bpt(i);i

〉
+ (QT

pt(i);i1)Tbi

]
(19)

subject to: QT
pt(pt(i));pt(i)1 = Qpt(i);i1, ∀i ∈ {1, . . . , n}

(a)
= max

Q∈∆
min

u
min
p∈∆

n∑
i

[
piLi(Q

T
pt(i);i1) +

〈
Qpt(i);i,Bpt(i);i

〉
+ (QT

pt(i);i1)Tbi

]
(20)

+

n∑
i

uT
i

(
QT
pt(pt(i));pt(i)1−Qpt(i);i1

)
(b)
= min

u
max
Q∈∆

min
p∈∆

n∑
i

[
piLi(Q

T
pt(i);i1) +

〈
Qpt(i);i,Bpt(i);i

〉
+ (QT

pt(i);i1)Tbi

]
(21)

+

n∑
i

uT
i

(
QT
pt(pt(i));pt(i)1−Qpt(i);i1

)
(c)
= min

u
max
Q∈∆

min
p∈∆

n∑
i

[
piLi(Q

T
pt(i);i1) +

〈
Qpt(i);i,Bpt(i);i

〉
+
〈
Qpt(i);i,1bT

i

〉 ]
(22)

+

n∑
i

[ 〈
Qpt(pt(i));pt(i),1uT

i

〉
−
〈
Qpt(i);i,ui1

T
〉 ]

(d)
= min

u
max
Q∈∆

min
p∈∆

n∑
i

[
piLi(Q

T
pt(i);i1) +

〈
Qpt(i);i,Bpt(i);i+1bT

i −ui1
T+
∑
k∈ch(i) 1uT

k

〉]
.

(23)

The transformation steps above are described as follows:

(a) We introduce the Lagrange dual variable u, where ui is the dual variable associated with
the marginal constraint of QT

pt(pt(i));pt(i)1 = Qpt(i);i1.

(b) Similar to the analysis in Theorem 1, strong duality holds due to Sion’s minimax theorem.
Therefore we can flip the optimization order of Q and u.

(c) We rewrite the vector multiplication over Qpt(i);i1 or QT
pt(i);i1 with the corresponding

Frobenius inner product notations.

(d) We regroup the terms in the optimization above by considering the parent-child relations in
the tree for each node. Note that ch(i) represents the children of node i.
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